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1 Introduction

The accurate temporal and spatial quantification of
sources and sinks of radiatively or chemically active
atmospheric trace gases, constitutes a considerable
scientific challenge. However, this quantification is
needed for two purposes. Firstly, it provides crit-
ical data for the evaluation of process-based prog-
nostic models, which are used to predict the evolu-
tion of the atmospheric composition as functions of
anthropogenic impacts and environmental changes.
Secondly, in the context of international negotia-
tions to curb the emissions of greenhouse gases, an
accurate quantification is indispensable to verify re-
duction targets claimed by individual nations or
groups of nations.

One approach to this problem involves the ex-
trapolation of local flux measurements using ge-
ographically referenced databases of properties of
the surface (e.g. vegetation cover, topography, soil
properties etc.) in conjunction with climatic vari-
ables (e.g. temperature, precipitation, insolation
etc.) and databases of anthropogenic activities
(statistics of land-use, energy consumption, popu-
lation, agricultural practices etc.). As sources and
sinks of trace gases are also reflected in the spatial
distribution and temporal variation of their atmo-
spheric mixing ratio, an alternative approach con-
sists of inverting atmospheric mixing ratio measure-
ments into a spatial and temporal distribution of
the trace gas sources. In order to do this, the at-
mospheric transport from the source regions to the
observation sites has to be described using simula-
tion models of atmospheric transport.
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During recent decades several global networks of
monitoring stations have been developed, e.g. by
the Climate Monitoring and Diagnostics Labora-
tory of the U.S. National Oceanic and Atmospheric
Administration (NOAA/CMDL), by the Scripps
Institution of Oceanography, La Jolla, California,
and by the CSIRO of Australia, which monitor rou-
tinely the composition of the atmosphere with in-
creasing accuracy and temporal and spatial reso-
lution. These networks are being supplemented by
measurements from airplanes, ships and buoys, and
by data from satellite-based remote sensing instru-
ments.

The inference of the distributions of sources and
sinks and their temporal variations in a consistent
way from all the observations in conjunction with
a model of atmospheric transport constitutes an
inverse problem of considerable complexity. Ul-
timately, it requires the design and implementa-
tion of a global observing system in which a model
of the surface sources is optimized in a consistent
way by the different observations, including atmo-
spheric concentrations, isotopic composition, sur-
face features observed from satellites. In many re-
spects such a system may be designed similar to
the systems that are currently used in the assimila-
tion of meteorological observations in weather fore-
casting. The main difference is that the aim in
meteorological data assimilation is to find more re-
alistic, dynamically consistent fields of the different
meteorological variables to define the initial state
of the atmosphere from which a forecast is subse-
quently computed. Contrary, an observing system
for the trace gases would be designed to optimize
the surface sources which constitute boundary con-
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ditions. However, the mathematical optimization
procedures to be used in such a system are sim-
ilar. At present such monitoring systems for the
trace gases are not in place. This is mainly caused
by three reasons: (i) the interest in atmospheric
trace gases is rather recent; (ii) techniques of ac-
curate measurements on a routine basis have only
recently become feasible; and the existing monitor-
ing networks are therefore much less dense than the
networks of the meteorological agencies.

In spite of these problems there are many pilot
studies, in which global and regional scale sources
and sinks of atmospheric trace gases have been esti-
mated from a limited number of observational data
using a variety of inverse approaches. Most of these
attempts, however, have been restricted to long-
lived trace gases (i.e. gases with life times longer
than one month), trace gases for which atmospheric
chemical transformations or removal processes are
either absent or relatively well understood. Exam-
ples of such gases include carbon dioxide (CO2),
methane (CH4), nitrous oxide (N2O), halocarbons,
and carbon monoxide (CO). The main reason for
this restriction is that the mathematical inverse
problem of these gases is either linear or may be
linearized. Short-lived reactive species such as NOx

have not received much attention so far because
their atmospheric chemistry is too nonlinear and
depends on too many other coupled species to make
the problem manageable. However, highly non-
linear cases have been addressed in related fields,
such as inversions of oceanic biogeochemical pro-
cesses (e.g. see the proceedings of the “Workshop
on Inverse Methods in Global Biogeochemical Cy-
cles, held in Heraklion, Greece, March 18–20, 1998;
to be published as AGU monograph in 19991).

The present review is limited primarily to global
approaches. At the end we briefly address the ex-
tension to the regional problem, where the term
‘regional’ is defined as the size of a continent such
as Europe or larger.

Some important difficulties of the inversion prob-
lem include:

1. Current atmospheric transport models are not
perfect.

2. The observational network is very sparse, i.e
there are only a small number of monitoring

1http://www.mpimet.mpg.de/gbc/heraklion/

stations. Furthermore at some stations the
sampling frequency is low, and there are often
temporal gaps in the observations.

3. Technically, the ‘inversion’ of the atmospheric
transport model is not trivial and requires
much larger computing resources than running
the model in the forward mode.

4. Individual measurements are often not repre-
sentative of the appropriate temporal and spa-
tial scale of the transport model.

