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Summary. The paper describes the development of the software tool Transformation of
Algorithms in C++ (TAC++) for automatic differentiation (AD) of C(++) codes by source-
to-source translation. We have transferred to TAC++ a subset of the algorithms from its
well-established Fortran equivalent, Transformation of Algorithms in Fortran (TAF). TAC++
features forward and reverse as well as scalar and vector modes of AD. Efficient higher order
derivative code is generated by multiple application of TAC++. High performance of the
generated derivate code is demonstrated for five examples from application fields covering
remote sensing, computer vision, computational finance, and aeronautics. For instance, the
run time of the adjoints for simultaneous evaluation of the function and its gradient is between
1.9 and 3.9 times slower than that of the respective function codes. Options for further
enhancement are discussed.
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1 Introduction

Automatic Differentiation (AD [15], see also http://autodiff.org) is a technique that
yields accurate derivative information for functions defined by numerical programmes. Such
a programme is decomposed into elementary functions defined by operations such as addition
or division and intrinsics such as cosine or logarithm. On the level of these elementary func-
tions, the corresponding derivatives are derived automatically, and application of the chain
rule results in an evaluation of a multiple matrix product, which is automated, too.

The two principal implementations of AD are operator overloading and source-to-source
transformation. The former exploits the overloading capability of modern object-oriented pro-
gramming languages such as Fortran-90 [23] or C++ [16, 1]. All relevant operations are
extended by corresponding derivative operations. Source-to-source transformation takes the
function code as input and generates a second code that evaluates the function’s derivative.
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This derivative code is then compiled and executed. Hence, differentiation and derivative eval-
uation are separated. The major disadvantage is that any code analysis for the differentiation
process has to rely exclusively on information that is available at compile time. On the other
hand, once generated, the derivative code can be conserved, and the derivative evaluation can
be carried out any time on any platform, independently from the AD-tool. Also, extended
derivative code optimisations by a compiler (and even by hand) can be applied. This renders
source-to-source transformation the ideal approach for large-scale and run-time-critical appli-
cations.

The forward mode of AD propagates derivatives in the execution order defined by the
function evaluation, while the reverse mode operates in the opposite order. The AD-tool Trans-
formation of Algorithms in Fortran (TAF, [10]) has generated highly efficient forward and
reverse mode derivative codes of a number of large (5,000 - 375,000 lines excluding com-
ments) Fortran 77-95 codes (for references see, e.g., [12] and http://www.fastopt.
com/references/taf.html).

Regarding source-to-source transformation for C, to our knowledge, ADIC [3] is the only
tool that is currently available. However, ADIC is restricted to the forward mode of AD.
Hence, ADIC is not well-suited for differentiation of functions with a large number of in-
dependent and a small number of dependent variables, a situation typical of unconstrained
optimisation problems. In this context, the restriction to the forward mode usually constitutes
a serious drawback and requires an artificial reduction of the number of control variables.

This paper describes the development of our source-to-source translation tool TAC++
that features both forward (tangent) and reverse (adjoint) modes. As with TAF, we chose an
application-oriented development approach and started from a simple, but non-trivial test code,
which is introduced in sect. 2. Next, sect. 3 describes TAC++ and its application to the test
code. Section 4 then discusses the performance of the generated code. Since this initial test
development went on, and TAC++ has differentiated a number of codes, which are briefly
described in sect. 5. Finally, sect. 6 draws conclusions.

