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[1] Better estimates of the net exchange of CO2 between the atmosphere and the terrestrial
biosphere are urgently needed to improve predictions of future CO2 levels in the atmosphere.
The carbon cycle data assimilation system (CCDAS) offers the capability of inversion,
while it is at the same time based on a process model that can be used independent of
observational data. CCDAS allows the assimilation of atmospheric CO2 concentrations into
the terrestrial biosphere model BETHY, constraining its process parameters via an adjoint
approach. Here, we investigate the effect of spatial differentiation of a universal carbon
balance parameter of BETHY on posterior net CO2 fluxes and their uncertainties. The
parameter, b, determines the characteristics of the slowly decomposing soil carbon pool and
represents processes that are difficult to model explicitly. Two cases are studied with an
assimilation period of 1979 to 2003. In the base case, there is a separate b for each plant
functional type (PFT). In the regionalization case, b is differentiated not only by PFT, but
also according to each of 11 large continental regions as used by the TransCom project.
We find that the choice of spatial differentiation has a profound impact not only on the
posterior (optimized) fluxes and their uncertainties, but even more so on the spatial
covariance of the uncertainties. Differences are most pronounced in tropical regions, where
observations are sparse.While regionalization leads to an improved fit to the observations by
about 20% compared to the base case, we notice large spatial variations in the posterior
net CO2 flux on a grid cell level. The results illustrate the need for universal process
formulations in global‐scale atmospheric CO2 inversion studies, at least as long as the
observational network is too sparse to resolve spatial fluctuations at the regional scale.
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1. Introduction

[2] The quantification of terrestrial CO2 sinks and sources
and identification of the underlying processes are considered
a prerequisite for meaningful projections of the future atmo-
spheric CO2 load [Prentice et al., 2000, 2001]. Usually,
sources and sinks are obtained by atmospheric transport
inversion. This so‐called “top‐down” approach allows to
obtain important insights into the large‐scale patterns of the
atmosphere‐land flux. Numerical models are used to simulate
the atmospheric transport, and the atmosphere‐land fluxes
are determined from the observational data by inversion [e.g.,
Bousquet et al., 2000; Rödenbeck et al., 2003]. However, due
to the fact that the inverse problem is poorly conditioned
(only few observations exist, but many possible flux fields
are compatible with these observations [see, e.g., Kaminski
and Heimann, 2001]), it is difficult to obtain a detailed flux
pattern and regional fluxes are usually calculated instead.
Another disadvantage of atmospheric inversions is that

without a process model, they do not allow predictions.
In order to compare the many transport models and data used
in atmospheric inversion studies, the TransCom experiments
were started in the 1990s using a standardized set of 11 land
and 11 ocean regions [e.g., Gurney et al., 2008].
[3] Another way of determining spatial patterns of CO2

sinks and sources is to apply forward runs of ecosystem
models that represent the most important processes. A pro-
cess‐based terrestrial model can produce a very detailed flux
pattern. Numerous terrestrial biosphere models exist and
although theymight differ in detail, they tend to have a similar
structure and share a common base of process descriptions
and global parameters. For example, many of the terrestrial
biosphere models use a biochemical model of photosynthesis
based on that of Farquhar et al. [1980] and they also include
processes to model the energy and water balance, carbon
balance and phenology. Examples of widely used biosphere
models are HYBRID [Friend et al., 1997], the Lund‐Potsdam‐
Jena (LPJ) model [Sitch et al., 2003] or ORCHIDEE [Krinner
et al., 2005]. However, this “bottom‐up” approach cannot
take into account the information contained in CO2 measure-
ments. Further, all process based models require extensive
parameterization. If no reliable estimate exists of a param-
eter, it will remain highly uncertain and, depending on how
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sensitive the results are with respect to this parameter,
uncertainty of those parameters might substantially contrib-
ute to the overall output uncertainty.
[4] With significant problems associated with both

“bottom‐up” and “top‐down” approaches, one possible way
out is the design of carbon cycle data assimilation systems,
which use the observed data (for instance atmospheric CO2

measurements) to systematically constrain ecosystem model
parameters. Current approaches [Kaminski et al., 2003;
Rayner et al., 2005; Scholze et al., 2007] do not use any
regionalization, but rely on globally applicable, universal
parameters. That means, the parameters are not regionally
differentiated, and if they are differentiated at all, then only
by plant type.
[5] This paradigm of universality, however, deserves a

closer look, because carbon fluxes might be determined by
regional differences that are outside the realm of what the
model represents. For example, if the model does not contain
a land use change component and no information about the
history of a site is available, then these unknown conditions
can be subsumed under a common simplified formulation
which requires parameterization. In such a case, we are back
to the need of geographical differentiation that flux inversions
need to follow inevitably. Such geographical differentiation
is the subject of the present study.
[6] In this workwe use the Carbon Cycle DataAssimilation

System (CCDAS) [Rayner et al., 2005] in order to deter-
mine a detailed pattern of the atmosphere‐land fluxes and
its uncertainties. CCDAS provides the possibility to con-
sider both global and regional process parameters. Using the
CCDAS framework, current fluxes of CO2 into the atmo-
sphere can bemapped together with optimal parameter values
and their uncertainties. Those parameter uncertainties can
also be propagated to any model output quantity to obtain its
corresponding uncertainty. In this study, this will be applied
to CO2 fluxes.

2. Methodology

[7] The CCDAS used here is an estimator algorithm for a
set of terrestrial biosphere model parameters, which uses
automatically generated adjoint code (first derivative) for
parameter optimization, and Hessian model code (second
derivative) for estimating posterior parameter uncertainties.
As its ecosystem model, CCDAS uses the Biosphere Energy
Transfer and Hydrology scheme (BETHY) [Knorr, 2000].
This model simulates carbon assimilation and soil respira-

tion within a full energy and water balance and phenology
scheme. Calculated fluxes are then mapped to atmospheric
concentrations using the atmospheric transport model TM2
[Heimann, 1995].
[8] The CCDAS framework has been previously described

in detail by Scholze [2003] and Rayner et al. [2005]. There-
fore, we provide only a brief summary and highlight differ-
ences in our setup. The data assimilation is performed in two
steps as outlined in Figure 1. In the first step, the full BETHY
model is used to assimilate global monthly fields of the
fraction of Absorbed Photosynthetically Active Radiation
(fAPAR) for optimizing parameters controlling soil moisture
and phenology. In the second step, a reduced version of
BETHY is used to assimilate atmospheric CO2 concentration
observations. In contrast to the setup used by Rayner et al.
[2005], we only optimize the soil carbon part of BETHY
in the second step, keeping all parameters controlling net
primary productivity (NPP) fixed. In earlier studies with
CCDAS [Rayner et al., 2005; Scholze et al., 2007], these
parameters were found to be constrained relatively little by
the assimilation of CO2 observations. In practice, fixing NPP
parameters is performed via an additional forward simulation
over the integration period of 25 years immediately after the
first assimilation step. We need to note that the uncertainties
estimated in this study are only a lower bound because they
do not account for the effect of the uncertainty of NPP related
parameters on posterior uncertainties of the remaining
parameters, or uncertainties of diagnostics. Instead of aiming
for the most realistic uncertainty estimates of parameters and
CO2 fluxes, the present study aims at comparing two cases
to test the effect of parameter regionalization on estimated
fluxes and their posterior uncertainty covariance.

