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[1] Terrestrial ecosystem models (TEMs) contain the coupling of many biogeochemical
processes with a large number of parameters involved. In many cases those parameters
are highly uncertain. In order to reduce those uncertainties, parameter estimation methods
can be applied, which allow the model to be constrained against observations. We compare
the performance and results of two such parameter estimation techniques - the Metropolis
algorithm (MA) which is a Markov Chain Monte Carlo (MCMC) method and the
adjoint approach as it is used in the Carbon Cycle Data Assimilation System (CCDAS).
Both techniques are applied here to derive the posterior probability density function (PDF)
for 19 parameters of the Biosphere Energy Transfer and Hydrology (BETHY) scheme.
We also use the MA to sample the posterior parameter distribution from the adjoint
inversion. This allows us to assess if the commonly made assumption in variational data
assimilation, that everything is normally distributed, holds. The comparison of the posterior
parameter PDF derived by both methods shows that in most cases an approximation of the
PDF by a normal distribution as used by the adjoint approach is a valid assumption.
The results also indicate that the global minimum has been identified by both methods for
the given set up. However, the adjoint approach outperforms the MA by several orders
of magnitude in terms of computational time. Both methods show good agreement in the
PDF of estimated net carbon fluxes for the decades of the 1980s and 1990s.
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1. Introduction

[2] Predictions of future climate strongly depend on the
concentrations of greenhouse gases in the atmosphere with
CO2 being the most important one. Atmospheric CO2 con-
centrations are determined by the size of the global exchange
fluxes with the oceans and the land as well as the anthropo-
genic emissions. Terrestrial ecosystem models (TEMs) can
be used to estimate the net exchange flux of CO2 between the
land and the atmosphere and therefore play an important role
in the Earth system.
[3] State-of-the-art TEMs such as the Joint UK Land

Environment Simulator (JULES) [Best et al., 2011; Clark
et al., 2011] or the Biosphere Energy Transfer and Hydrology

(BETHY) scheme [Knorr, 2000] contain a large number of
biogeochemical processes, which makes them very complex
models with a large number of process parameters involved.
In most cases, we do not know the exact value of the para-
meters, and prior parameter values are therefore based on
expert knowledge. In some cases this is little more than an
informed guess. The large uncertainties associated with prior
parameter values also lead to large variations in the predic-
tions of the future land-atmosphere CO2 fluxes [Knorr and
Heimann, 2001], which in turn contributes to the uncertain-
ties in future climate projections.
[4] Due to the increasing number of process parameters

involved in state-of-the-art TEMs, it becomes more and more
important to focus on the reduction of their uncertainties.
Parameter estimation methods are very useful in this context,
because they provide an objective way of constraining the
model against observations and in this way are able to reduce
the parameter uncertainties.
[5] Various parameter estimation methods such as adjoint,

genetic algorithm, Kalman Filter, Levenberg-Marquardt and
Monte Carlo inversion have been compared for example in
the OptIC (Optimization InterComparison) project [Trudinger
et al., 2007]. The aim here was to estimate four parameters in
a highly simplified representation of the carbon dynamics in a
TEM with only two state variables. A forward run of the
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model was used to generate artificial data, which were then
treated as observations after degradation through added
noise, correlations, drifts and gaps. It was found that all
methods were equally successful at estimating the para-
meters. A comparison in terms of computational efficiency
was not made, due to the fact that the model was inexpensive
to run. Also, the model did not have multiple minima, which
therefore did not allow for a comparison in terms of the
ability to find the global minimum.
[6] The REFLEX project [Fox et al., 2009] compared

methods based on genetic algorithm, Kalman Filter and
Monte Carlo inversion using the Data Assimilation Linked
Ecosystem Carbon (DALEC) model [Williams et al., 2005].
DALEC is a simple box model of carbon pools used here in
two versions, as a model for evergreen and a model for
deciduous vegetation. The evergreen version required cali-
bration of 11 parameters related to allocation and turnover of
carbon pools, whereas the deciduous version required cali-
bration of 17 parameters. REFLEX used both synthetic
(generated from the model with added noise) and real data.
It was found that estimates of confidence intervals varied
among algorithms. Again, the main focus here was not on
comparing the methods in terms of their computational effi-
ciency nor their ability to find the global minimum.
[7] Many parameter estimation methods use the Bayesian

approach, which has proven to provide a powerful and con-
venient framework for combining prior knowledge about
parameters with additional information such as observations
[Rayner et al., 2005]. The resulting inverse problem
described by Bayes’ theorem can be solved in different ways.
Here we focus on the comparison of two types of methods:
Monte Carlo inversion [Sambridge and Mosegaard, 2002]
and variational data assimilation [Talagrand and Courtier,
1987]. Monte Carlo inversion methods such as the Markov
Chain Monte Carlo method (MCMC) have a better chance to
converge to the global minimum than have gradient-based
methods for example. In principle, the MCMC will converge
to the global minimum if the number of iterations is large
enough. However, the maximum number of iterations may be
restricted by the computing time of the model. MCMC
methods are easy to implement and they require no assump-
tions about the model (i.e. continuity) and the posterior
probability distribution of parameters may be non-Gaussian,
even if the prior distribution is assumed to be Gaussian
(normally distributed).
[8] Variational data assimilation, such as the four-

dimensional variational (4D-Var) scheme, is one of the most
advanced approaches to assimilate observed information into
a model. It uses derivative code (i.e. the adjoint of the model)
for the optimization of the parameters and therefore requires
the model to be differentiable with respect to all parameters.
Although the 4D-Var approach is computationally very effi-
cient in most cases, the optimization might only identify a
local minimum due to the non-linearity and high dimension-
ality of the model. Another criticism of the 4D-Var method is
that it focuses only on the optimal solution, i.e. the mode of
the probability density function (PDF) without considering
uncertainties. However, some 4D-Var schemes, such as the
Carbon Cycle Data Assimilation System (CCDAS) [Rayner
et al., 2005], allow the calculation of posterior parameter
uncertainties using the inverse of the Hessian (second order