2 Test codes

As starting point for our test code we selected the Roe Solver [24] of the CFD code EU-
LSOLDO [5]. As a test object Roe’s solver has become popular with AD-tool developers
[25, 6]. EULSOLDO’s original Fortran code has been transformed to C code (141 lines with-
out comments and one statement per line) by means of the tool f2c [8] with command-line
options -A (generate ANSI-C89), -a (storage class of local variables is automatic), and -r8
(promote real to double precision). f2c also uses pointer types for all formal param-
eters, in order to preserve Fortran subroutine properties (call by reference). The f2c generated
code also contains simple pointer arithmetics, as a consequence of different conventions of
addressing elements of arrays in C and Fortran: While Fortran addresses the first element of
the array x containing the independent variables by x(1), the C version addresses this ele-
ment by x[0]. In order to use the index values from the Fortran version, f2c includes a shift
operation on the pointer to the array x, i.e. the statement --x is inserted. The transformed
code is basic in the sense that it consists of the following language elements:

• Selected datatype: int and double in scalar, array, typedef, and pointer form
• Basic arithmetics: addition, subtraction, multiplication, division
• One intrinsic: sqrt
• A few control flow elements: for, if, comma-expr
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void model(int *n, double x[], double *fc) {
const int size = *n;
const double weight = sin(3.);
struct S { int cnt; double val; } loc[size], *loc ptr;
int i;
double sum = 0.;
for(i=0; i<size; i++)

loc[i].val = x[i]*x[i];
for(i=0; i<size; i++) {

int m = size - 1 - i;
double con = x[m] * weight;
loc ptr = &loc[i];
sum += loc ptr->val + con;

}
*fc = sum / size;

}

File 1: Second test code.

• A function call

The second test code (see file 1), with x as independent and fc as dependent variable,
is taken from the TAC++ test environment. It belongs to the tests for correct handling of an
active struct datatype, scoping, and access to a pointer.

3 TAC++

TAC++ is invoked via a script that establishes a secure-shell connection to the FastOpt servers.
As TAC++ accepts preprocessed ANSI C89 code, the access script runs a preprocessor such
as cpp before transferring the function code to the servers. It is, hence, advisable to regenerate
the derivative code after porting the modelling system to a new platform.

l[0] = (d 1 = uhat - ahat, ((d 1) >= 0 ? (d 1) : -(d 1)));

File 2: Comma-expression in the C version of EULSOLDO

d 1=uhat-ahat;
l[0]=(d 1 >= 0 ? d 1 : -d 1);

File 3: file 2 in normalised form

In the design process of TAC++, our approach has been to implement well-proven and
reliable TAF algorithms. When the front end has translated the C source code into an internal
representation, a normalisation replaces certain language constructs by equivalent canonical
code that is more appropriate to the transformation phase. For example the comma-expression
in the C version of EULSOLDO that is shown in file 2 is normalised to the code segment
shown in file 3.

TAC++ then performs an activity analysis to determine those functions and variables, that
are active in the sense, that they depend on the input variables and affect the output variables
[2, 10], which both have to be specified by the user. The main challenge in reverse mode AD
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/* Absolute eigenvalues, acoustic waves with entropy fix. */
l[0] = (d 1 = uhat - ahat, abs(d 1));
dl1 = qrn[0] / qr[0] - ar - qln[0] / ql[0] + al;
/* Computing MAX */
d 1 = dl1 * 4.;
dl1star = max(d 1,0.);
if (l[0] < dl1star * .5) {

l[0] = l[0] * l[0] / dl1star + dl1star * .25;
}

File 4: if-statement including code the if-clause depends on (from C version of EUL-
SOLDO)

/* RECOMP============== begin */
d 1=uhat-ahat;
l[0]=(d 1 >= 0 ? d 1 : -d 1);
/* RECOMP============== end */
if( l[0] < dl1star*0.500000 ) {

dl1star ad+=l ad[0]*(-(l[0]*l[0]/(dl1star*dl1star))+0.250000);
l ad[0]=l ad[0]*(2*l[0]/dl1star);

}

File 5: Recomputations for adjoint statement of if-statement from File 4

is to provide required values, i.e. values from the function evaluation that are needed in the
derivative code (for details see [7, 17, 10, 11]). By default TAC++ uses recomputation for
providing required values, instead of recording them on disk/in memory. Hence, the generated
code has similar disk/memory requirements than the function code. As in TAF, the Efficient
Recomputation Algorithm (ERA [11]) avoids unnecessary recomputations, which is essential
for generating efficient derivative code. For instance the adjoint statement (see file 5) of the
if-statement from file 4 has the required variables d 1 and l[0]. While dl1star is still
available from an earlier recomputation (not shown), l[0] may be overwritten by the if-
statement itself. Hence, only recomputations for l[0] have to be generated.