5. Individual observations are of limited accuracy
and precision and observations from different
monitoring networks are often not easily com-
parable because of differences in measurement
techniques and uses of different standards.

Section 2 addresses the problem of modeling at-
mospheric transport. In section 3 we discuss the
mathematical and technical difficulties of the in-
version problem. Section 4 describes the results of
two case studies to demonstrate the current state-
of-the-art, followed by a brief overview of recently
proposed strategies to address the regional prob-
lem with considerably higher temporal and spatial
resolution.

2 Atmospheric transport

2.1 The continuity equation

The link between sources and sinks of a trace gas
and its mixing ratio for a specific location and
time period is provided by atmospheric transport.
In mathematical terms we have a two- or three-
dimensional, time dependent field Q(x, t, χ) de-
scribing the sources and sinks of the trace gas con-
sidered. Generally the source may also depend on
the mixing ratio of the gas itself and, in chemically
more complex cases, on the mixing ratios of other
coupled constituents. The atmospheric transport
translates the source field Q(x, t, χ) into a three-
dimensional, time dependent field of mixing ratios
χ(x, t). The sources and the mixing ratios are re-
lated by the continuity equation

∂

∂t
ρχ+∇ · vρχ = Q(x, t, χ) (1)
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where ρ is the air density and v the wind vec-
tor, both, of course, also three dimensional, time-
varying quantities.

If trace gas emission and uptake are linearly re-
lated to the mixing ratio of the trace gas then the
continuity equation is also linear. In the case of the
long lived trace gases this is usually correct, or a
linear expansion around a mean background state
(e.g. in the case of methane, [Hein et al., 1996]) is
a good approximation. In this case the continuity
equation can be written as

∂

∂t
ρχ+∇ · vρχ− k(x, t)χ = Q(x, t) (2)

k(x, t) describes a first order reaction expressed
with the spatially and temporally varying reaction
constant.

The solution of equation (2) for the atmospheric
mixing ratio χ(x, t) given trace gas sources, Q(x, t),
and reaction coefficients, k(x, t), for a finite time
interval requires the specification of an initial mix-
ing ratio field χ(x, 0) and boundary conditions at
the borders of the spatial computing domain. For
example, in the case of a global model for the tro-
posphere suitable boundary conditions, e.g. pre-
scribed trace gas sources or mixing ratios have to
be specified at the tropopause and the Earth’s sur-
face.

In practice the continuity equation has to be
solved numerically in discretized form (see section
2.2 below). Computing the spatio-temporal distri-
bution of the mixing ratio χ(x, t) from prescribed
sources and sinks constitutes a forward model run.
In the linear case this may be written formally as
a matrix equation

m̃| = T̃ · q̃| (3)

where the column vector of the mixing ratios m̃|
includes all model grid points in space and time
of the simulation, and likewise the column vector
of source values q̃| includes all grid points of the
source in space and time. It also includes any initial
and boundary condition terms. The matrix T̃ rep-
resents the transport model code. The tilde symbol
“̃ ” denotes quantities on the full temporal and spa-
tially discrete resolution of the transport model.

In most cases a reduced problem is of interest:
We are not interested in the mixing ratio field on
the full model resolution at every time step of the

model, but in time averaged mixing ratios (e.g.
weekly, monthly or annual means) at a finite num-
ber of observation locations. Also the sources of
interest are often time averaged quantities, possi-
bly also averaged over larger spatial domains. If
the averaging operations both in the space of ob-
servations and of sources are linear, we have a linear
“model equation” similar to (3):

m| = T · q| (4)

Here, the elements of m| represent the observations
(in time and space), and the elements of q| are the
“source components” (in time and space) which in-
clude the (possibly spatially and temporally aver-
aged) initial and boundary conditions. The ele-
ments of the matrix T may be interpreted as the
sensitivities of the observables with respect to the
source components. For example, the element Ti,j
denotes the derivative of the mixing ratio at the
time-space location i with respect to the source
component j2.

2.2 Models of atmospheric transport

Numerical models of atmospheric transport solve
the continuity equation for a passive atmospheric
trace constituent on a discrete model grid. Typical
spatial resolutions in present-day global models are
on the order of a few degrees latitude and longi-
tude and 10 to 30 layers in the vertical dimension.
Likewise the temporal dimension is also discretized
with time steps ranging from a few tens of minutes
to a few hours.

Atmospheric transport can be computed “on-
line” as part of an atmospheric general circula-
tion model which provides the meteorology (wind-
speeds, air properties, subgrid scale transport
through clouds, convection or diffusion) [Erickson
et al., 1996]. Alternatively, the transport may be
calculated “off-line” by reading the meteorologi-
cal fields from stored output of a general circula-
tion model simulation or from analyzed fields of
a weather forecast model. In the latter case sub-
grid scale transport (see below) has to be recom-
puted in the transport model, which constitutes a
non-trivial task (e.g. see Heimann [1995]). By us-
ing archived analyses from weather forecast mod-

2Formally, the matrix T is closely related to the Green’s
function of the reduced problem.
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els, the off-line approach has the advantage that
the “real” meteorology is used in the simulations,
i.e. the model describes the actual atmospheric cir-
culation fields prevailing during the particular time
period when the measurements were obtained. In
contrast, the on-line general circulation model ap-
proach yields simulation results that can only be
compared to the observations in a statistical sense,
e.g. as monthly or annual means.