derivative) of the cost function at the global minimum.
Unfortunately, this is only correct for linear problems. If the
model is non-linear and a Gaussian distribution is assumed
for the prior parameters, the model needs to be linearized
around the optimum in parameter space, and the posterior
distribution will only be approximated by a Gaussian
[Tarantola, 1987]. This approximation might not always be
reasonable, considering that most TEMs are highly non-
linear.
[9] In this contribution we compare the 4D-Var (adjoint)

approach as implemented in CCDAS, with the Metropolis
algorithm (MA) [Metropolis et al., 1953; Mosegaard and
Tarantola, 1995], which is one possible MCMC method.
We apply both methods in order to estimate the posterior
PDF of 19 process parameters in the terrestrial ecosystem
model BETHY. BETHY is a complex grid-based model,
which simulates carbon assimilation and soil respiration
within a full energy and water balance and phenology
scheme. The main focus is on the performance of the two
methods in terms of their efficiency (i.e. number of required
model runs) and their ability to find the global minimum. In
addition, the MA will allow us to assess the full shape of the
PDF of single model parameters – as part of the evaluation of
the full PDF containing the dependence on all model para-
meters simultaneously – and thus provides an indication of
whether or not the assumption of a Gaussian posterior PDF of
parameters made in CCDAS is justified.

2. Methodology

[10] Data assimilation can be seen as a way of combining
data (i.e. observations) with prior information (i.e. process
model formulation and prior process parameter value) to
derive posterior parameter estimates. The Bayesian approach
[Tarantola, 1987, 2005] provides a powerful and convenient
framework for data assimilation as it combines the prior
probability distribution p(x) of the parameters x with the
(forward) probability distribution p(c∣x) of the observations c
given the parameters x to obtain the (inverse) posterior
probability distribution p(x∣c) of the parameters x given the
observations c:

pðxjcÞ ¼ 1

A
pðcjxÞpðxÞ: ð1Þ

The factor 1/A is a normalization constant with A = p(c). It is
independent of the parameters x and used to scale equation (1)
so that the integral over the posterior p(x∣c) equals one. The
probability distribution p(c∣x) describes the distribution of
the observations assuming that we know the parameter values
(i.e. given a set of parameters x) and the probability distri-
bution p(x∣c) describes the distribution of the parameters after
obtaining information on the observations (i.e. given the
observations c). This is known as the inverse problem and
Bayes theorem described by equation (1) allows us to obtain
p(x∣c) through synthesis of observations and prior informa-
tion. In principle, equation (1) gives us the exact information
about the shape of the posterior PDF of parameters. The
difficulty with using the equation directly simply lies in the
fact that it is often highly dimensional. However, we are
usually only interested in knowing what the most likely set of
parameters is, i.e. in the global maximum of p(x∣c), and in the

ZIEHN ET AL.: COMPARISON OF INVERSION TECHNIQUES GB3025GB3025

2 of 13



region around it. This is why solving equation (1) requires
optimization.
[11] The forward probability distribution p(c∣x) is deter-

mined by the model M at the point x in parameter space and
provides a measure of how good the model is in explaining
the observations. The modeled counterpart to the observa-
tions are here denoted cM with cM = M(x). If we assume a
Gaussian distribution, we obtain this expression for the PDF
of observations for a given set of parameters:

pðcjxÞ ¼ 1

A′
exp � 1

2
cM � cð ÞTCc

�1ðcM � cÞ
� �

ð2Þ

where Cc is the combined error covariance matrix of the
observations and the model. A′, and A″ below, are normali-
zation constants. To express prior knowledge about para-
meters, we can again use a Gaussian formulation:

pðxÞ ¼ 1

A″
exp � 1

2
x� x0ð ÞTCx0

�1ðx� x0Þ
� �

: ð3Þ

x0 is the prior estimate of the model parameters, and Cx0 the
corresponding error covariance matrix.
[12] This optimization problem can be solved in different

ways, for example through Monte Carlo inversion or varia-
tional data assimilation. In many cases, a Gaussian distribu-
tion is assumed for the prior parameter values and the
observations, as shown in the two equations above. Com-
bining equation (1) with equations (2) and (3) leads to the
following full expression requiring inversion:

pðxjcÞ ¼ 1

A
exp � 1

2
cM � cð ÞTCc

�1ðcM � cÞ
� �

� exp � 1

2
x� x0ð ÞTCx0

�1ðx� x0Þ
� �

: ð4Þ

2.1. Variational Data Assimilation and CCDAS

[13] By taking the negative logarithm of equation (4)
(ignoring A), we obtain the so-called cost function J(x),
which we can minimize instead of maximizing p(x∣c)
directly:

JðxÞ ¼ 1

2
cM � cð ÞTCc

�1ðcM � cÞ þ x� x0ð ÞTCx0
�1ðx� x0Þ

� �
:

ð5Þ

J(x) expresses the mismatch between the observations and
their modeled equivalents and the mismatch between the
parameters and their priors. Variational data assimilation
schemes aim to minimize the cost function by making use of
its gradient.
[14] In this study we use CCDAS, which has been previ-

ously described by Scholze [2003] and Rayner et al. [2005].
Only a short summary is provided here. The data assimilation
in CCDAS is performed in two steps: In the first step, the full
BETHY model (TEM in CCDAS) is used to assimilate
global monthly fields of the fraction of Absorbed Photosyn-
thetically Active Radiation (fAPAR) for optimizing para-
meters controlling soil moisture and phenology [Knorr and
Schulz, 2001]. In the second step, soil moisture and leaf
area index (LAI) fields are provided as inputs for a reduced
version of BETHY. This version is used to assimilate

atmospheric CO2 concentration observations from a large
number of observation stations for optimizing photosynthesis
and soil carbon parameters and to derive their posterior
uncertainties [Rayner et al., 2005; Scholze et al., 2007].
[15] The focus in this work is on the second data assimi-

lation step. However, in contrast to the set up used by Rayner
et al. [2005], we only optimize the soil carbon part of
BETHY, keeping all parameters controlling net primary
productivity (NPP) fixed. Earlier studies [Rayner et al., 2005;
Scholze et al., 2007] have shown that these parameters are
only relatively weakly constrained by the atmospheric CO2