2.1. Data Assimilation

[9] In this work, we focus on the second assimilation step
(see Figure 1), where the reduced BETHY version uses
the NPP from the forward simulation and the soil moisture
and temperature fields from the first assimilation step as
input data. The atmospheric transport model then maps fluxes
onto atmospheric concentrations for the atmospheric grid
cells representing a list of remote monitoring stations (see
Figure 2).
[10] CCDAS can be operated in three different modes. In

the calibration mode, an optimal set of parameters is derived
from atmospheric CO2 concentration observations using an
adjoint approach. The calibrated model can then be used for
diagnostic simulations (over the calibration period) using the

Figure 1. CCDAS structure.
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optimal parameter set or for prognostic simulations (period
subsequent to the calibration period). Here, we use CCDAS
only for the optimization of the control parameters and for
diagnostic simulations.
[11] The control parameters are optimized by calculating

the mismatch of the observations and prior knowledge of the
parameters via the following cost function:

J xð Þ ¼ 1

2
M xð Þ � cð ÞTCc

�1 M xð Þ � cð Þ þ x� pð ÞTCp
�1 x� pð Þ

� �

ð1Þ

where x is the parameter vector and M(x) the modeled con-
centrations. The covariance matrices Cc and Cp express the
uncertainty for the observations c and for the model priors p,
respectively (see Rayner et al. [2005] for further details). The
optimization problem is thus formulated using a Bayesian
approach [Tarantola, 1987, 2005]. A quasi‐Newton method,
the Davidon‐Fletcher‐Powell (DFP) formula [Fletcher and
Powell, 1963; Press et al., 1996], is used for the minimiza-
tion of the cost function, which requires the calculation of
the gradient of J with respect to the control parameters x in
each iteration. All derivative code is directly generated from
the model’s source code using the tool Transformation of
Algorithms in Fortran (TAF) [Giering and Kaminski, 1998;
Kaminski et al., 2003].

2.2. Biosphere Model

[12] The process‐based model of the terrestrial biosphere,
BETHY, is run on a 2° × 2° grid with 3462 land grid cells
(excl. Antarctica). Global vegetation is mapped onto 13 dif-
ferent PFTs (see Table 1) and each grid cell can contain
subareas (subgrid cells) with up to three different PFTs with
their amount specified by each PFT’s fractional cover. The
dominant PFT in each grid cell is presented in Figure 3. In
the present study, BETHY is driven by observed climate data
over 25 years for the period 1979 to 2003. Following is a brief

outline of the parts of BETHY active during assimilation. A
more detailed description can be found in the work of Knorr
[2000] and Knorr and Heimann [2001].
[13] The net ecosystem productivity (NEP) in BETHY is

computed as

NEP ¼ NPP� RS ¼ NPP� RS; s þ RS; f

� � ð2Þ

where RS,s and RS, f are the respiration fluxes from the slowly
and rapidly decomposing soil carbon pools, respectively,
and NPP the net primary productivity. The size of the short‐
lived litter pool varies with time, whereas the size of the long‐
lived soil carbon pool is held constant through the simulation

Figure 2. TransCom land regions and the location of the 41 observational sites used in CCDAS. Labels
are given in Table 5. The four sites with the greatest improvement in match with observations using the
regionalized model are marked with crosses (station codes: SHM, RPB, CHR, WLG) and the four sites
where the fit has slightly worsened are marked with pluses (station codes: UUM, WIS, UTA, IZO).

Table 1. Optimal b Parameter for Each of the 13 PFTs for Both
Case Studiesa

PFT
b

(N = 19)
b

(N = 117) NPP

1 Tropical broadleaved evergreen tree
(TrEv)

0.87 (92) 0.91 13 892

2 Tropical broadleaved deciduous tree
(TrDec)

1.09 (85) 1.40 6 648

3 Temperate broadleaved evergreen
tree (TmpEv)

0.53 (29) 0.79 258

4 Temperate broadleaved deciduous
tree (TmpDec)

0.51 (63) 1.83 2 395

5 Evergreen coniferous tree (EvCn) 1.53 (94) 1.37 5 466
6 Deciduous coniferous tree (DecCn) 0.62 (42) 1.35 732
7 Evergreen shrub (EvShr) 0.20 (43) 0.74 2 279
8 Deciduous shrub (DecShr) 11.33 (91) 1.39 934
9 C3 grass (C3Gr) 0.55 (73) 1.03 10 908
10 C4 grass (C4Gr) 0.93 (92) 0.58 18 079
11 Tundra vegetation (Tund) 0.19 (47) 0.75 1 443
12 Swamp vegetation (Wetl) 1.50 (1) 1.03 361
13 Crops (Crop) 0.35 (60) 1.00 4 593

aThe relative reduction of the parameter uncertainty (+1s) is given in %
in brackets below (i.e. for the base case N = 19). For the regionalization
case (N= 117), theb values are recalculated viaNPP andNEP for comparison.
The total mean NPP (TgC yr−1) is also provided for each PFT.
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period [Knorr, 2000]. Soil respiration is calculated from the
following equations:

RS; f ¼ 1� fsð Þkf Cf ð3Þ

RS; s ¼ ksCs ð4Þ

with Cf and Cs representing the size of the fast and slow
carbon pool, respectively, and fs the fraction of decomposi-
tion from the fast pool that goes into the long‐lived (slow) soil
carbon pool. The rate constants are

kf ¼ w�QTa=10
10; f =�f ð5Þ

ks ¼ w�QTa=10
10; s =�s ð6Þ

where w is plant‐available soil moisture divided by field
capacity (a value between 0 and 1), Ta air temperature, � a
parameter describing linearity of soil moisture dependence,
Q10, f and Q10,s temperature dependence parameters and tf
and ts the pool turn over times at 0°C. Controlling param-
eters are: fs, �,Q10, f,Q10,s and tf. The turnover time ts for the
slow carbon pool is determined indirectly via the long‐term
(25 year in this case) carbon balance at each subgrid cell.
[14] The motivation for this latter procedure is as follows.