The models typically split the transport into two
main components: “advection”, i.e. the transport
resolved on the model grid, and subgrid scale trans-
port which includes the effects of all processes on
temporal and spatial scales not resolved on the
model grid (e.g. transport through cumulus clouds,
thermal convection, diffusion or boundary layer
mixing).

Formally this can be written as

∂

∂t
ρ̄χ̄+∇ · v̄ρ̄χ̄+ CONV EC(χ̄) = Q̄(x, t, χ) (5)

where the overbars indicate quantities averaged
over the model grid. The second term on the
left represents the resolved “advection”, while
CONV EC denotes the subgridscale transport pro-
cesses.

2.2.1 Advection

Many numerical schemes have been developed in
the past for the numerical solution of the part of
equation (5) which denotes the grid resolved trans-
port. Important properties of numerical advection
schemes are accuracy, linearity, mass conservation,
small numerical diffusion, computational efficiency,
and positive definiteness. A review of some of the
more commonly used Eulerian numerical schemes
has been given by Rood et al., [1987]. Examples of
more advanced techniques are discussed by Spee et
al., [1997] and Spee [1998].

Spectral techniques, which used to be popular in
the atmospheric general circulation modeling com-
munity, expand the tracer mixing ratio field into
spherical harmonics. This approach is not very
well suited for tracer transport because the spec-
tral transformation may generate negative concen-
trations.

There exist also lagrangian schemes, in which the
atmosphere is represented by a series of discrete air

parcels, each containing an amount of tracer in ac-
cordance with the local tracer mixing ratio. These
parcels are moved around the atmosphere by the
specified wind velocity and keep their identity over
the entire length of the model integration time pe-
riod [e.g. Penner et al., 1991]. Lagrangian schemes
have much less numerical diffusion as compared to
Eulerian techniques. However, it is difficult to ad-
equately represent subgrid scale mixing processes
in such a scheme. Furthermore, because the par-
cel distribution tends to become non-uniform with
time, the schemes need a large number of parcels
in order to represent the tracer fields with a suf-
ficient spatial resolution. This makes the schemes
in general computationally expensive, except in the
situation where the transport of several tracers is to
be computed simultaneously, because the air par-
cel movement has to be computed only once for all
tracers.

In semi-lagrangian schemes the tracer is trans-
ported during each time step in a lagrangian fash-
ion, i.e. attached to discrete air parcels. After each
time step the three-dimensional tracer mixing ratio
fields are reconstructed by interpolation from the
parcels to the regular model grid. This interpola-
tion tends to have problems with mass conservation
[Rasch and Williamson, 1990].

Despite the different numerical techniques em-
ployed in present day atmospheric transport mod-
els the advection is not considered to be the most
critical component in need of improvement.

2.2.2 Subgrid scale transport processes

In the course of the discretization of the basic con-
tinuity equation on the model grid the effects of all
transport processes on smaller spatial and tempo-
ral scales must be described (“parameterized”) as
functions of the values of the meteorological vari-
ables on the resolved scale. Some of these processes
include vertical transport through cumulus clouds
(“wet convection”), thermally driven dry convec-
tion, turbulent diffusion and vertical mixing in the
surface and boundary layers. A comparison of sev-
eral vertical subgrid scale transport parameteriza-
tions can be found in Mahowald et al., [1995].

Parameterizations for these processes also exist
in atmospheric general circulation models and in
weather forecast models. In principle these could
be transferred to the transport models. However,
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except for water vapor, the transported quantities
(energy, momentum) have different properties as
compared to trace gases (source distributions, life-
times) making such a transfer non-trivial.

A very critical subgrid scale transport process is
boundary layer mixing over the continents. Most
atmospheric observations are being taken close to
the surface in the planetary boundary layer, and
most of the long-lived trace gas sources are at the
earth’s surface. The height of the layer, into which
the trace gas is emitted, and the exchange processes
with the overlaying free troposphere critically de-
termine the simulated mixing ratio in this layer.

In the case of a trace gas with strong diurnal
and seasonal sources, such as CO2, systematic tem-
poral changes of the transport (e.g. height of the
boundary layer during day and night and also dur-
ing the different seasons of the year) are responsible
for “rectifier effects”, i.e. spatial structures in the
mean annual mixing ratio field even if the trace gas
source on annual average were balanced at every
grid point to zero. These structures arise because
of the temporal covariance between source and at-
mospheric transport [Keeling et al., 1989, Denning
et al., 1995, Denning et al., 1998, Law et al., 1996,
Rayner and Law, 1996]. Hence, observed spatial
structures in the mean annual mixing ratio fields
reflect a combination of true sources and sinks and
of the “rectifier effects”. Because of this an accu-
rate representation of the “rectifier effect” in the at-
mospheric transport model is an indispensable ne-
cessity. Unfortunately, there is at present no way
to independently verify the simulated rectifier ef-
fect, which, at least for CO2, constitutes a serious
limitation in current inversion studies.