data. However, Ziehn et al. [2011b] have demonstrated how
to constrain the NPP-related parameters (i.e. photosynthesis
parameters) using an extensive set of plant traits. We also
expect that new satellite observations such as fluorescence
will have a strong constraint on these parameters.
[16] CCDAS is operated in a variety of modes. In calibra-

tion mode, CCDAS serves as an estimator algorithm for the
heterotrophic respiration process parameters, subsequently
referred to as soil carbon parameters. A quasi-Newton method,
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variant of
the Davidon-Fletcher-Powell (DFP) formula [Fletcher and
Powell, 1963; Press et al., 1996], is used for the iterative
minimization of the cost function, which requires the calcu-
lation of the gradient of J with respect to the control para-
meters x in each iteration. All derivative code is generated
from the model’s source code using the tool Transformation
of Algorithms in Fortran (TAF) [Giering and Kaminski,
1998; Kaminski et al., 2003].
[17] If the gradient of the cost function reaches zero, a

minimum has been found and the posterior parameter
uncertainties can be calculated using the Hessian mode of
CCDAS. The Hessian, i.e. the second order derivative of the
cost function with respect to the model parameters, describes
the curvature of the cost function. At the cost function min-
imum, the Hessian approximates the inverse covariance of
the optimal soil carbon parameters and can thus be used to
calculate the posterior parameter uncertainties. We calculate
the Hessian by differentiating the gradient vector with respect
to all parameters by applying TAF a second time. More
details on how the Hessian is calculated and how the poste-
rior parameter uncertainties are derived can be found in
Rayner et al. [2005]. Due to the fact that the BETHY model
is non-linear, the posterior probability density of single
parameters will only be approximated by a normal distribu-
tion [Tarantola, 1987]. In order to confirm if this assumption
holds, we compare the posterior parameter PDFs derived
by CCDAS with the posterior parameter PDFs derived by
the MA.
[18] CCDAS also allows the propagation of uncertainties

from process parameters forward through the BETHY model
by making use of the model’s Jacobian (first order deriva-
tive). In this further mode, we obtain the uncertainties and
covariances for diagnostic quantities such as the net carbon
flux. The Jacobian code is again generated directly from the
model’s source code using TAF. The propagation of param-
eter uncertainties using the Jacobian is described in detail by
Scholze et al. [2007].

2.2. Monte Carlo Inversion

[19] Monte Carlo inversion methods such as the MCMC
method are also able to find an optimal solution, in this case
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the maximum of p(x∣c) of equation (4), by sampling the
posterior parameter PDF directly. Here we use the MA to
generate a Markov Chain to derive the posterior PDF of 19
process parameters from the BETHY model. The algorithm
is based on an acceptance-rejection strategy and a summary
of the required steps is provided in Appendix A.
[20] Although it is not possible to parallelize the MA itself,

because the generation of the next point always depends on
the previous point, it is possible to run multiple chains or
sequences in parallel. The advantage of using multiple parallel
chains is that a larger number of samples can be generated
within the same amount of time.
[21] Although the MA is easy to implement, it requires

tuning of at least one internal parameter, the step length factor
si. If si is too large, the algorithm jumps and the sampled
distribution becomes highly irregular because of a low accep-
tance rate and a low number of sampled points in parameter
space. On the other hand, if the proposed steps are too short,
the acceptance rate is high, but only a small range of the
sampled distribution is covered. For practical applications,
according toGelman et al. [2003], the acceptance rate should
lie between 0.23 and 0.44, depending on the dimension of the
parameter vector.
[22] In this study we perform two experiments based on the

MA:
[23] 1. E1 - Sampling the CCDAS posterior minimum
[24] 2. E2 - Optimization starting from the prior parameter

values.
[25] In the first experiment (E1), we start the MA in the

cost function minimum identified by the adjoint approach of
CCDAS, and in the second experiment (E2), we start the MA
from the prior parameter values. The first experiment mainly
serves the purpose of sampling the minimum to obtain the
uncertainties and the shape of the posterior parameter PDFs
in order to compare them with the Gaussian approximation
we use in CCDAS. The second experiment should confirm
whether or not we are able to find the sameminimumwith the
MA as with the adjoint approach. Both experiments will give
us an indication of whether the minimum found with CCDAS
is in fact the global one.
[26] The MA requires adaptation of the step lengthDxi for

each of the parameters in order to obtain an acceptance rate
between 0.23 and 0.44 (see above). Here, we calculate the
step length as follows:

Dxi ¼ si � sx0i � Nð0; 1Þ ð6Þ

where N(0, 1) is a random number with a normal distribution,
si is the step length factor and sx0i the prior parameter
uncertainty. Due to the fact that we perform the MA in a
normalized domain, all parameters have a prior uncertainty of
one (i.e. sx0i = 1 for all parameters). Therefore, we use the
same step length factor for each of the parameters. Tuning si
requires running the MA for a number of iterations to see the
effects of a variable step length on the acceptance rate. Here,
we tune the step length factor in a way that we obtain an
acceptance rate of 0.35 for both experiments.

2.3. Terrestrial Ecosystem Model and Parameters

[27] BETHY is a process-based model of the terrestrial
biosphere. It simulates carbon assimilation and soil respira-
tion within a full energy and water balance and phenology

scheme. Calculated fluxes are then mapped to atmospheric
concentrations using the atmospheric transport model TM2
[Heimann, 1995] in order to compare them with the
observations provided by the GLOBALVIEW database
[GLOBALVIEW-CO2, 2008]. Here we use monthly mean
atmospheric CO2 concentration data from 41 sites globally
over 25 years (1979 to 2003). A more detailed description
of the data set can be found in Rayner et al. [2005].
[28] In this study, we focus only on the soil carbon part of