For the first test code, TAC++ generates an adjoint code comprising 560 lines in well
readable format, with one statement or declaration per line. This excludes comments and the
code generated from the include file. The complete processing chain is depicted in the right
branch of Fig. 1.

File 6 shows the adjoint of our second test code from file 1. Note the declaration of the
adjoint struct S ad. As the field cnt is passive, S ad contains val ad, the adjoint of val, as
its single component. The declaration and the initialisation blocks are followed by a forward
sweep for the function evaluation, which also provides required values to the adjoint block.
As the loop kernel overwrites the required values of m, the adjoint loop kernel contains its
recomputation before the block of adjoint assignments that uses m. loc ptr ad is also pro-
vided. The scope of the variables m and con is the loop kernel. Since con is active, its adjoint
variable con ad is added to the set of variables whose scope is the adjoint loop kernel.

4 Performance

We have tested the performance of the generated code in a number of test environments, i.e.
for different combinations of processor, compiler, and level of compiler optimisation.
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roemodel_ad_f2c.c roemodel_f2c_ad.croemodel_ad.f

roemodel_ad roemodel_ad_f2c roemodel_f2c_ad

ifort icc icc

roemodel.f

taf

f2c

cpp
new tool

roemodel_f2c.c

f2c

Fig. 1. Processing chain for test code. Oval boxes denote the stages of the processes. Rect-
angular boxes contain the files that are input/output to the individual stages of the process.
Names of executables are printed in bold face letters. The right branch shows processing with
f2c and new AD tool, the middle branch shows processing with TAF and f2c, and the left
branch shows processing with TAF.

Our first test environment consists of a 3GHz Intel Core(TM)2 Duo processor and the Intel
compiler (icc, Version 9.1) with flags “-fast -static”. This environment achieves the fastest
CPU-time for the function code. We have called it standard as it reflects the starting point of
typical users, i.e. they are running a function code in production mode (as fast as possible) and
need fast derivative code. In an attempt to isolate the impact of the individual factors processor,
compiler, and optimisation level, further test environments have been constructed:

• The environment gcc differs from standard in that it uses the GNU C/C++ compiler (gcc,
Version 4.2.1) with option “-O3 -static”

• The environment AMD differs from standard in that it uses another processor, namely the
1800 MHz Athlon64 3000+ and the corresponding fast compiler flags “-O3 -static”.

• The environment lazy differs from standard in that it does not use compiler flags at all. In
terms of compiler optimisation this is equivalent to the icc-flag “-O2”.

For each environment, Table 1 lists the CPU time for a function evaluation (“Func”), a gradient
and function evaluation (“ADM”), and their ratio. We used the timing module provided by
ADOL-C, version 1.8.7 [16]. Each code has been run three times, and the fastest result has
been recorded.

Compared to our Fortran tool TAF, TAC++ is still basic. To estimate the scope for perfor-
mance improvement, we have applied TAF (with command-line options “-split -replaceintr”)
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void model ad(int *n, double x[], double x ad[], double *fc, double *fc ad) {
struct S;
struct S ad;
const int size = *n;
const double weight = sin(3.);
struct S { int cnt; double val; };
struct S ad { double val ad; };
struct S loc[size];
struct S *loc ptr;
int i;
double sum;
struct S ad loc ad[size];
struct S ad *loc ptr ad;
double sum ad;
int ip1;
for( ip1 = 0; ip1 < size; ip1++ )

loc ad[ip1].val ad=0.;
loc ptr ad=0;
sum ad=0.;
sum=0.;
for( i=0; i < size; i++ )

loc[i].val=x[i]*x[i];
for( i=0; i < size; i++ ) {

int m;
double con;
m=size-1-i;
con=x[m]*weight;
loc ptr=&loc[i];
sum+=loc ptr->val+con;