2.3 Validation of atmospheric trans-
port models

An assessment of the realism of present atmo-
spheric transport models is beyond the scope of this
review.

A critical quantity of global atmospheric trans-
port models is their portrayal of the meridional
interhemispheric transport. This property can be
validated by means of simulations with trace gases
of known surface sources, such as the radioac-
tive Krypton-85 [Jacob et al., 1987, Heimann and
Keeling, 1989], CFC-11 [Prather et al., 1987] or
Sulfurhexafluaride (SF6) [Levin and Hessheimer,

1996]. A consistent intercomparison of global
atmospheric transport models with SF6 has re-
cently been undertaken within the phase 2 of the
TRANSCOM project [Denning et al., 1998].

As discussed above, at present there is no method
available to validate the simulated “rectifier effect”.
The way the different models simulate this effect
has been explored in phase 1 of the TRANSCOM
project [Rayner and Law, 1995, Law et al., 1996].

3 Methodological aspects of
the inversion problem

3.1 The mathematical problem

The inverse problem consists of inverting equation
(4) to find a solution for the source components q|.
The structure of (4) shows that this involves two
tasks: First, the matrix T has to be computed and
second, the linear equation system has to be solved
for the unknown source components.

Depending on the number of observables and the
number of source components, the matrix T may
be very large, hence its computation may be very
expensive. But also the solution of equation (4)
for the source components is not trivial. Typi-
cally there are only a limited number of observa-
tions in space and time. On the global scale, cur-
rently most of the gases under consideration are
monitored at less than 10 stations continuously or
quasi-continuously and at less than a few hundred
stations with a sampling frequency of less than 1-
2 observations every week. For some of the gases
(e.g. CO) remote sensing observations from space
craft are available, but these typically are of lim-
ited accuracy and may include only the vertical in-
tegral. On the other hand, most source and sink
processes are strongly heterogeneous in space and
time. To represent this heterogeneity adequately,
one is tempted to choose a high resolution in the
space of source components, hence the matrix T
becomes rectangular with a much larger number
of columns than of rows. In this case the source
inference problem is highly underdetermined. But
even if one restricts the number of source compo-
nents to a smaller number than the observations,
the equation system might still be “ill-conditioned”
because of the diffusive nature of the atmospheric
transport. Hence additional restrictions (simplifi-
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cations, assumptions, ‘a priori ’ information from
other data sources) are needed in order to make the
problem mathematically well conditioned. Some of
these are discussed in the subsections below.

3.2 Reducing the spatial resolution

A reduction of the spatial resolution is obtained by
dividing the globe up into only a small number of
regions (typically 10–100). The surface sources for
each of these regions are then prescribed in their
spatial and temporal pattern, whereas their overall
magnitude is left as an unknown scaling parame-
ter to be determined in the inversion procedure. In
the case of a high-resolution, computationally ex-
pensive atmospheric transport model, this is the
only way to make the determination of the matrix
T manageable.

In this case the matrix T can be determined by
brute force: The atmospheric transport model code
is run for each of the source regions separately. T is
then obtained by recording the contributions from
the different source components at the observation
sites. In this “synthesis inversion” the source re-
gions may be specified as a simple geometric break-
down of the globe, such as the sources in latitudi-
nal bands. This approach has been applied e.g.
by Brown [1993, 1995] to deduce the sources of
methane on latitudinal bands.

A slightly different variant of the “synthesis in-
version” consists of decomposing the source field
into several, possibly spatially overlapping com-
ponents that represent different source processes.
This has been applied e.g. in the case of methane
by Hein et al. [1996]. Here the different source and
sink processes of CH4 are specified by their global
spatial and temporal patterns (e.g. emissions from
peats and bogs, from coal mining, oil or gas pro-
duction, waste disposal, rice paddies, cattle etc.).
For CO2 this approach has been chosen by Enting
et al. [1995], Bousquet [1997], and Rayner et al.
[1998].

The “synthesis inversion” approach typically
yields a relatively stable inversion (possibly even an
overdetermined equation system), since the num-
ber of source components in most cases is chosen
to be less than the number of observations. How-
ever, the use of predefined “rigid” spatio-temporal
source patterns strongly influences the resulting so-
lution.

3.3 Simplifications in the temporal
domain

The atmosphere has a limited “memory”. An im-
pulse input of a conservative tracer released at a
specific location and time eventually becomes ho-
mogeneously mixed. The longest mixing time de-
fines a time horizon, beyond which any source or
sink contributes only to the global background mix-
ing ratio of the tracer. Within the troposphere, e-
folding times for the decay of pulse input are on
the order of up to 1 year [Weiss et al., 1983]. Mix-
ing times into the stratosphere, however, are much
longer. Hence, for a tropospheric tracer, a conser-
vative value for the time horizon is 3 to 4 years
[Heimann and Keeling, 1989]. For example for the
simulation of a transient tropospheric tracer, such
as the halocarbons during the 1980’s, the history
of the F11 sources prior to 1977 is irrelevant, only
their cumulative global integral determines the at-
mospheric background F11 mixing ratio [Bloom-
field et al., 1994].