BETHY, and we keep all parameters controlling NPP fixed
(for more details see Ziehn et al. [2011a]). In order to reduce
computational time, we use a coarse grid with a resolution
of 8� � 10�. Global vegetation is mapped onto 13 different
plant functional types (PFTs) (see Table S1 of the auxiliary
material) and each grid cell can contain sub-areas (sub-grid
cells) with up to three different PFTs with different fractional
cover.1 The dominant PFT in each grid cell is presented in
Figure S1 (see auxiliary material). In the present study,
BETHY is driven by observed climate data for the period
1979 to 2003. A detailed description of BETHY can be found
in Knorr and Heimann [2001].
[29] Parameters in BETHY are assigned via a mapping

routine and can be either global (i.e. they have the same value
in each of the grid cells) or differentiated by certain criteria.
Here, all parameters are global, except for the carbon balance
parameter b, which is differentiated by PFT j, denoted bj.
This results in a set of 19 parameters (b1 to b13 + 5 global
parameters + 1 offset). The five global parameters are the
temperature dependence parameters of soil respiration Q10,f

and Q10,s, the pool turnover time parameter tf for the fast soil
carbon pool, the fraction fs of decomposition from the fast
pool to the long-lived soil carbon pool, and k, a parameter
describing linearity of soil moisture dependence of soil
decomposition. The carbon balance parameter bj determines
whether a PFT acts as a long-term source (bj > 1) or long-
term sink (0 < bj < 1). The offset describes the global atmo-
spheric CO2 concentration at the beginning of the assimila-
tion period. A more detailed description of the soil carbon
part of BETHY is given in the auxiliary material.
[30] We distinguish between model parameters pi (physical

domain) and parameters as used by CCDAS and the MA xi
(normalized domain). For most of the parameters pi (para-
meters 1 to 18), we assume a log-normal distribution to guar-
antee that model parameters are always positive, by applying
the following transformation between physical and normal-
ized domain (in the normalized domain, all prior parameters
have a Gaussian distribution and an uncertainty of 1):

xi ¼ logðpiÞ
logðsp0i þ p0iÞ � logðp0iÞ ð7Þ

p0i is the prior value and sp0i the prior uncertainty for the
model parameters. For the offset (parameter 19) we assume a
normal distribution in the physical domain and apply the
following transformation:

xi ¼ pi
sp0i

ð8Þ

CCDAS results will be discussed in the physical domain,

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GB004185.
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whereas the comparison of the results from CCDAS and the
MA will only be discussed in the normalized domain.

3. Results

[31] We first estimate the soil carbon parameters with
CCDAS using the adjoint approach. The prior parameter
values and their uncertainties can be found in Table 1. The
optimization in CCDAS converges within 361 iterations. The
final cost function value is J = 9642 (initial cost function
value: 3 ⋅ 106) and the gradient in the cost function minimum
is sufficiently small (reduced from 107 to 10�3), which
indicates that a minimum has been found. The posterior
parameter values are also presented in Table 1. Most of the
global parameters are close to their prior values and within
the prior uncertainty range. Only the pool turnover time for
the fast pool (tf) is much larger than its prior value and well
outside the prior uncertainty range. The carbon balance
parameter (b) for PFT 8 (deciduous shrub) is extremely large
and indicates that locations covered by this PFT act as a long
term source with a net ecosystem productivity (NEP) more
than ten times that of NPP. Although this value is within the
allowed physical range, it is unrealistic from a carbon balance
point of view. This has already been discussed by Ziehn et al.
[2011a].
[32] After the calibration mode of CCDAS, we compute

the Hessian of the cost function to obtain posterior parameter
uncertainties, as mentioned above. The uncertainties for most
parameters can be reduced by more than 90% (see Table 1),
which indicates that the parameters are well constrained by
the atmospheric CO2 data. Only parameter b12 cannot be
constrained by the data. However, NPP associated with this
PFT (swamp vegetation) is very small and a simple sensi-
tivity analysis performed by changing the parameters away
from the minimum by�10% has revealed that this parameter

has only little effect on the overall cost function value. The
same is true for some of the other b parameters, where
the uncertainty reduction is relatively small, for example b3

and b6.

3.1. Ensemble Runs With CCDAS

[33] One of the shortcomings of the adjoint approach is that
we may identify only a local minimum.We therefore perform
a large number of optimizations (ensemble runs), starting
each run in a different point in parameter space [Kaminski
et al., 2010]. Ideally we would like to see all ensemble runs
converging to the same minimum. However, in practice this
is rather unlikely due to the high dimensionality of the
parameter space and the non-linearity of the BETHY model.
Here, we investigate the outcome of three sets of ensemble
runs, where we randomly select the starting points by taking
the prior parameter values and varying them by a maximum
of 1%, 10% and 25%. Each set of ensemble runs consists of
25 optimizations. All ensemble runs are performed in parallel
on a computer cluster so that no additional computational run
time is required.
[34] Within the 75 (3� 25) optimizations, we identify five

different minima. However, only two of them are within the
physical parameter space (minimumM1 andM2, see Table 2).
The other three minima contain non-physical parameter
values (i.e. Q10,f < 1, Q10,s < 1 or fs > 1) and are therefore not
relevant here. For nine runs, the optimization did not con-
verge, two runs within the set of the 10% variation and seven
runs within the set of the 25% variation. All of the 25 runs for
the 1% variation finished in the same minimumM1 we found
using the prior parameter values, which shows that the opti-
mization is robust for small parameter changes. However, the
further we move away from the prior parameter values (10%
and 25% variation), the more likely it is that we end up in a
different minimum. Out of the 75 ensemble runs, M1 has the
smallest cost function value and therefore appears to be the
global minimum. Although it is not possible to prove thatM1

really is the global minimum in the whole physical parameter
space, we refer to it as global minimum in the following
discussion.
[35] The performance of the optimization for the case where

we varied the starting point by a maximum of 10% is shown
in Figure 1. In addition to the 25 ensemble runs we also
present the run where the starting point was set to the prior
parameter values. This is the standard set up in CCDAS. We
obtain the fastest convergence rate by starting in the prior
parameter values (361 iterations). All runs finishing in min-
imum M1 require less than 1000 iterations. Within the first
100 iterations we obtain the largest reduction in the cost
function value (Figure 1a) by two to three orders of magni-
tude. After that convergence is slower (Figure 1b) and the

Table 1. Prior (p0,i) and Posterior (pi) Parameter Values Including
Uncertainties for the Optimization With CCDAS (Physical
Domain)a