In a normal forward model run, the soil carbon pools must be
spun up until respiration from these pools comes into equi-
librium with NPP. Here, this is done for the fast carbon pool
using 100 years of spin‐up. The spin‐up year is the average
over the 25 year input meteorology and used continuously
over the 100 years with a CO2 concentration of 338 ppm.
Because of its fast depletion, decomposition rates of the fast
pool are sensitive to changes in pools size (Cf) in addition to
changes in the turnover rate (kf). This size effect (also called
substrate limitation) can be neglected for the slow carbon
pool. This makes it possible to estimate the size of the pool on
the basis of the long‐term carbon balance at each subgrid cell
location.

[15] This is important, because with limited knowledge
about a particular location’s history of soil carbon distur-
bance, the assumption of a balance between NPP and soil
respiration provides a more viable and universal first estimate
than any assumption about absolute sizes of the slow carbon
pool. Further, changes in the size of organic carbon pools
have been linked to the climatic conditions of a site, with
colder sites possessing on average larger carbon pools [Bird
et al., 2002]. Because these would have a lower kf , the bal-
ance condition NPP = RS, s + RS, f will automatically repro-
duce this basic relationship as long as Q10, f and Q10,s are
greater than 1.
[16] We generalize the equilibrium condition, introduced

by Knorr [2000], to nonequilibrium situations by introducing
a carbon balance parameter, b, in the following way [Rayner
et al., 2005]:

�NPP ¼ RS; s þ RS; f

� � ð7Þ

which is equivalent to

NEP ¼ NPP 1� �ð Þ ð8Þ

The vertical line above signals temporal average over the
entire simulation period of 25 years, and the equation applies
at each subgrid cell. The carbon balance parameter, b, deter-
mines whether a site acts as a long‐term source (b > 1, negative
NEP) or a long‐term sink (0 < b < 1) of CO2. The case b < 0 is
not allowed, as it would entail negative respiration fluxes for
positive NPP. The positivity of b is guaranteed by applying a
lognormal transformation. With the assumption of a constant
Cs, we can introduce equations (4) and (3) into equation (7)
and obtain an expression for the size of the slow carbon
pool as

Cs ¼ �NPP� RS; f

� �
=ks ð9Þ

Note that this definition of b is the reciprocal of the definition
used in previous CCDAS studies. The change was imple-
mented in order to prevent division by small numbers as b
approaches 0.

Figure 3. Distribution of the dominant PFT per grid cell. PFT labels are given in Table 1.
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[17] The advantage of this approach is that we can subsume
a number of often unknown conditions that lead to changes in
the carbon balance, such as removal of organic carbon by land
use, under a common simplified formulation. By starting
from a first guess of equilibrium, expressed by the same value
of b = 1 everywhere, the optimization of CCDAS can then
proceed to providing constraints on b via the atmospheric
CO2 network. The main difficulty with this approach is
determining how best to differentiate b spatially. Too fine a
spatial resolution would make the inverse problem again
underdetermined, returning to the problems faced by atmo-
spheric inversion studies. What resolution will be acceptable
before the problem becomes underdetermined will depend on
the resolution of the transport model as well as on the bio-
sphere model used. Essentially, a finer spatial differentiation
of parameters would have to be tested through optimization
and computation of the error covariance matrix of the optimal
parameters. We expect that with increasing numbers of
parameters, more of these will show high error correlation
(error covariance divided by standard deviation of both
parameters). This can then be used to judge what resolution
and spatial differentiation will be acceptable.
[18] In previous CCDAS studies, b was differentiated by

PFT only, assuming that similar plant types would exist in
similar ecosystems, and that these would have undergone
similar disturbance regimes leading to similar ratios between
NPP and total soil respiration. This was essentially a prag-
matic approach that avoided differentiation purely by loca-
tion, something that would have meant defining as many
control parameters in CCDAS representing b as there are
subgrid cells. Here, we investigate the consequences of this
assumption by introducing an additional layer of geographic
differentiation of b on top of the PFT dependence in the base
case. As a full geographic differentiation to the grid cell levels
is not feasible, we have opted for using the established 11
TransCom regions.
[19] Hence, this study investigates two cases: (1) one b

parameter per 13 PFTs, and (2) separate b parameters for each
PFT within each TransCom region. The total number of b
parameters in the second case is 111 (i.e. less than 11 times 13
because not all PFTs exist in all regions). The 11 TransCom
regions are shown in Figure 2, the list of PFTs in Table 1 and
the remaining control parameters in Table 2. In addition to the
b parameters and the global parameters there is one addi-
tional parameter representing the global atmospheric CO2

concentration at the beginning of the optimization period
(offset). Consequently, the base case has 19 (13 bs + 5 global

parameters + 1 offset) and the regionalization case has 117
control parameters (111 bs + 5 global parameters + 1 offset).

2.3. Background Fluxes

[20] The focus of this study are the natural land‐atmosphere
fluxes. Therefore, land use change is not directly included
in the BETHY model but specified as an external flux. As
described by Rayner et al. [2005] we use the estimates of
Houghton [2008] for the land use flux without seasonality
or interannual variability. Background fluxes for fossil fuel
emissions are based on the flux magnitudes from Boden et al.
[2009] as described by Scholze et al. [2007]. The flux pattern
andmagnitude of oceanCO2 exchange is taken fromTakahashi
et al. [1999] with estimates of inter annual variability taken
from Le Quéré et al. [2007]. We use the same observational
network of 41 stations as described by Rayner et al. [2005]
(see also Figure 2).

2.4. Parameter Uncertainties

[21] We assume that all input probability density functions
follow a Gaussian distribution. Hence, our a priori infor-
mation consists of the mean and covariance matrix, which
represents the uncertainties, for the observations and control
parameters. If the model is linear, the posterior probability
density will also be Gaussian. If the model is nonlinear (as
it is in our case), it can still be linearized around the prior
parameter values and the posterior probability function
approximated by a Gaussian [Tarantola, 1987].
[22] The second order derivative of the cost function is

represented by the Hessian, which graphically speaking de-
scribes the curvature of the cost function. At the cost function
minimum, the Hessian approximates the inverse covariance
of the optimal parameters and in this way provides the a
posteriori parameter uncertainties. The procedure on how the
Hessian is calculated and how the a posteriori uncertainties
are derived is described in detail by Rayner et al. [2005].