This implies that the elements in the sensitiv-
ity matrix T which refer to sources more than 4
years prior to the time of the observation are given
simply by the increment in the globally averaged
mixing ratio per unit input of the tracer. Hence
the atmospheric transport model must be run for
only 4 years for each of the source components in
order to determine the sensitivity matrix T .

A further simplification arises if one assumes
that the large-scale atmospheric transport does not
change significantly from year to year. Indeed, this
appears to be the case as witnessed by a close in-
spection of the atmospheric time history of SF6,
which shows that the mixing ratio differences be-
tween the hemispheres remained relatively constant
over the last decade, when emissions did not change
significantly [Maiss and Levin, 1994, Levin and
Hessheimer, 1996]. In this case one uses the same
wind fields year after year. As an additional check
one can repeat the simulation with the meteorology
from another year [e.g. Knorr and Heimann, 1995].

Finally, an additional, considerable simplifica-
tion can be achieved by addressing only the “quasi-
stationary” problem: i.e. by assuming that all
sources and sinks may include a seasonality, but
are invariant from year to year. If also the trans-
port is assumed to be the same year after year,
then it is easily seen that after an initial transient
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the atmospheric mixing ratio at any location, x, as
a function of time, t, can be expressed as an off-
set, χ0(x), a globally uniform linear trend at and a
seasonal cycle S(x, τ):

χ(x, t) = χ0(x) + att+ S(x, τ) (6)

where τ denotes the time since the beginning of
the year. Many global inversion studies of CO2

[e.g. Enting et al., 1995] or of CH4 [e.g. Hein et
al., 1996] employed this approximation.

The extension to the interannually varying case
has been addressed by Bloomfield et al. [1994] for
CFC-11, and Rayner et al. [1998] for CO2.

3.4 Bayesian approaches

Bayesian approaches to the inverse problem pro-
vide a means to include a priori information on the
unknown source components in the inversion pro-
cedure [see e.g. Tarantola, 1987]. They are based
on a formulation of the problem in terms of prob-
ability distributions in the joint space of sources
and concentrations. In practice these probability
distributions are assumed to be Gaussian. An a
posteriori source estimate is derived, which is op-
timal in the sense that it is as close as possible to
the prescribed a priori sources, while the resulting
simulated concentrations are as close as possible to
the observations. Thereby “close” is defined rela-
tive to specified uncertainties in both, the observa-
tions and the a priori source estimates.

In an otherwise underdetermined inverse prob-
lem, the Bayesian approach yields a unique solution
from all source configurations that are consistent
with the observations. In an ill-conditioned inverse
problem the Bayesian approach limits the amplifi-
cation of errors in the observations when inferring
source combinations that are badly constrained by
the observations (see Enting [1993]).

The necessary a priori information, i.e. the a
priori sources, may be provided by interpolating
direct flux measurements, or they may be obtained
from prognostic source models. In both cases quan-
tifying the uncertainties of the a priori estimates is
crucial and should reflect the understanding of the
underlying source processes.

Bayesian inversions have been carried out by
Enting et al. [1995], Bousquet [1997], Rayner et
al. [1998], and Kaminski [1998] for CO2 as well as

by Hein and Heimann [1994] and Hein et al. [1996]
for CH4.

3.5 Technical approaches

In the case of sparse networks, adjoint models pro-
vide an efficient tool to compute the matrix T in
equation (4). Instead of computing the partial
derivatives Ti,j by brute force with forward trans-
port model runs for each source component j, the
adjoint model begins at the location and time of
the observations (i). Starting with an infinitesi-
mal mixing ratio deviation at the observation point
i, the adjoint model works its way backward in
time. Thereby it determines the necessary changes
in the source components at earlier time points that
would induce the infinitesimal mixing ratio devia-
tion at i. In this way the adjoint model essentially
propagates the sensitivity of the modeled concen-
trations from the observational sites i backwards to
the sources [Errico, 1997, Corliss and Rall 1996].