Parameter

Prior Posterior

Reduction (%)p0i sp0i pi spi

1 Q10,f 1.50 0.75 1.80 0.03 97.02
2 Q10,s 1.50 0.75 1.58 0.04 95.33
3 tf 1.50 3.00 10.04 0.44 97.82
4 k 1.00 9.00 0.66 0.01 99.88
5 fs 0.20 0.20 0.40 0.01 97.71
6 b1 1.00 0.25 1.05 0.01 95.53
7 b2 1.00 0.25 0.72 0.03 82.54
8 b3 1.00 0.25 0.37 0.06 37.59
9 b4 1.00 0.25 0.55 0.06 56.97
10 b5 1.00 0.25 1.59 0.03 93.60
11 b6 1.00 0.25 0.48 0.07 40.76
12 b7 1.00 0.25 0.17 0.02 45.63
13 b8 1.00 0.25 11.95 0.45 91.74
14 b9 1.00 0.25 1.13 0.03 90.98
15 b10 1.00 0.25 0.89 0.01 93.64
16 b11 1.00 0.25 0.37 0.03 63.17
17 b12 1.00 0.25 1.20 0.30 0.86
18 b13 1.00 0.25 0.35 0.03 65.18
19 Offset 336.85 1.00 336.15 0.04 95.59

aFor parameters with a lognormal distribution (all but offset), the upper
percentile equivalent to one standard deviation is given. The relative
reduction in uncertainty defined as (1 � (spi/pi)/(sp0i/p0i)) ⋅ 100% is also
shown.

Table 2. Results From the Ensemble Runs With CCDASa

Minima Jo Jp J

25 Ensemble Runs

1% 10% 25%

M1 9500.82 141.33 9642.15 25 16 3
M2 12531.41 67.69 12599.10 - 1 3

aCost function value J, mismatch of the observations Jo, and mismatch of
the parameters Jp are given for two identified minima (M1 and M2). The
starting point was randomly disturbed from the prior by 1%, 10% and
25% for 25 realizations each.

ZIEHN ET AL.: COMPARISON OF INVERSION TECHNIQUES GB3025GB3025

5 of 13



cost function value changes only by a small amount in between
iterations. Although parameter values are not substantially
changing any more, we need to perform these iterations to
reduce the value of the gradient until it reaches zero.

3.2. Metropolis Algorithm (MA)

[36] For the first experiment, E1 (sampling the minimum
with the MA), we use five chains, all starting in the minimum
M1 with a maximum number of four million iterations. In
order to avoid correlations between subsequent samplings,
we use only every 10th iteration for the estimation of the
posterior parameter distribution, which leaves us with a total
of two million samples (5 � 400,000).
[37] The results for all parameters are presented in Table 3

together with the results from the CCDAS optimization. Note

that in order to compare the results of both methods we only
present the normalized domain.
[38] There is a good agreement between CCDAS and the

MA sampling for the five global parameters, the offset and
the majority of the beta parameters. However, there is dis-
agreement in either the mean value or standard deviation or
both for some b parameters, namely for b3, b4, b6, b7, b11

and b12. This discrepancy will be discussed in detail in
section 4.
[39] The PDFs of the five global parameters and b1 are

shown in Figure 2. Not only is there a good agreement
between the uncertainties derived by CCDAS and the MA,
the shape of the PDFs is also close to a Gaussian as indicated
by skewness and kurtosis (see Table 3). Skewness is a mea-
sure of the asymmetry of the PDF. For example, a negative

Figure 1. Cost function J for 25 ensemble runs (random starting points at up to 10% variation from prior)
and for the optimization with start in the prior parameter values for CCDAS in (a) log scale for the first
100 iterations and (b) in linear scale for the following iterations. Blue: ensemble runs finishing in minimum
M1, green: ensemble run finishing in minimum M2, light blue: optimization with start in prior parameter
values, red: no convergence or ensemble runs finishing in minimum with non-physical parameter values.
Cost function minima are marked with dashed lines.

Table 3. Posterior Parameter Values and Uncertainties (One Standard Deviation) Obtained From CCDAS and the MAa

Parameter

CCDAS MA Sampling MA Optimization

xi sxi xi sxi Skewness Kurtosis xi sxi Skewness Kurtosis

1 Q10,f 1.44 0.04 1.45 0.04 0.31 �0.07 1.48 0.04 �0.04 �0.18
2 Q10,s 1.13 0.06 1.11 0.07 �0.36 0.08 1.07 0.06 0.17 �0.35
3 tf 2.10 0.04 2.11 0.04 0.39 �0.00 2.13 0.04 �0.23 �0.25
4 k �0.18 0.00 �0.18 0.00 �0.03 0.00 �0.18 0.00 �0.03 �0.03
5 fs �1.34 0.03 �1.36 0.04 �0.35 0.62 �1.33 0.03 �0.12 �0.21
6 b1 0.22 0.05 0.17 0.05 0.04 0.17 0.18 0.05 0.18 �0.14
7 b2 �1.50 0.19 �1.62 0.18 0.10 �0.29 �1.75 0.15 0.04 �0.35
8 b3 �4.43 0.65 �4.83 0.36 �0.34 �0.76 �3.04 0.65 �0.07 �1.01
9 b4 �2.67 0.46 �3.06 0.37 �0.82 0.48 �2.98 0.29 �0.14 �0.89
10 b5 2.07 0.07 2.03 0.09 �0.13 �0.23 2.10 0.07 �0.37 0.18
11 b6 �3.31 0.62 �2.69 0.62 1.38 1.44 �1.54 0.39 �0.26 �1.30
12 b7 �8.05 0.57 �8.89 0.63 �0.53 �0.76 �6.37 0.73 �0.37 �0.43
13 b8 11.12 0.09 11.21 0.08 0.34 �0.16 11.09 0.10 �0.07 �0.33
14 b9 0.55 0.10 0.69 0.09 �0.01 �0.37 0.54 0.09 0.19 0.32
15 b10 �0.54 0.07 �0.56 0.07 �0.33 0.53 �0.47 0.06 0.29 �0.10
16 b11 �4.50 0.39 �5.42 0.68 �0.07 �1.13 �4.93 0.48 0.98 0.53
17 b12 0.81 0.99 �0.38 0.75 �0.06 �1.20 �3.96 0.97 �0.01 �0.82
18 b13 �4.73 0.37 �4.61 0.24 0.10 �0.29 �5.06 0.37 �1.16 0.16
19 Offset 336.62 0.04 336.61 0.05 0.01 �0.23 336.59 0.05 �0.18 0.28