}
*fc=sum/size;
sum ad+=*fc ad*(1F/size);

*fc ad=0;
for( i=size-1; i >= 0; i-- ) {

int m;
double con;
double con ad;
con ad=0.;
m=size-1-i;
loc ptr ad=&loc ad[i];
loc ptr ad->val ad+=sum ad;
con ad+=sum ad;
x ad[m]+=con ad*weight;
con ad=0;

}
for( i=size-1; i >= 0; i-- ) {

x ad[i]+=loc ad[i].val ad*(2*x[i]);
loc ad[i].val ad=0;

}
sum ad=0;

}

File 6: Adjoint of File 1

to EULSOLDO’s initial Fortran-version. A previous study on AD of EULSOLDO [6] identi-
fied this combination of TAF command-line options for generating the most efficient adjoint
code. The TAF-generated adjoint has then been compiled with the Intel Fortran compiler (ifort,
Version 9.1) and flags “-fast -static”. This process is shown as left branch in Fig. 1. Table 2
compares the performance of TAC++ generated adjoint (in the environment standard, first
row) with that of the TAF-generated adjoint (second row). Our performance ratio is in the
range reported by [6] for a set of different environments. Besides the better performance of
ifort-generated code, the second row also suggests that TAF-generated code is more efficient
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Table 1. Performance of code generated by TAC++ (CPUs: seconds of CPU time)

Environment Compiler Options Func[CPUs] ADM[CPUs] Ratio

standard icc -fast -static 2.2e-07 7.1e-07 3.2
gcc gcc -O3 -static 4.1e-07 2.0e-06 4.9
AMD icc -O3 -static 7.3e-07 2.4e-06 3.3
lazy icc – 4.7e-07 2.3e-06 4.9

by about 10%. In this comparison, both the AD tool and the compiler differ. To isolate their
respective effects on the performance, we have carried out an additional test: We have taken
the TAF-generated adjoint code, have applied f2c, and have compiled in the environment stan-
dard as depicted by the middle branch in Fig. 1. The resulting performance is shown in row 3
of Table 2. The value of 2.9 suggests that the superiority of the Fortran branch (row 2) over the
C branch (row 1) cannot be attributed to the difference in compilers. It rather indicates some
scope for improvement of the current tool in terms of performance of the generated code.

Two immediate candidates for improving this performance are the two TAF command-line
options identified by [6]. The option “-replaceintr” makes TAF’s normalisation phase replace
intrinsics such as abs, min, max by if-then-else structures. In the C branch (row
1 of Table 2) this is already done by f2c, i.e. EULSOLDO’s C version does not use any of
these intrinsics. The TAF command-line option “-split”, which introduces auxiliary variables
to decompose long expressions to binary ones, is not available in TAC++ yet. Here might be
some potential for improving the performance of the generated code.

Table 2. Performance of function and adjoint codes generated by TAC++ and TAF

Version Func[CPUs] ADM[CPUs] Ratio
f2c→ TAC++→ icc 2.2e-07 7.1e-07 3.2
TAF→ ifort 2.2e-07 6.6e-07 2.9
TAF→ f2c→ icc 2.3e-07 6.7e-07 2.9

5 First TAC++ applications

Encouraged by the fast adjoint for our test code, we went on with our application-oriented
development and tackled a set of native C codes of enhanced complexity from a variety of
application areas. Table 3 gives an overview on these codes.