Using forward model runs to compute Ti,j the re-
quired computational resources are proportional to
the number of source components, and relatively
independent of the number of observations, while
for the adjoint model the required computational
resources are proportional to the number of obser-
vations, and relatively independent of the number
of source components. The major difficulty of the
adjoint approach is the time consuming construc-
tion of the adjoint model. This can be overcome,
however, by using tools for automatic generation
of adjoint code, which are being developed, e.g.
Odysee [Rostaing, 1993] or the Tangent and Ad-
joint Model Compiler (TAMC) [Giering, 1996]. Us-
ing the TAMC, Kaminski et al. (1996) developed
the adjoint of the atmospheric transport model
TM2 [Heimann, 1995], which allowed an efficient
computation of the matrix T for an observational
network of approximately 30 stations with monthly
observations and monthly sources on the 8 by 10
degree horizontal model grid; i.e. a matrix for ob-
servations at 30 × 12 = 360 time-space locations
and 12×24×36 = 10368 source components (a ma-
trix with 3.7 million elements).
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3.6 Representativity of individual
measurements

In most global studies performed so far, the mod-
eled monthly mean mixing ratio is compared to es-
timates of the monthly mean mixing ratio at the
observing sites. The mixing ratio computed by a
model is “representative” for the spatial and tem-
poral resolution of the model grid. On the other
hand, individual measurements at a monitoring site
in general reflect also local transport and source
processes on finer scales than resolved by the model.
The comparison between observations and model
results hence requires considerable care in order to
avoid potentially serious biases.

On the observational side one typically tries to
eliminate the influences of local contamination by
following a data selection protocol designed to sam-
ple so-called “background air” under “baseline con-
ditions”. This is achieved, e.g. by specifying
the time of day and other requirements (minimum
wind speed, particular wind directions, other me-
teorological conditions) under which air sampling
is performed. If possible also the information from
other, concurrently measured tracers (e.g. Radon-
226 and Radon-222 [Polian et al., 1986]) can be
used. An additional elaborate data screening is also
used after the sampling in order to eliminate “out-
liers” believed to represent local (“polluted”) sam-
ples before computing monthly means. In many
cases these procedures may indeed yield observa-
tions that are representative to the simulations.
However, it is difficult to estimate, to what ex-
tent these approaches in fact eliminate the local
unwanted source contributions. The data selection
procedures by themselves may also induce biases
because potentially air is sampled that reflects a
different model grid box than the one containing
the observing station.

On the other hand, a sampling strategy should
also be included in the model that mimics the pro-
cedures employed at the observing stations. For ex-
ample it does not make sense to compute monthly
averages in the model by continuous sampling if
the model exhibits a diurnal cycle which includes
night-time inversions while the observations are
only taken in the afternoon when vertical mixing
is strongest. Unfortunately, the implementation of
adequate sampling strategies in the models is rather
cumbersome, as it will be different for each station.

A thorough demonstration of the potential bi-
ases incurred by different sampling procedures in
the model and the observations has been given by
Ramonet and Monfray [1996].

3.7 Inhomogeneity of sampling net-
works

In many cases, the spatial inhomogeneity of the cur-
rent observational networks is obvious. As an ex-
ample Figure 1 shows the CO2 monitoring network
maintained by the U.S. National Oceanographic
and Atmospheric Administration’s Climate Mon-
itoring and Diagnostic Laboratory [Conway et al.,
1994] in which the tropics and in particular the
tropical land masses are undersampled. Also, sam-
pling of oceanic regions has been favored by choice
of observational sites and by the definition of base-
line conditions (see the previous section). On the
other hand, in most inversion studies one chooses a
relatively small number of unknown source compo-
nents (see section 3.2). In combination with inho-
mogeneous sampling, however, a low resolution in
the space of sources is likely to yield a biased esti-
mate of the inversion as demonstrated by Snieder
[1993]. For inverse problems in seismic tomog-
raphy, Snieder [1993] and Trampert and Snieder
[1996] demonstrate how to reduce the bias at the
cost of increasing the uncertainty. For inversion of
the global atmospheric transport and the current
global networks, the magnitude of this bias is yet
to be quantified.

3.8 Calibration problems between
different measurement networks

Reported observations from different measurement
agencies are often not calibrated well against each
other. This is a serious problem, because, in the
case of long-lived species, small mixing ratio dif-
ferences between different stations imply relatively
large sources, hence offsets between different net-
works may induce substantial biases in the inferred
source distributions.

In principle the calibration differences among the
networks could be reduced by systematic intercom-
parisons of standards, measurement techniques,
sampling procedures and sample handling. Several
of such intercomparison efforts are currently under-
way within the different trace gas species measure-
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Figure 1: Global station network of the Climate
Monitoring and Diagnostics Laboratory of the Na-
tional Oceanic and Atmospheric Administration
[Conway et al., 1994].

ment communities. Unfortunately, these tedious
efforts are scientifically not very rewarding and are
therefore often lacking sufficient funding support.
It must be stressed, however, that such efforts are
very important and should receive highest priority.

As an intermediate step it is also possible to
short-cut detailed intercomparison procedures by
merging the existing datasets in a way that takes
possible offsets into account. In the case of CO2

such an effort has been undertaken by NOAA-
CMDL in the creation of the GLOBALVIEW
dataset [Masarie and Tans, 1995]. Alternatively,
one can of course also use only the observations
from a single network. Or, it might also be possible
to include the calibration offset between different
networks as unknown parameters to be determined
in the inversion.