3. Results

[23] An overview of the optimization results are shown in
Table 3. The very small gradient of the cost function indicates
success of the cost function minimization. However, running
an ensemble of optimizations gives us further indication of
the robustness of the solution. For the base case, we per-
formed a set of 20 optimizations by varying the starting point
randomly. Half of the optimizations finished in the same
minimumwe found in the first case. The other half finished in

Table 2. Initial and Optimal Control Parameters for the Reduced BETHY Modela

Parameter Initial Value Prior Uncertainty

Base Case (N = 19) Regionalization (N = 117)

Optimal Value Optimal Uncertainty Optimal Value Optimal Uncertainty

Q10, f 1.50 −0.500; +0.750 1.20 −0.025; +0.025 1.46 −0.037; +0.038
Q10,s 1.50 −0.500; +0.750 1.69 −0.020; +0.020 1.62 −0.024; +0.025
tf 1.50 −1.000; +3.000 4.86 −0.218; +0.228 9.63 −0.637; +0.682
� 1.00 −0.900; +9.000 0.62 −0.010; +0.011 0.57 −0.011; +0.012
fs 0.20 −0.100; +0.200 0.73 −0.004; +0.004 0.69 −0.010; +0.010
b 1.00 −0.200; +0.250 see Table 3 see Table 1
offset 338.00 1.000 336.32 0.015 336.53 0.017

aAll parameters are unitless, but tf in years. Uncertainties represent one standard deviation. For parameters with a lognormal distribution, upper and lower
percentiles equivalent to one standard deviation are given.
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a minimum where at least one global parameter had a non-
physical value (e.g. fs > 1), which is not relevant here. This
strengthens our confidence of having found a global mini-
mum within the physical parameter space. After the calibra-
tion, the cost function value Jwas reduced by a factor of about
600 for both cases. Also, with J = 7594 the optimal value of
the cost function is considerably smaller for the regionaliza-
tion than for the base case (J = 9020). This is expected since
we have a larger number of parameters (N = 117) in case of
the regionalization, which increases the degree of freedom for
the optimization. The fit to the observations is also consid-
erably improved for the regionalization case as can be seen by
the lower value for Jo. For 37 out of the 41monitoring stations
used in this study we notice an improved fit to the observa-
tions. The four sites with the greatest improvement in match
with observations and the four sites where the fit has slightly
worsened are marked in Figure 2. The reduced c2 is also
smaller for the regionalization case. Values close to one
indicate that model and data are statistically indistinguish-
able. In none of the cases it is less than one, indicating that
there are still some model deficiencies that prevent a statis-
tically complete match to the observations. However, a higher
number of degrees lead to values of c2 much closer to the
threshold of 1.
[24] The parameter mismatch, expressed by Jp, is higher for

the regionalization case, mainly due to the larger dimension
of the control parameter space. 738 iterations are required in
the base case in order to find the minimum of the cost func-
tion, while about twice as many iterations are required for the
regionalization case. It appears that a larger number of control
parameters somewhat increases search time, even though
not dramatically given the much higher dimensionality. In
contrast to the study by Rayner et al. [2005], the Hessian is
positive definite at the cost function minimum for both cases,
which further strengthens our confidence in having found the
exact minimum in the cost function.
[25] The remaining part of this section focuses on the

optimized control parameters, their a posteriori uncertain-
ties, and the long‐term mean CO2 fluxes together with their
uncertainty covariance matrix. Special attention is paid to
the carbon balance parameter b. Parameter uncertainties are
propagated in order to determine uncertainty ranges for the
predicted net CO2 fluxes for each of the 11 TransCom
regions.

3.1. Optimal Parameters

[26] Prior and optimized parameter values for both cases,
base case and regionalization, are presented in Table 2. The
temperature sensitivity of the slow carbon pool respiration,

Q10,s, is somewhat increased in both (1.69 and 1.62, respec-
tively) compared to the prior value of 1.5. This change is,
however, within range of the prior parameter uncertainty. The
temperature sensitivity of the respiration of the fast carbon
pool, Q10, f, is reduced from its initial value of 1.5 to 1.2 in
the base case, but remains close to its initial value for the
regionalization case. The change is again within the range of
the prior uncertainties. The posterior uncertainties of the two
parameters are reduced by more than one order of magnitude,
confirming the result of Scholze et al. [2007] that the param-
eters of soil respiration are well constrained by atmospheric
CO2 data. Here the constraint is even higher because we
neglect the uncertainty in NPP.
[27] The soil moisture dependence parameter � is reduced

in both scenarios, from its initial value of 1.0 to 0.62 and 0.57
respectively, meaning a reduced sensitivity to soil moisture
when the same is close to field capacity (w = 1), but an
increased sensitivity when soil moisture is close to the wilting
point (w = 0). The prior uncertainty of �, however, is much
larger than the change. We find that � is also well constrained
by the data, shown by the small posterior uncertainty. The
optimized parameter values for the fast pool turnover time,
tf , however, are both outside the prior uncertainty range
defined by one standard deviation. For the regionalization
case, the change is bymore than two standard deviations from
1.5 to 9.63 years. (Note that because of the lognormal dis-
tribution, two standard deviation from the prior is equivalent
to 9 years.) The fraction fs of the decomposition flux going
from the fast to the long‐lived soil carbon pool also increases
bymuchmore than its prior uncertainty for both cases, but it is
very similar between the two. The posterior uncertainty is
again very small. Finally, the offset parameter behaves sim-
ilar to previous studies [Scholze et al., 2007]. In general,
posterior uncertainties for all global parameters in Table 2 (all
but the bs) are reduced by more than 90% compared to prior
uncertainty ranges. This is partly a result of the fairly large
prior uncertainty estimates we used, but can also be explained
by the fact that parameters that act globally at all subgrid cells
are well observed by the global atmospheric CO2 network.
[28] The optimal values for the soil carbon balance param-

eter b are given in Table 1 for the base case. As a reminder,
b determines whether subgrid cells occupied by the corre-
sponding PFT act as a long‐term carbon source (b > 1) or a
long‐term carbon sink (b < 1), independent of the geographic
region. As shown in Table 1, most (9 out of 13) PFTs act as a
sink. This is simply the result of the fact that the atmospheric
increase is less than expected from the total anthropogenic
CO2 emissions (the airborne fraction is less than one [Knorr,
2009]) and that the oceans take up only approximately half
of the excess [Bopp et al., 2002]. Both ocean fluxes and
anthropogenic emissions are here implemented as part of the
background fluxes. What is interesting in the context of the
present study, however, is how this overall sink is distributed
spatially.
[29] Here, we find that the optimal parameter b for PFT

8 (deciduous shrub) is extremely large (b8 = 11.33), which
means that the net flux, NEP, is more than 10 times that of
NPP (see equation (8)). This PFT, however, has only a very
small total NPP (as seen for all TransCom regions in Figure 7)
and occurs only in a fewmarginal areas as dominant PFT (see
Figure 3). The only way the optimization “knows” about the
limitation of soil respiration by NPP, however, is via the prior

Table 3. Cost Function Values J and Number of Iterations for
Both Case Studiesa

Base Case (N = 19) Regionalization (N = 117)