aN = 400,000 samples for both experiments E1 and E2. Parameter values are in the normalized domain.
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skew indicates that the left tail of the PDF is longer than the
right tail. Kurtosis is a measure of how peaked a distribution
is. Positive kurtosis indicates a peaked distribution whereas
negative kurtosis indicates a flat distribution [von Storch and
Zwiers, 1999]. A Gaussian distribution has a value of zero for
both skewness and kurtosis. Further, we can see that the MA
samples the same parameter space as suggested by CCDAS
without diverging into a different minima.
[40] For the second experiment E2 (optimization with the

MA) we use four chains, starting each of them in the prior
parameter values (x0). Here we use a maximum number of
eight million iterations, because we also have to consider a
burn-in time (cut-off before convergence to the PDF maxi-
mum). We choose a burn-in time of four million iterations to
be on the safe side and sample the remaining four million
iterations by choosing every 10th parameter set, which
leaves us with a total of 1.6 million samples (4 � 400,000).
[41] The convergence rate of the MA is presented in

Figure 3. About 10,000 iterations are required to reduce the
cost function value by two orders of magnitude (Figure 3a).
However, in order to get into the vicinity of the global PDF
maximum (cost function minimum M1), about three million
iterations are required (Figure 3b). We can also see that we
do not obtain cost function values which are smaller than
M1. This is a further indication that minimum M1 might
indeed be a global minimum.
[42] Calculated mean and standard deviation for all para-

meters are shown in Table 3. For the global parameters, the
offset and the majority of the b parameters the results are
very similar to the ones obtained from experiment E1 and
agree well with the results derived by CCDAS including the

shape of the PDFs. There is disagreement again in the results
for b3, b4, b6, b7, b11 and b12 for mostly both, mean and
standard deviation, not only in comparison to CCDAS, but
also in comparison to the previous experiment. Reasons
behind this will be discussed in section 4.

3.3. Parameter Uncertainty Covariances

[43] In addition to the mean and uncertainties for single
posterior parameters derived by CCDAS and the MA, we
also compare the posterior uncertainty covariance between
parameters. The covariance between the parameters can be
expressed via the uncertainty correlation matrix R, which is
defined as follows:

Ri; j ¼ Ci; j
x

sisj
ð9Þ

where Cx
i, j is element i, j of the posterior uncertainty

covariance matrix of the parameters, and si the posterior
uncertainty of parameter i derived from the diagonal ele-
ments Cx

i,j of the matrix Cx.
[44] Figure 4 presents the correlation matrix for the three

cases: parameter uncertainties derived by CCDAS and by
the MA for both experiments E1 and E2. In CCDAS the
uncertainties are derived using the inverse of the Hessian in
the cost function minimum M1, for the MA the uncertainties
are calculated using 2 million samples (5 � 400,000 for start
in minimum) and 1.6 million samples (4 � 400,000 for start
in prior, after burn-in) respectively.
[45] There is good agreement in the correlation for the five

global parameters between all three cases. Parameters Q10,f

Figure 2. Posterior parameter PDF obtained from optimization with CCDAS (red) and using the MA
experiment E1 with N = 5 � 400,000 samples (black) for the five global parameters and one b parameter.
Parameter values are in normalized space.
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and Q10,s show a strong negative correlation, whereas Q10, f

and tf are positively correlated. We believe that these cor-
relations are caused by our specific set up to optimize only
soil carbon parameters. As we keep NPP fixed the optimi-
zation can change the seasonality of the net flux only by
changing the seasonality of the heterotrophic respiration
which is controlled by these three parameters. However,
there is disagreement between the three cases for some of the
b parameters. With CCDAS we obtain relatively weak,
mainly negative correlation between the parameters b3, b4,
b7, b11 and b12, whereas with the MA we obtain mainly a
strong positive correlation. These are the same parameters
we had difficulties to recover with the MA in both experi-
ments. If we focus on the course of those parameter values
over their iterations (i.e. b3 and b7 as shown in Figure 5 for
both MA experiments), we can see that all parameters follow
a negative trend, which explains why they are all positively
correlated. This is further investigated in section 4.

3.4. Diagnostics

[46] We consider two diagnostic quantities here, global
NEP for the decade of the 1980s and the 1990s. With
CCDAS we propagate the posterior parameter uncertainties
forward through the BETHY model in order to obtain the

uncertainties for NEP. The computational effort is negligible
in this case.
[47] For the MA we estimate the PDF for NEP directly

from sampling the results. Here we use every 100th iteration
from the MA experiment E1 which provides us with a total of
200,000 samples (40,000 samples per chain). The results for
CCDAS and the MA are shown in Figure 6. There is good
agreement in the results from both methods and the PDFs
obtained by the MA are close to a Gaussian distribution as
indicated by skewness and kurtosis (see Figure 6). The sim-
ulated values by CCDAS are for the 1980s 1.66 PgC/yr and
for the 1990s 2.4 PgC/yr. We notice a negligible shift in the
mean of NEP to smaller values with the MA. For both dec-
ades we obtain slightly larger uncertainties with the MA than
in comparison with CCDAS. However, for both methods the
uncertainties are very small for both decades. Uncertainties in
NEP for individual years are much larger (e.g. a factor of
three between NEP for the year 1990 and NEP for the decade
of the 1990s). This is due to a large number of negative
correlations between individual years [see also Ziehn et al.,
2011a]). Also note that the uncertainties derived here for
the diagnostic quantities only reflect the uncertainties in the
soil carbon parameters. The small difference in the NEP

Figure 4. Uncertainty covariance matrix for the 19 process parameters derived by CCDAS, the MA
experiment E1 using 4,000,000 iterations and the MA experiment E2 using 4,000,000 iterations after
the burn-in.