3.9 Uncertainties

In principle, an inversion is subject to two sources
of errors: Observations are of finite precision, and
models are imperfect. Clearly, these errors cause
uncertainties in the source fields that are deter-
mined by the inversion. In general, the observations
are not representative for the spatial and tempo-
ral scale of the model predictions. The associated
error in comparison of both quantities, which (de-
pending on how one names the observed quantity)
can either be subsumed under model error or ob-

servational error, or can be treated separately as
a representation error. Computationally, the dif-
ference of these errors is unimportant, since they
enter the inversion in their sum.

The formal treatment of these errors is in terms
of probability distributions. For the sake of com-
putational convenience, usually Gaussian distribu-
tions are assumed, and for a linearization of the
transport model, one can derive a Gaussian distri-
bution of the source field that is consistent with
the sum of the abovementioned errors. Due to this
Gaussian assumption, the actual computations are
then manipulations of means and covariance ma-
trices. In Bayesian inversions, the a priori infor-
mation is also quantified in terms of a mean and
a covariance matrix. The inversion then derives a
posterior mean field and covariance matrix. The in-
formation in the atmospheric observations then is
reflected in a change of this mean and a reduction
of the uncertainties.

Practically, errors in the transport model are
hard to quantify, potential approaches are either
model intercomparisons or checking against ob-
served concentrations for tracers with well known
source distributions. Usually transport model er-
rors are neglected. Similar problems complicate
explicit inclusion of the representation error. Se-
lection of observations according to their represen-
tativeness (see section 3.6) is an approach to mini-
mize this error.

4 Examples

In 1995 Enting et al. presented a Bayesian syn-
thesis inversion for CO2. Employing observations
of atmospheric CO2 from the global networks of
the NOAA-CMDL [Conway et al., 1994] together
with 13C/12C isotopic ratio measurements from the
CSIRO [Francey et al., 1995] , they solved the quasi
stationary problem (see section 3.3) for the mag-
nitudes of about 20 unknown source components.
Since the study by Enting et al. [1995] a number
of research groups have been refining inversion in
various directions. As examples, we briefly demon-
strate the long-term average annual mean source
fluxes of CO2 inferred in the studies of Rayner et
al. [1998] and Kaminski [1998].

By resolving the interannual variability in the
sources, Rayner et al. [1998] removed the quasi
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stationary assumption. For the period from 1980
to 1995, in a Bayesian synthesis inversion, they in-
ferred the monthly magnitudes of about 30 source
patterns from global observations of CO2, comple-
mented by one station’s time series of the isotopic
CO2 composition and the station’s linear trend in
the oxygen to nitrogen ratio. Figure 2 shows a pri-
ori and a posteriori estimates for the long term
annual mean source fields. The figures show only
the fluxes of CO2 between the atmosphere and the
ocean, respectively the atmosphere and the terres-
trial biosphere; the dominant anthropogenic source,
i.e. the CO2 from the combustion of fossil fuels has
been subtracted.

Keeping the quasi stationary assumption, in con-
trast, Kaminski [1998] removed the simplifications
in the spatial domain by means of an adjoint ap-
proach (see section 3.5). In principle this approach
allows the computation of adjustments to the a
priori source field resolved on the full horizontal
grid of the transport model (8◦ latitude by 10◦

longitude). In this study observations of the at-
mospheric CO2 mixing ratio from 25 stations of
the NOAA-CMDL [Conway et al., 1994] network
for the period from 1981 to 1986 were used (i.e.
a subset of the stations shown in Figure 1). The
highly underdetermined nature of this problem ne-
cessitated a Bayesian approach (see section 3.4).
The a priori source fields were obtained from en-
ergy use statistics for the fossil fuel CO2 source,
from statistics of land use change and from spa-
tially explicit carbon cycle simulation models for
the ocean and the terrestrial biosphere.

Figure 3 shows the a priori and a posteriori es-
timates for the annual mean source fields and their
difference. Overall, Figure 3b reveals a similar
structure of the non-fossil fuel CO2 source fields as
the a posteriori source field of Rayner et al., [1998]
(Figure 2): A strong sink for CO2 in the north-
ern mid-latitudes and a smaller sink in the south-
ern hemisphere oceans. The tropical oceans and in
particular the equatorial Pacific reflect regions with
CO2-outgassing.

Despite the considerable spatial and (not shown)
temporal resolution of the source fluxes of CO2 as
inferred in the two studies, one must realize, that
the a posteriori solution is determined considerably
by the a priori information. The extent to which
the atmospheric measurements and the transport
model provide additional information can be inves-

a

b

Figure 2: a): A priori long-term annual mean
source distribution as specified in the inversion
study of Rayner et al. [1998]. b): a posteriori
sources inferred by the inversion procedure. Num-
bers represent source fluxes of CO2 in GtC yr−1.
Fluxes into the atmosphere are indicated by posi-
tive numbers.

tigated by analysis of the Singular Vector Decom-
position (SVD) [Menke, 1989] of the model matrix
T in equation (4) [Kaminski, 1998].