J 9020 7594
Jo 8874 7014
Jp 146 580
c2 1.47 1.25
Iterations 738 1577
Gradient 8.1 × 10−4 7.7 × 10−4

aJo stands for the mismatch of the observations and Jp for the parameter
mismatch. c2 is the reduced chi‐squared test, where values close to one
indicate statistical agreement between model and data.
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value of b for PFT 8 and its effect on the cost function.
Obviously, the penalty for changing b8 is not large enough to
outweigh the benefit from placing a source in the region of
this PFT.
[30] Particularly strong sinks relative to their NPP, with

soil respiration only between 20 and 35% of their NPP,
are evergreen shrubs (PFT 7), tundra (PFT 11) and crops
(PFT 13). Temperate trees (PFTs 3 and 4) are also a rather
strong sink, while evergreen conifers (PFT 5), situated in the
large boreal forests, appear as a source. We also note that the
PFT‐specific b is generally well constrained by the CO2 data
except for PFT 12 (wetlands). The uncertainty reduction is,
however, often much less than 90%, and thus considerably
less than for the global parameters.
[31] For the regionalization case, there is no control

parameter b that covers all of a given PFT. However, the
average value for b can be inferred from equation (8) using
the average NEP and NPP of a given PFT. This is also shown
in Table 1. The two cases approximately agree for two
important PFTs (with large global NPP), namely tropical
evergreen trees (PFT 1) shown as a sink, and evergreen
conifers (PFT 5), predominantly found in boreal forests,
shown as a source. There are, however, large differences
between the two cases for a range of PFTs, in particular
deciduous shrubs (PFT 8), temperate deciduous trees (PFT 4),
and deciduous conifers (PFT 6). As evident from Figure 3,
these PFTs cover relatively small areas globally. Crops
(PFT 13) and C3 grass (PFT 9), which are more dominant and
appear as a significant sink of CO2 for the base case, appear
neutral for the regionalization case. For PFTs 4, 6 and 9
the regionalization suggests a source, while the base case
suggests a sink for the same PFTs.
[32] Table 4 shows the optimized values of b for the

regionalization case. Two main results stand out. First, the
reduction in uncertainty of the regionalized parameter is now
much less thanwhen the same parameter is distinguished only
by PFT. The information gained form the observations is now
“spread” over many more individual parameters, where some
can be observed better than others. As in the base case, all b
parameters associated with PFT 12 show no or hardly any
reduction in their uncertainties. Second, there is a consider-
able spread across regions, where b for one given PFT (apart

from PFT 6 which only occurs in Region 7) takes on widely
differing values. This already indicates that the optimal value
of b is rather sensitive to the way it is differentiated geo-
graphically. In fact, we observe that the same PFT can act as a
sink (b < 1) or a source (b > 1) depending on the region where
they occur. For example, tropical evergreen trees (PFT 1)
shown to be a sink overall in Table 1, ranges from an
extremely strong sink in Region 9 (tropical Asia), to a strong
source in Region 6 (Africa south of the equator). Because
PFT 1 is centered around the equator itself, the division of
central Africa into two regions leads to an interesting result:
north of the equator we have a source (b = 2.08), and south
of equator a sink (b = 0.44). Similarly, evergreen conifers
(PFT 5) appear as a source in boreal Eurasia (Region 7) but as
a sink in temperate Eurasia (Region 8). This phenomenonwill
be revisited later in the present analysis.
[33] We also find some very large values for b in a few

cases. For example, the optimal value for PFT 4 (temperate
broadleaved deciduous tree) in Region 4 (temperate South
America) is 33.11, for PFT 13 (Crops) in Region 6 (Southern
Africa) b is 22.29 and for PFT 2 (tropical broadleaved
deciduous tree) in Region 8 (Eurasian temperate) we find
a value of 13.91. Such extreme values are unlikely from a
carbon balance point of view, as discussed before for the base
case.

3.2. Fluxes

[34] The previous analysis, which focused on the spatial
differentiation of b, has already identified certain trends and
patterns, for example a source of CO2 from boreal conifers
and a tropical sink. The same can be found when analyzing
NEP for individual regions, as shown in Table 5. Regions 1
and 7 (boreal North America and Eurasia) act as a source
(negative NEP), while Regions 3 and 9 (tropical South
America and Asia), as well as the sum of Regions 5 and 6
(Africa) consistently appear as a sink. Both cases also find a
strong source in Region 4 (temperate South America) and a
strong sink in Region 2, which despite its name (temperate
North America) contains tropical vegetation (PFTs 1 and 2) in
central America (see Table 4). There are, however, a number
of noteworthy differences between the two cases. First, Africa
is only a slight sink in the base case, but a moderate sink in

Table 4. Optimal b Parameter for Each of the 13 PFTs and 11 TransCom Land Regionsa

PFT

Region

NAmBor NAmTmp SAmTr SAmTmp NAf SAf EuAsBor EuAsTmp AsTr Au Eu

1 TrEv ‐ 0.85 (8) 1.07 (85) 0.51 (26) 0.44 (31) 2.08 (63) ‐ 0.45 (28) 0.23 (42) 0.91 (5) ‐
2 TrDec ‐ 0.74 (15) 0.83 (17) 2.89 (74) 0.74 (16) 0.38 (41) ‐ 13.91 (84) 0.45 (29) 1.00 (0) ‐
3 TmpEv ‐ 0.88 (6) ‐ ‐ 1.15 (0) 0.85 (9) ‐ 0.75 (14) ‐ 0.70 (21) 1.02 (0)
4 TmpDec 0.89 (6) 0.41 (38) 0.99 (1) 33.11 (79) 0.96 (2) ‐ 0.78 (13) 0.49 (26) 0.95 (3) 1.08 (1) 1.33 (3)
5 EvCn 1.56 (82) 1.51 (85) 1.61 (0) 1.13 (0) ‐ ‐ 1.63 (35) 0.45 (28) 0.66 (18) 1.02 (1) 0.93 (37)
6 DecCn ‐ ‐ ‐ ‐ ‐ ‐ 1.35 (32) ‐ ‐ ‐ ‐
7 EvShr 1.41 (1) 0.70 (23) 1.08 (0) 1.06 (0) 1.24 (3) 1.03 (2) 0.77 (15) 0.72 (33) 1.01 (0) 0.34 (34) 0.83 (10)
8 DecShr 1.15 (0) 0.83 (10) 0.99 (1) 2.17 (2) 1.94 (0) 1.02 (0) 0.77 (14) 1.13 (1) 0.97 (2) 0.86 (8) 0.76 (13)
9 C3Gr 0.68 (20) 0.70 (37) 1.06 (3) 0.59 (33) 7.28 (45) 0.53 (26) 0.97 (22) 0.66 (54) 0.51 (25) 0.61 (41) 1.02 (57)
10 C4Gr 0.97 (2) 1.22 (74) 0.56 (31) 0.25 (42) 0.49 (46) 0.49 (38) 0.99 (1) 0.43 (35) 0.28 (37) 1.25 (81) 0.49 (27)
11 Tund 1.17 (32) 1.01 (0) ‐ 0.98 (1) ‐ ‐ 0.57 (42) 0.89 (6) ‐ 1.01 (0) 0.88 (16)
12 Wetl 1.23 (0) ‐ 0.97 (1) 1.05 (0) ‐ 1.14 (0) 0.85 (8) 1.01 (0) ‐ ‐ 1.02 (0)
13 Crop 0.95 (3) 0.34 (36) 1.03 (0) 0.91 (6) 0.90 (6) 22.29 (63) 0.54 (24) 0.80 (47) 0.49 (26) 0.88 (8) 0.75 (25)