Figure 3. Cost function J for four chains using the MA (all four chains start from the prior parameter
values) in (a) log scale for the first 50,000 iterations and (b) linear scale for the following iterations. Cost
function minimum M1 is marked with a dashed line.
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results between CCDAS and the MA is due to the difference
in the posterior parameter PDFs for some of the parameters
derived by both methods as shown previously.

4. Discussion

4.1. Computational Expense and Performance

[48] One of the major advantages of the adjoint approach
with regards to this study is its fast convergence. When
starting from the prior parameter values we were able to reach
the cost function minimum within 361 iterations. Within
each iteration the gradient of the cost function and the cost
function value itself are calculated with respect to all param-
eters using the adjoint of the BETHY model. In terms of

computational time, the evaluation of the adjoint is about
two times more expensive than a forward model run. The
361 adjoint evaluations therefore correspond to roughly 800
forward model runs. On top of this, each iteration requires
(multiple) BETHY model runs for the line search algorithm
within the optimization scheme, so that the total number of
forward model runs adds up to about 1300. The whole opti-
mization process with CCDAS required less than one hour of
computational running time on a standard PC with a 2.4 GHz
processor. All CCDAS ensemble runs were performed in
parallel on a computer cluster. The computation of the pos-
terior uncertainties via the inverse Hessian and the propaga-
tion of the parameter uncertainties via the Jacobian also

Figure 6. PDF for global NEP per year for the (a) 1980s and (b) 1990s estimated using CCDAS (red) and
the MA experiment E1 (black).

Figure 5. Sampled parameter values for (top) b3 and (bottom) b7 using 4,000,000 iterations for MA
experiment E1 and E2. Different colors are used to distinguish between the chains.
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require computational time, however in this case it was
negligible.
[49] The MA requires only forward model runs, one per

iteration. We constrained the maximum number of iterations
to eight million per chain for the optimization (experiment
E2). This is a rather arbitrary number and the limit was
chosen simply because of computational limitations. All
chains were run on a computer cluster in parallel which
allowed up to one million iterations per month and chain. The
overall running time was about eight months. The adjoint
approach was thus by several orders of magnitude faster than
the MA for the given set-up.
[50] Even though the adjoint approach is very fast in

identifying the cost function minimum, there is a risk that the
minimum is only a local one. We have demonstrated that if
we start the optimization in the parameter priors or close to
the priors (variation by maximal 1%) we always find the
same minimum and that this minimum has the lowest cost
function value within the physically possible parameters
space. However, if we move the starting point further away
from the prior (variation by up to 10% or 25%), then the
chance increases that we identify a local (higher) minimum or
a minimum with non-physical parameter values, or that the
optimization does not converge. Ideally, we would like to
find the global minimum independently from the starting
point, which is not the case here, probably due to the non-
linearity and high-dimensional parameter space of the
BETHY model. This also demonstrates the importance of
using appropriately chosen prior parameter values. For future
applications, we might need to prevent parameters from
assuming non-physical values, for example through the use

of a constrained optimization scheme or the use of a different
parameter transformation method for certain parameters.
[51] We have not investigated here how the MA would

cope with different starting points (i.e. starting each of the
chains in a different point), something we considered beyond
the scope of this paper. However, we feel that the choice of
the starting point is only of minor importance for the MA in
terms of convergence to a local minimum. In contrast, the
initial guess of the step length within the MA scheme has a
far bigger impact on the convergence. This is discussed in
more detail at a later stage.
[52] Another issue with the MA is the enormous hard disk

space requirement while running the algorithm. Parameter
values and output files need to be stored for each iteration or
at least for every sample. The BETHY model produces
gridded output files for a number of diagnostic quantities
which adds up to about 10 MB disk space per run for the
current set-up. It is not possible to store all output files for all
iterations while running the MA. One solution applied here is
not to write any output files at all, saving computing time
required for disk access, but to run the BETHY model again
with one sub-sample of every 100th iteration for each of the
chains of the recorded parameter values. These sub-sampled
runs were used in order to compute the PDF of the chosen
diagnostic quantities, in this case the global decadal mean
NEP. This required additional computational running time.

4.2. Agreement Between the Results

[53] In the first experiment, E1, we started the MA in the
global cost function minimum M1 and the MA did not
diverge from this minimum. In the second experiment, E2,

Figure 7. (top) PDF and (bottom) sampled parameter values for b10 and b12 using the MA experiment
E1 over 4,000,000 iterations (note that number of iteration is on the y-axis and parameter value on the
x-axis). Different colors are used to distinguish between the chains.
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we started the sampling from the prior parameter values and
after a long burn-in time (four million iterations) the MA also
converged to the global minimum M1. Posterior mean and
standard deviation for the parameters could be directly
computed from the samples and we obtained similar results
for both experiments for most of the parameters. Most of the
results also agreed well with the mean and uncertainty
derived by CCDAS and even the shape of the posterior
parameter distribution was close to a Gaussian for most
parameters.
[54] However, for some b parameters (b3, b4, b7, b11 and

b12 in particular), the mode of the PDF and the uncertainty
did not agree with the values derived by CCDAS or even
within the two MA experiments. We suspect that this is due
to the choice of a single step length factor for all parameters.
In some cases, the step length might have been too small and
the PDF of the specific parameter was still under-sampled.
[55] Figure 7 shows the sampled parameter values and

derived PDF for b10 for the MA experiment E1. For this
parameter we obtain good agreement between the PDFs
derived by both methods. We can see that sampled b10
values change significantly with the number of iterations,
which allows the whole PDF to be covered over the total
number of iterations. In contrast to this, the sampled values
for b12 (also shown in Figure 7) change only slightly and
more worryingly they follow a negative trend. We suspect
that at least in this case, the chosen step length is too small.
Figure 8 shows what would happen if we would increase
the step length for b12. Due to computational limitations
we can only present this for a smaller number of iterations
(400,000), but the difference is apparent already: a larger

part of the PDF is visited if the step length is larger and there
is no negative trend. The parameter is now sampled around
its mean value. We obtain similar results for the other b
parameters, where we had a big discrepancy between the
CCDAS and MA results. If we avoid the occurrence of such
a negative trend for all b parameters, we suspect we would
also avoid the strong “artificial” correlations between the b
parameters as shown in Figure 4.
[56] Parameters where the step length appears to be too

small also turned out to be parameters with only a small
reduction in the uncertainty according to the CCDAS inver-
sion (see Table 1), which means that they cannot be con-
strained well by the atmospheric CO2 data. Because the
posterior PDF is larger for unconstrained parameters, they
should have used a larger step length. Information about
posterior uncertainties is not available when setting up the
MA, but adapting the step length for individual parameters
seems to be necessary in order to run the MA efficiently. This
is a long iterative process which requires a large computa-
tional effort on top of the actual MA running time, which is
not affordable for larger models, such as global TEMs.

