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Constraining predictions of the carbon cycle
using data
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We use a carbon-cycle data assimilation system to estimate the terrestrial biospheric
CO2 flux until 2090. The terrestrial sink increases rapidly and the increase is stronger in
the presence of climate change. Using a linearized model, we calculate the uncertainty
in the flux owing to uncertainty in model parameters. The uncertainty is large and is
dominated by the impact of soil moisture on heterotrophic respiration. We show that
this uncertainty can be greatly reduced by constraining the model parameters with two
decades of atmospheric measurements.

Keywords: carbon cycle; terrestrial uptake; data assimilation

1. Introduction

Uncertainty of the evolution of carbon uptake by the terrestrial biosphere is
one of the largest uncertainties in climate forecasts [1]. Friedlingstein et al. [2],
using several climate models with interactive carbon cycles, showed that much
of this uncertainty comes from different interactions of the terrestrial biosphere
and climate change. Although Friedlingstein et al. [2] displayed this as a large
uncertainty in future CO2 concentrations and temperatures, it is equally an
uncertainty in the pathway required for stabilization of concentration.

The relative constancy of the long-term airborne fraction [3] prompted a
simple characterization of CO2 uptake as a linear function of CO2 concentration.
Regional departures from this behaviour have been suggested by Schuster &
Watson [4] for the North Atlantic and Le Quéré et al. [5] for the Southern Ocean.
Globally, Canadell et al. [6] suggested a gradual reduction in overall sink efficiency
though Gloor et al. [7] have challenged their interpretation and Knorr [8] has
questioned whether a statistically significant trend is discernible.

*Author for correspondence (prayner@unimelb.edu.au).
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Coupled ocean–atmosphere models with interactive carbon cycles suggest a role
for climate change itself in reducing sink efficiency. The model of Cox et al. [9]
showed considerable sensitivity of the terrestrial carbon uptake to climate change,
with two-thirds of this owing to changes in soil carbon and one-third to the
reduction in tropical forest, particularly the Amazon [10]. Jones et al. [11] showed
how this uncertainty translated into an uncertainty of stabilization pathways
for atmospheric concentration. The model of Dufresne et al. [12] showed less
sensitivity, a difference only partly attributable to the lack of dynamic vegetation
in that model. The comparison of Friedlingstein et al. [13] analysed the various
contributions to this sensitivity and the larger comparison of Friedlingstein et al.
[2] produced an ensemble estimate of this sensitivity, informing the statement in
Denman et al. [1] that it constituted one of the largest uncertainties in climate
prediction. The uncertainty range has only expanded as more recent studies
[14,15] showed the different responses engendered when nitrogen feedbacks were
included in the models. Finally, Gregory et al. [16] have recently pointed out
that the sensitivity of the terrestrial carbon cycle to climate should also include
the sensitivity of the carbon cycle to CO2 concentrations even in the absence of
climate change.

Given its importance there have been relatively few studies attempting to
reduce this apparent uncertainty. Jones et al. [11] discussed the observational
constraints available and Cadule et al. [17] introduced a benchmarking exercise for
the models involved in such comparisons. There are now significant international
projects for such benchmarking but the task of turning such benchmarks into
probabilistic forecasts (e.g. [18]) is less advanced. The main aim of this paper is
to prototype such an approach.

The outline of the paper is as follows. In §2, we describe the extensions
necessary to a carbon-cycle data assimilation system (CCDAS) to use it
for prediction. Section 3 describes the carbon-cycle predictions and their
uncertainties along with the contribution of different model parameters to them.
Finally, §4 points out caveats in the analysis and suggests some directions for
future work.

2. Method

To assess the impact of current data on the uncertainty of future terrestrial
uptake we need a carbon-cycle model capable of prediction and simultaneously
of a data assimilation mode. Our starting point is the CCDAS described in
Rayner et al. [19] and Scholze et al. [20], specifically in the version used in Koffi
et al. [21]. In brief this used atmospheric concentration data from 68 stations
over the period 1979–1999 to constrain the parameters of the terrestrial carbon-
cycle model BETHY described by Knorr & Schulz [22]. BETHY is then forced
with data from future climate simulations or with repetitions of the climate
data used in the assimilation step. Various global outputs from these terrestrial
simulations are then used as inputs to a global box model as described below. At
each step, the model is linearized about its trajectory in order to calculate the
sensitivities of the outputs with respect to the input parameters (the Jacobian of
the model). The calculated sensitivities allow a linear error propagation from the
input parameters to the outputs of the global model, in particular the future net
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ecosystem productivity (NEP). This is possible since if v is a random vector with
multivariate normal distribution described by the covariance matrix C(v) and M
is any linear mapping then Mv is also multivariate normal with covariance

Mv = MC(v)MT, (2.1)

where the superscript T represents transpose. The assimilation step also
calculates an approximate uncertainty for parameters. Comparison of the
uncertainty in future NEP generated from prior and posterior parameter
uncertainties is the primary result of our calculation.