Area 8 872 10 799 9 439 8 876 19 512 9 446 13 341 23 910 4 670 7 541 9 332

aPFT, Plant function type. Area in 103 km2, for the regionalization,N = 117. The relative reduction of the parameter uncertainty (+1s from a prior value of 1
and an uncertainty range from 0.8 to 1.25) is given in brackets in %. For an explanation of the abbreviations used for the PFTs and the land regions refer to
Tables 5 and 1.

ZIEHN ET AL.: PARAMETER REGIONALIZATION WITH CCDAS GB2021GB2021

7 of 13



the regionalization case. Second, other than temperate North
America, temperate Eurasia appears either as a strong sink
(base case), or a moderate source (regionalization). In the
latter case, the source over boreal Eurasia is much reduced.
[35] An analysis of the net CO2 flux at the grid cell level of

BETHY, shown in Figure 4 for the base case and in Figure 5
for the regionalization, reveals large geographical fluctua-
tions between adjacent grid cells, or between smaller regions
(i.e. smaller than the TransCom regions). This phenomenon is
evident in both cases, but it is particularly pronounced for the
regionalization case in all of the tropics and subtropics, except
for northern South America and Africa north of the Sahel. For
example, for Region 4 (temperate South America), which
is identified as the strongest source with around 1 600 TgC
per year within the 11 land regions for both cases, the geo-
graphical flux patterns look very different between the two
cases. While in the base case, they are either strong sources or
only slight sinks, in the regionalization case the area domi-
nated by PFT 10 (C4 grass) turns out as a strong sink and
the small area dominated by PFT 4 (temperate broadleaved
deciduous tree) turns out as a very large source relative to its

size (see also Figure 3 for the dominant PFT cover). This is
the result of a small carbon balance parameter (b = 0.25) in
this region for PFT 10, compensated for by a very large value
(b = 33.11) for PFT 4. In contrast, in the base case, PFT 10 is
close to neutral (b = 0.93) and PFT 4 is a sink (b = 0.51). As a
consequence, the source characteristic of Region 4 is deter-
mined by a different PFT, namely PFT 8 (deciduous shrub)
which has a b value of 11.33. It appears that the optimization
is using its freedom to modify regional fluxes via b, thus
creating pronounced alternating source and sink pattern in
associated areas below the scale of a TransCom region.
[36] Nearly the same phenomenon as just described is

observed for Africa (Regions 5, north, and 6, south). In the
base case, all grid cells show comparatively small fluxes,
but for the regionalization case there is a large spread in
the absolute size of the fluxes between individual grid cells.
Differences in the flux direction between cases also exist for
Region 8 (temperate Eurasia), where in the regionalization
case a strong source region in India turns what is a large sink
in the base case into a relatively large overall source (see
Table 5). The largest difference in the mean flux between the

Table 5. Mean NEP for Each of the 11 TransCom Land Regions in TgC Per Year and the Optimal (sopt) and Prior (sprior) Uncertainties
As Well As the Reduction in Uncertainty

TransCom Region

N = 19 N = 117

NEP sopt sprior Reduction NEP sopt sprior Reduction

1 North American boreal (NAmBor) −881 39 678 94% −1 074 93 695 87%
2 North American temperate (NAmTmp) 901 34 527 94% 846 67 578 88%
3 South American tropical (SAmTr) 892 96 1517 94% 304 151 1818 92%
4 South American temperate (SAmTmp) −1 555 37 1020 96% −1 637 128 989 87%
5 Northern Africa (NAf) −97 45 962 95% 250 243 898 73%
6 Southern Africa (SAf) 284 68 917 93% 648 167 817 80%
7 Eurasian boreal (EuAsBor) −376 52 561 91% −187 112 490 77%
8 Eurasian temperate (EuAsTmp) 1 154 43 555 92% −562 142 846 83%
9 Tropical Asia (AsTr) 541 25 517 95% 3032 94 151 38%
10 Australia (Au) 346 33 441 93% 137 94 559 83%
11 Europe (Eu) 991 42 476 91% 436 129 572 78%

Figure 4. Mean annual net CO2 flux to the atmosphere for the period 1979–2003 (gCm−2 yr−1) for the base
case (N = 19 parameters). Negative NEP indicates a source. The black rectangle denotes the transect for cen-
tral Africa analyzed in Figure 8. The underlying grid represents the resolution of the TM2 transport model.
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two cases exist for Region 9 (Tropical Asia). A very large sink
is identified for the regionalization with about 3000 TgC yr−1

and a much smaller sink with about 500 TgC yr−1 for the
base case.

3.3. Uncertainty Propagation

[37] In the following analysis, we will make use of
CCDAS’ feature of propagating uncertainties from control
parameters forward to obtain uncertainties and their covar-
iances for diagnostic quantities, here the net carbon balance.
The result is shown in Table 5 for the 11 TransCom regions.
It must be noted that the global net flux is well constrained
because we neglect any uncertainties in both the anthropo-
genic emissions and the ocean fluxes. As a result, the uncer-
tainty of the posterior global NEP is only determined by the
uncertainty in the atmospheric CO2 concentrations, and the
reduction in uncertainty becomes close to 100%. Also note
again that the posterior uncertainties neglect the impact of
uncertainties in NPP. The analysis will focus more on a
comparison between the two cases rather then putting undue
emphasis on absolute values.
[38] By region, the posterior uncertainty varies consider-

ably between the two cases, and is approximately three times
larger on average for the regionalization case. The additional
freedom the optimization has with the regionalized b obvi-
ously translates into less constrained net fluxes.
3.3.1. Uncertainty Covariance for the 11 Land Regions
[39] In addition to comparing the reduction in the uncer-

tainty of the net flux, we also consider the covariance between
flux uncertainties. This is expressed via the uncertainty
correlation matrix of diagnostics, Rd, which is defined as
follows:

Ri; j
d ¼ Ci; j

d

�i�j
ð10Þ

where Cd
i, j is element i, j of the uncertainty covariance matrix

of the diagnostics (NEP), and si the posterior uncertainty of
parameter i derived from the diagonal elements Cd

i,i of the
matrix Cd.
[40] We illustrate two extreme but typical cases. In one,

NEP of two adjacent grid cells have exactly the same impact
on modeled atmospheric concentrations. Further, both NEP
values are controlled by completely separate sets of param-
eters. Here, a change in NEP of grid cell 1 by any amount a
can be compensated by a change of NEP in grid cell 2 without
a change in the data part of the cost function, Jo (disregarding
Jp). In this case, NEP uncertainties of the two cells are anti-
correlated and Rd

1,2 < 0. In the other case, NEP of cells 1 and 2
are controlled by the same parameters in the same way. Here,
changes in these parameters in any direction will result in the
same change in NEP in both cells and as a result the NEP
uncertainties of both cells are positively correlated (Rd

1,2 > 0).
Other cases are also possible: a change in NEP in one cell
is compensated by a change in the same direction in NEP of
the other (usually not adjacent) grid cell, or the same param-
eters have an impact on NEP that is of opposite sign between
the two grid cells. Such cases, however, are less typical
of the CCDAS setup. For this analysis this usually means
that positive values of Rd

i ,j approaching +1 indicate that the
NEP of the two cells is modeled concurrently by BETHY,
and large negative values approaching −1 that atmospheric
transport cannot distinguish between the two fluxes.
[41] Figure 6 shows the correlation matrix for the NEP of

the 11 TransCom regions for the base case and the region-
alization case. It is evident that in the base case, which
“binds” together distant regions by common values of b,
the NEP of some pairs of regions are highly positively corre-
lated, in particular Regions 3 and 9 (tropical South America
and tropical Asia) and Regions 5 and 10 (North Africa and
Australia). As Figure 7 shows, Regions 3 and 9 stand out
as having the largest NPP contribution from PFT 1 (tropical

Figure 5. Mean annual net CO2 flux to the atmosphere for the period 1979–2003 (gC m−2 yr−1) for the
regionalization case (N = 117 parameters). Negative NEP indicates a source. The black rectangle denotes
the transect for central Africa analyzed in Figure 8. The underlying grid represents the resolution of the
TM2 transport model.
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evergreen trees), whereas Regions 5 and 10 have both a large
contribution from PFT 10 (C4 grass). Region 4 also has a
large contribution from PFT 10, and indeed its uncertainty in
NEP is positively correlated with that of Region 5 and 10. A

large positive correlation is also found for Regions 8 and 11,
with both strong NPP contributions from PFTs 9, 10 and 13.
[42] The reason we assume these features are due to com-

mon value of b is that the same correlations are all negative in

Figure 6. Uncertainty covariance matrix of annual mean NEP per TransCom region for the base case (N =
19 parameters) and the regionalization case (N = 117 parameters).

Figure 7. NPP per TransCom land region and PFT (TgC yr−1).
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the regionalization case (see Figure 6). There is only one
larger positive correlation between the two Regions 6 and
8 (southern Africa and temperate Asia). Because these two
regions only have the universal soil carbon parameters in
common, which is the case for all pairings, we suspect that
this must be a feature resulting from the atmospheric trans-
port. Overall, correlations between regions are either small
in absolute terms, or large and negative, such as Regions 5
and 6 (northern and southern Africa), 1 and 11 (boreal North
America and Europe), 7 and 11 (boreal Eurasia and Europe),
3 and 5 (tropical South America and northern Africa), and 5
and 8 (northern Africa and temperate Eurasia). We expect a
negative correlation if an increase in NEP in one region is
compensated for by a decrease in NEP in the other, or vice
versa, via atmospheric transport and constrained by atmo-
spheric CO2 data. The fact that the examples just mentioned
are geographically close suggest exactly that. The question is,
however, how atmospheric transport can lead to a positive
uncertainty correlation, as found for Regions 6 and 8 above.
We observe that the two regions are in opposite hemispheres
and suspect that this might have to do with the constraint
given by the hemispherical CO2 gradient. If NEP increases
in one hemisphere and the predicted gradient exceeds obser-
vations, then NEP must increase in the other hemisphere
to compensate for the discrepancy. Further analysis will be
needed to ascertain this.
[43] The global inversion study of Rödenbeck et al. [2003]

also analyzed the a posteriori covariance structure of the
uncertainties of the long‐term fluxes for the TransCom land
regions. The covariance matrix as presented in Figure 13 of
their paper agrees in manyways with the pattern we obtain for
our regionalization case. They also find that correlations are
either very small or land regions predominantly have negative
correlations between each other (for instance Region 1 and 11
or Region 7 and 11). Although the overall pattern of our
covariance matrix shows large similarities, the study of
Rödenbeck et al. [2003] identifies positive correlations
between the neighboring Regions 3/4, 5/6 and 9/10, whereas

our study identifies a strong negative correlation for Regions
5/6 and weaker negative correlations for Regions 3/4 and
Regions 9/10.
[44] The overall correlation structure for the 11 land

regions appears to be more realistic for the regionalization
case confirmed by the small or predominantly negative cor-
relations among the land regions. In the base case distant
regions are bound together by common b values which results
in strongly positively correlated NEP uncertainties.
3.3.2. Covariance Structure for a Transect in Africa
[45] As a final analysis of the way the optimization interacts

with the regionalization, we present the uncertainty corre-
lation matrix for NEP for a north‐south transect either side
of the equator in central Africa, as shown in Figure 5. The
transect is characterized by large fluctuations in the net CO2

flux within a small area in the regionalization case, but much
less fluctuation in the base case. Since both solutions are
consistent with the atmospheric constraints, we can assume
that the network cannot resolve such regional differences
and suspect that the uncertainties between the fluxes must
be highly correlated. We also observe that the transect cuts
through two of the TransCom regions (5 and 6) and that a
large swing in net flux coincides with this boundary. The
areas just north and south of the boundary are dominated by
PFT 1, followed by PFT 10 further north and south. In the
southern region, there is also an area dominated by PFT 2
further to the south. The uncertainty correlation for the NEP
of this transect is shown in Figure 8 for both the base case and
the regionalization case.
[46] The first thing to notice for the regionalization case is

that of the 16 grid cells concerned, the optimization effec-
tively distinguishes 8 groups of one to three grid cells each.
If two grid cells are dominated by the same PFTs and are
in the same TransCom region, they effectively act as one and
the uncertainty correlation between the cells approaches +1
(if there is more than one in the group). An example is
the group of cells 9–11, which share PFT 1 in Region 6, or
cells 12 and 13, which have the same PFTs and are also in