Alternatively, the reduction of the a priori un-
certainty induced by the inversion provides also a
measure to assess the relative importance of the a
priori information. Figure 4 displays the a priori,
the a posteriori uncertainty and the relative reduc-
tion for the annual mean CO2 fluxes from study of
Kaminski [1998]. It is seen that in most regions the
uncertainty is reduced by only a relatively small
amount (at most 20%). Clearly the uncertainty
reductions are largest close to the monitoring sta-
tions. If averaged over larger regions, e.g. zon-
ally or over continents the percentage uncertainty
reduction becomes larger. In particular the large
scale features of the resulting solution as described
above are found to be significant [Kaminski, 1998].
However, this assumes uncorrelated a priori un-
certainties between the different gridboxes. This
assumption is difficult to assess in the present case
since the a priori flux fields were partly derived
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a

b

c

Figure 3: a) A priori, b) a posteriori and c) differ-
ence of the annual mean source flux fields of CO2

as resolved on the full model grid (8◦ latitude by
10◦ longitude) in the study of Kaminski, [1998],
using an adjoint model of atmospheric transport.
Shown are only the CO2 fluxes between atmosphere
and ocean, respectively atmosphere and the terres-
trial biosphere; the anthropogenic source flux from
the combustion of fossil fuels has been subtracted.
Fluxes into the atmosphere are indicated by posi-
tive numbers.

from oceanic and terrestrial carbon cycle models,
for which estimates of their errors and associated
covariance structure are not readily available.

The relatively small uncertainty reduction pro-
vided by the atmospheric observations is sober-
ing. For the case of CO2 it demonstrates clearly,
that the present atmospheric background monitor-
ing networks do not allow a regional determination
of the sources and sinks of CO2 without signifi-
cant a priori information on their spatio-temporal
distribution and magnitude. On the other hand,
maps such as Figure 4 provide a means to assess
the merits of individual stations of the monitoring
networks. Using this tool strategies for the opti-
mization of the networks may be devised.

5 New approaches

Recently, a series of new projects have been initi-
ated or proposed to determine the regional sources
and sinks with a much higher spatial and tem-
poral resolution than possible with the existing
global approaches as discussed in the previous sec-
tions (“Carbon America” [Tans et al., 1996], the
Large-scale Biosphere Atmosphere (LBA) experi-
ment over Amazonia [Anonymous 1997], COBRA
[Wofsy et al., 1997] and “Eurosiberian Carbonflux”
[Heimann et al., 1997]).

As discussed above, current observational net-
works are heavily biased toward oceanic areas. A
better and more detailed regional determination
of continental sources requires observations closer
to these sources. This represents a very difficult
problem because of the complex meteorology and
the typically strong and heterogeneous terrestrial
sources and sinks.

On the observational side these new proposals
call for a considerable extension of the monitor-
ing platforms. In particular they include measure-
ments in the vertical dimension by aircraft and,
if possible, observations from remote sensing plat-
forms. In addition a multi-tracer approach may
be chosen, in which several atmospheric species are
measured simultaneously. E.g. in the case of the
Eurosiberian Carbonflux project the following trac-
ers are to be measured at several sites on bi-weekly
vertical profile flights over a time period of at least
three years: CO2 and its carbon and oxygen iso-
topes, CH4 and its carbon isotopes, CO, Radon-
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a

b

c

Figure 4: a) A priori and b) a posteriori uncer-
tainty of the annual mean source flux field of CO2

corresponding to Figure 3a) and b). c) percentage
reduction between the a priori and the a posteriori
uncertainty.

222 (a radioactive noble gas with a half-life of 3.8
days), SF6 and others. Since all tracers are subject
to the same atmospheric transport the problem of
representativity of a single measurement with re-
spect to the modeled grid averaged mixing ratio
may be addressed in an effective way.

The modeling of the atmospheric transport over
the continental sources and sinks also poses a sub-
stantial challenge. The heterogeneity of the terrain
and the induced complicated meteorology necessi-
tates the use of meso-scale models. Such models
must have a horizontal grid resolution of 10–50 km
covering an total area of up to 25 106 km2, and need
to resolve the diurnal cycle of boundary layer mix-
ing and convection in considerable detail. In order
to run these models the large-scale meteorology has
to be specified from weather forecast analyses. An
additional problem are the boundary conditions for
the tracer(s) under consideration, which will have
to be specified from the output of a global, low-
resolution simulation. An example of such a simu-
lation system has been described for simulations of
CO2 in the arctic region [Engardt, 1997, Engardt
and Holmen, 1997] based on the MATCH model
[Robertson et al., 1996].

How will these models perform in an inverse
approach? Even if the difficulties to realistically
model the transport over the continental regions
can be overcome, it is not clear if reliable regional
source flux estimates may be obtained by this ap-
proach. This is because the large and mostly un-
known heterogeneity of the source flux distribu-
tion might require a sampling density in space and
time that is not feasible. Clearly, without a success
in these new approaches the second goal of inver-
sion studies mentioned in the introduction, i.e. the
quantification of regional flux estimates for the ver-
ification of national greenhouse gas reduction tar-
gets will remain elusive. Nevertheless, it is hoped,
that the new projects will provide some insight into
the regional source estimation problem.
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