Two-stream [19] (available via http://fapar.jrc.it) simulates the radiative trans-
fer within the vegetation canopy. In close collaboration with the Joint Research Centre (JRC)
of the European Commission, we have constructed the inverse modelling package JRC-TIP
[18, 21, 20]. JRC-TIP infers values and uncertainties for seven parameters such as the leaf
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Table 3. Performance of derivatives of C codes generated by TAC++

Model Application Area #lines Func[CPUs] TLM/Func ADM/Func HES/Func
2stream Remote Sensing 330 5.5e-6 1.7 3.8 23/7
ROF Computer Vision 60 2.5e-6 1.6 1.9 yes
LIBOR Comp. Finance 210 7.0e-5 1.3 3.7
TAU-ij Aerodynamics 130 1.1e-3 – 2.3
Roeflux Aero 140 2.2e-7 3.3 3.2

area index (LAI) and the leaf radiative properties, which quantify the state of the vegetation
from remotely sensed radiative fluxes and their uncertainties. The adjoint of two-stream is
used to minimise the misfit between modelled and observed radiant fluxes. The inverse of the
misfit’s Hessian provides an estimate of the uncertainty range in the optimal parameter values.
The full Hessian is generated in forward over reverse mode, meaning that the adjoint code is
redifferentiated in (vector) forward mode. Table 3 lists the CPU times for the derivative codes
in multiples of the CPU time of model code they are generated from. The timing has been
carried out in the environment standard (see sect. 4). TLM (tangent linear model, i.e. scalar
forward) and ADM (adjoint model, i.e. scalar reverse) values refer to the evaluation of both
function and derivative. An evaluation of the 7 columns of two-stream’s full Hessian requires
the CPU time of 23 two-stream runs. For differentiation of the code, TAC++ was extended to
handle further intrinsics (’cos’, ’asin’, ’exp’, and ’sqrt’) as well as nested function calls and
nested ’for’-loops.

The ROF code maps the unknown structure of an image onto the misfit to the observed
image plus a regularisation term that evaluates the total energy. The total variation denoising
approach for image reconstruction uses the ROF adjoint for minimisation of that function.
Our test configuration uses only 120 (number of pixels) independent variables. Hessian times
vector code, again generated in forward over reverse mode, is used as additional information
for the minimisation algorithm. The generated derivative code is shown in [22], who also
present details on the application. Differentiation of this code required to extend TAC++ so as
to handle nested loops with pointer arithmetics.

The LIBOR market model [4] is used to price interest derivative securities via Monte
Carlo simulation of their underlying. Giles and Glasserman [14] present the efficient com-
putation of price sensitivites with respect to 80 forward rates (so-called Greeks) with a
hand-coded pathwise adjoint. For a slightly updated version of his model code, Giles [13]
compares the performance of hand-coded and two AD-generated tangent and adjoint ver-
sions. On Intel’s icc compiler, with highest possible code optimisations, the TAC++-generated
adjoint is about a factor 2.5 slower than the hand-coded one and more than a factor of
10 faster than an operator overloading version derived with FADBAD [1]. The challenge
for tool development were nested ’for’ loops. The generated code is available at http:
//www.fastopt.com/liborad-dist-1.tgz.

TAU-ij is the Euler version of TAU, the German aeronautic community’s solver for
simulations on unstructured grids [9]. As a test for TAC++, we have selected a routine
(calc inner fluxes mapsp ) from the core of the solver. The challenge of this appli-
cation is the handling of the struct datatype.
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In its current state, TAC++ does not cover C++, nor the full ANSI C89 standard. For ex-
ample, dynamic memory allocation, while–loops, unions, function pointers, and functions
with non-void return value are not handled yet. But this is rapidly changing.

6 Conclusions

We described the early development steps of TAC++ and gave an overview on recent applica-
tions, which use forward and reverse as well as scalar and vector modes of AD. Efficient higher
order derivative code is generated by multiple application of TAC++, as demonstrated by Hes-
sian codes for two of the applications. Although the generated derivative code is highly effi-
cient, we identified scope for further improvement. The ongoing development is application-
driven, i.e. we will tackle challenges as they arise in applications. Hence, TAC++’s function-
ality will be enhanced application by application. Fortunately, many of the C++ challenges
occur also in Fortran-90. Examples are handling of dynamic memory, operator overloading,
overloaded functions, or accessing of private variables. This allows us to port well-proved
TAF algorithms to TAC++. Other challenges such as handling of classes, inheritance, and
templates are specific to C++ and require a solution that is independent from TAF.
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