Figure 8. Uncertainty covariance matrix of NEP per grid cell for a transect through Africa (21°E, 15°N
(grid cell 1) to 15°S (grid cell 16), every 2°). NEP for the regionalization case is also shown in gC m−2

yr−1, as well as the PFTs occurring at each grid cell from most to least abundant.
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Region 6. We also find that the NEP uncertainties of neigh-
boring groups of cells are often anticorrelated, for example
the zone within Region 5 dominated by PFT 10 (cells 5 and 6)
and the one to the south dominated by PFT 1 (cells 7 and 8).
Correlations between grid cells of different regions are gen-
erally small. No pronounced impact of the position of the
transport model (TM2) grid cells is detectable in the results,
except possibly for one example: the two groupings cells 2–4
and cells 5–6 are anticorrelated even though both are in the
same zone and dominated by PFT 10.
[47] We find that the pattern of uncertainty covariance is

very different in the base case compared to the regionalization
case. The artificial boundary at the equator introduced by the
regionalization (between cells 8 and 9) is no more present.
Instead, the grid cells can be roughly divided into four groups:
cells 1–6 for the grass and shrub land region to the north, the
tropical rain forest (cells 7–11), the grassland zone to the
south (cells 12–13), and the deciduous forest and savanna
zone furthest south (cells 14–16). There is some similarity
between the results within Region 5, for the pairing 12–13
with 14–16, which is highly correlated within and highly
anticorrelated across. But further north, for cells 1–11, the
structures are completely different and more dominated by
ecosystem type in the base case.

4. Discussion

[48] The outcome of the study presented here has shown
that the spatial differentiation of the carbon balance parameter
b leads to an improved fit to the observations. The uncertainty
covariance matrix for annual mean NEP per TransCom
region shows mainly small correlations in absolute terms or
large and negative ones. In the base case, where b is applied
globally, some regions are highly positively correlated due
to a common value of b. Therefore, the optimization is unable
to effectively differentiate between these two regions as far
as mean simulated NEP is concerned.
[49] On a grid cell level however the flux pattern seems to

be more realistic for the base case. The regionalization leads
to very large fluxes of opposite sign especially in South
America, Africa and India. Even though this is a subjective
judgment, we would like to state that both the magnitude of
NEP and the uncertainty correlation structure for the tran-
sect appear more realistic and in line with ecophysiological
understanding in the base case. While regionalization allows
a better fit of the model to the data, this happens at the cost of
creating flux patterns which seem unrealistic. On the other
hand, unrealistic flux patterns in the African region might be
intensified by the artificial region boundary at the equator
which enables the optimization to produce large opposing
fluxes within the same ecosystem.
[50] A further result is that the optimization finds posterior

values for b which are within the allowed range, but appear
unrealistic from a carbon balance standpoint. The prior value
for b, contained in Jp, does not constrain the optimization
sufficiently to ensure that posterior values are within realistic
bounds. The contribution of the observations, Jo to the total
cost function is too large.
[51] Finally, we find values of c2 that are still somewhat

above 1, indicating some missing processes. These results
raise a number of question, as discussed in the following:

[52] 1. Possibly, the current Bayesian framework puts
sufficient emphasis on parameter priors when it treats
one parameter value and one observation equally. Possibly,
observations entering the cost function are not independent as
assumed here [e.g., Ricciuto et al., 2008], and prior parameter
values represent more than just one measurement. Both
arguments would favor a stronger weighting of prior param-
eter values. This problem is not restricted to the regionaliza-
tion case (although it is most pronounced here), but also
applies in the base case where for example b for PFT 8 is
extremely large (b8 = 11.33). Previous studies using CCDAS
[e.g., Scholze et al., 2007] also found high net fluxes for this
PFT, even though the reciprocal of the current definition of b
was used. An additional parameter constraint restricting b to a
range (i.e. 0 ≤ b ≤ bmax), would most effectively prevent
extremely large net fluxes. Such a solution, however, would
imply a deviation from the premise of Gaussian distributed
prior PDFs of parameters, and it would have to be investi-
gated how CCDAS could be adjusted to account for the
additional constraint.
[53] 2.What would be a sensible criterion to better spatially

differentiate the b parameter? The TransCom land regions as
applied here do not seem to be the best choice. In particular
the “artificial boundary” at the equator which divides Africa
into Regions 5 and 6 has created questionable results.
[54] 3. What is the best way of representing biomass

decomposition fluxes in a CCDAS? This question is still
open, but it appears that the regionalization based on the
TransCom regions alone does not lead to enough improve-
ment in the match with observations. Insufficient obser-
vations in the tropical regions and potential missing processes
in the terrestrial biosphere model BETHY, such as fire,
might “encourage” the extremely large b values. What is still
needed is a scheme that takes into account all possible factors
influencing the slow and fast decomposing of soil and litter
carbon stocks.

5. Summary and Conclusions

[55] In this study we have used the Carbon Cycle Data
Assimilation System (CCDAS) to investigate the effects of
geographical differentiation of one control parameter for the
long‐term soil carbon balance on predicted net CO2 fluxes. In
one case, this parameter was differentiated only by vegetation
type, while in the other case it was additionally differentiated
geographically following the 11 standard TransCom land
regions.
[56] A restructuring of CCDAS in which NPP related

parameters are kept fixed led to a marked improvement of
the performance of the optimization itself. We were thus able
to find a cost function minimum in both cases for which the
gradient of the cost function is close to zero with respect to
all parameters and all eigenvalues of the Hessian are posi-
tive definite. This is an important outcome, since we derive
posterior parameter uncertainties from the Hessian, thus
approximating the inverse uncertainty covariance of the
posterior parameters. We also show that the minimum is
robust and we find good indications that we are dealing with
a global minimum in physical parameter space.
[57] The regionalization of the soil carbon balance param-

eter led to a significantly improved fit to the observations.
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However, analysis of the net CO2 fluxes and their uncertainty
covariance revealed widely diverging patterns between the
two cases. The search for an appropriate spatial differentia-
tion of b is therefore still open. Future work is required to
show how sensitive b is to various regionalization patterns.
[58] In the regionalization case, the tropics and subtropics

are dominated by widely diverging net fluxes of opposite
sign. In some cases, the net carbon flux far exceeds NPP,
which is extremely unlikely from an ecophysiological stand-
point.We find that we require a better method of incorporating
prior information into the Bayesian framework to constration
b to fall into its ecophysiologically probable range as well as a
denser observational network, in particular in the tropics and
a complete representation of the processes governing long‐
term soil carbon balance that relies entirely on input data and
universal parameters.
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programme of the Natural Environment Research Council, U.K.
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