5. Summary and Conclusions

[57] We investigated two different approaches on how to
efficiently estimate parameters of the terrestrial ecosystem
model BETHY. As expected, the adjoint approach was the
computationally most efficient approach and outperformed
the MA by several orders of magnitude of “real” compute
time. Running an ensemble of optimizations with CCDAS by
varying the starting point allowed us to test if the identified

Figure 8. (top) PDF and (bottom) sampled parameter values for b12 using the MA experiment E1 over
400,000 iterations with different step lengths (note again number of iteration is on the y-axis and param-
eter value on the x-axis). (a) As implemented, (b) increased for test case. Different colors are used to dis-
tinguish between the chains.
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minimum is only a local minimum. The ensemble runs can be
performed in parallel so that no additional computational
running time is required. For the set-up used in this study, we
were able to identify the global minimum if we kept the
starting point for the optimization close to the priors. This
made the success of the adjoint approach somewhat depen-
dent on the starting point. However, the ensemble runs
identified only one other minimum in the physical parameter
space with a larger cost function value than the one derived
with the prior parameter values.
[58] The MA is computationally very expensive and the

convergence rate also depends on the step length factor for
each of the parameters. We demonstrated that if the step
length for a parameter is too small, only a small part of the
posterior parameter PDF will be visited, which will conse-
quently lead to misleading results. In fact, we showed that for
some parameters the MA also diverges if the step length is
too small. To avoid this problem, we would need to run the
MA several times first (tuning mode), where we adapt the
step length for each parameter individually. This iterative
process would require another large number of model runs.
[59] For most parameters (where the step length was cho-

sen appropriately), the MA was able to confirm mean and
standard deviation as derived with the adjoint approach. The
MA did not converge into a different minimum, which
strengthens our confidence of having found the global min-
imum with both approaches. Although the adjoint approach
calculates only the mode of the posterior PDF, we were able
to estimate the uncertainties using the inverse of the Hessian
in the cost function minimum with only minimal additional
computational effort. Kaminski et al. [2003] have shown that
this computational effort scales nearly linearly with the
number of parameters. This means that for higher dimen-
sional parameter spaces the estimation of the posterior
parameter uncertainties will add to the computing costs,
however, the overall computing time will not change dra-
matically. In contrast, this is not the case for theMA. Here, an
increase in the number of parameters will consequently lead
to slower convergence (curse of dimensionality) which
makes this method even less suitable for higher dimensional
parameter spaces.
[60] The results from the MA confirmed that the approxi-

mation of the posterior parameter PDF by a normal distri-
bution as used in CCDAS is reasonable for most parameters.
We also obtained good agreement between diagnostic
quantities (global mean NEP for the 1980s and 1990s)
between CCDAS and the MA. Both these results as well as
the fact that we have confirmed our adjoint-derived minimum
by the MA have important implications for terrestrial eco-
system parameter estimations. They demonstrate that despite
the high non-linearity of terrestrial ecosystem models local
linearizations of these models (i.e. derivatives such as the
gradient, Hessian and Jacobian) provide valuable informa-
tion for constraining model process parameters against
observations and for deriving posterior uncertainty estimates
on parameters and diagnostic quantities. From this study it is
clear that Monte Carlo methods alone are not suitable for
model optimization and posterior uncertainty estimations
with complex state-of-the-art terrestrial ecosystem models.
[61] In summary, the adjoint approach is the most efficient

way of estimating process parameter and their uncertainties
in complex terrestrial ecosystem models. We demonstrated

that it is also possible to combine the adjoint approach and
the MA. Here, the adjoint approach was used to locate the
cost function minimum and the MA was then used to derive
the posterior parameter uncertainties by sampling the mini-
mum. The computational effort is much larger than using the
adjoint approach alone, but smaller than using the MA solely
since it requires a large number of iterations to converge to
the cost function minimum.

Appendix A: Metropolis Algorithm: Step by Step

[62] First, choose a starting point xi (i = 1), e.g. x1 = x0
(model parameter priors).
[63] Second, generate a proposed subsequent value x* by

varying all elements of the parameter vector xi by some step
length Dx. The step length is set for each parameter sepa-
rately and determined by a predefined step length factor si
times a Gaussian distributed random number with zero mean
and standard deviation according to the parameters’ prior
uncertainty.
[64] Third, test for acceptance or rejection of the proposed

point x* = xi + Dx using a random number with a uniform
distribution U (0, 1):
[65] 1. Accept x*, if p(xi + Dx)/p(xi) ≥ U(0, 1)
[66] 2. Reject x*, if p(xi + Dx)/p(xi) < U(0, 1): xi+1 = xi

[67] Fourth, if x* is accepted, then evaluate the forward
model and test:
[68] 1. Accept x*, if pðc xi þDxÞ=pðc xiÞ ≥ Uð0; 1Þ���� :

xi+1 = x*
[69] 2. Reject x*, if pðc xi þDxÞ=pðc xiÞ < Uð0; 1Þ���� :

xi+1 = xi

[70] Fifth, repeat steps 2–4 until maximum number of
iterations is reached.
[71] Note that only the second test (step 4) requires the

evaluation of the model.

[72] Acknowledgment. This work was supported by the NERC
National Centre for Earth Observation.
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