(a) Simple model

As described in Rayner et al. [19] we need to make a simplification in the
BETHY model for use in assimilation. For each gridpoint, we assume that
the long-term mean NEP (defined here as the net flux from the undisturbed
biosphere) is proportional to the long-term mean net primary productivity (NPP;
the rate of plant growth) with the proportionality controlled by a regionally
dependent parameter b [19, eqn (22)]. This parameter is a product of the
assimilation under the assumption that the pool of carbon in the soil does not
change. This assumption is reasonable for the two decades studied by Rayner et
al. [19] but obviously cannot account for longer term changes in the real world.
Since such changes are critical to the evolution of the sink in the long term, we
must relax this constraint. We do this by building a diagnostic model based on
outputs from the full model. This simple model (hereafter DIAGBETHY) takes
as input the decomposition of litter, the NPP and the residence time of carbon in
soil, all these are calculated by BETHY. DIAGBETHY is essentially a box model
for soil carbon with the following governing equations:

vCS

vt
= fSDL − CSukQTa/10

10

tB
, (2.2)

where CS is the mass of carbon in the soil, t is time, DL is the rate of litter
decomposition and fS the fraction of DL allocated to the soil pool. The term fSDL
represents the input to the soil carbon pool from litter decomposition while the
term CSukQTa/10

10 /tB represents the loss of soil carbon to the atmosphere by soil
respiration. The parameter Q10 defines the exponential sensitivity of respiration
to air temperature (Ta), while k describes the power-law relationship between
respiration and fractional soil moisture u. tB is a normalization for the rate of
soil decomposition. The bold-faced parameters fS and DL along with the term
ukQTa/10

10 are outputs from BETHY.
The NEP for DIAGBETHY is given by

NEP = NPP − (1 − fS)DL − CSukQTa/10
10

tB
. (2.3)

Since equation (2.2) is a first-order differential equation its initial condition
CS(t = 0) is an input to the model, which is not available from BETHY. We
must, therefore, treat it as an unconstrained parameter and its contribution to
the uncertainty as an unavoidable nuisance. The term tB determines the mean
residence time and is set by the constraint that the NEP over the period of
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Table 1. Initial values and uncertainties for input into DIAGBETHY.

name description value uncertainty (1s)

fs allocation of DL 0.2 0.47
CS(0) initial soil pool 1000 PgC 100 PgC
NEPOBS observed NEP 2.32 0.1

the assimilation in DIAGBETHY must equal that in BETHY. That is, tB plays
the role of the b parameters from BETHY. tB is calculated as a preliminary
calibration step in DIAGBETHY.

(b) Sensitivity analysis

The combination of the two models BETHY and DIAGBETHY constitutes
a composition of two functions. Thus, the derivative of the combined model
can be accomplished by application of the chain-rule. DIAGBETHY requires
three outputs from BETHY: the NPP, DL and the term ukQTa/10

10 each at
monthly resolution over the time of the simulation (here 1979–2090). We use
the tool Transformation of Algorithms in Fortran [23] (http://www.fastopt.com)
to calculate the derivative of each of these vector outputs with respect to the 57
parameters of BETHY which are exposed to the assimilation process.

DIAGBETHY is sufficiently simple that we can generate the equivalent
derivative code by hand. Here, the output NEP is differentiated with respect
to the inputs passed from BETHY plus three extra inputs. The parameter fs,
although itself a parameter to BETHY, also appears explicitly in DIAGBETHY.
The initial size of the soil carbon pool CS must be treated as an unknown
so we must take its potential contribution into account. Finally, the observed
NEP over the BETHY assimilation period acts as a constraining pseudo-
observation on DIAGBETHY and so any uncertainty in it could affect
the output.

(c) Initial values and uncertainties

Since this is a study of the propagation of uncertainty, the prior probability
distributions chosen for parameters are as important as their initial values. For
most of the parameters of BETHY only positive values are physically meaningful
and we thus choose lognormal distributions. The detailed specification is listed
in Koffi et al. [21] but we note here that the choice represents an optimistic
view of the prior uncertainty on the biosphere. For example, it generates a prior
uncertainty in the gross primary productivity (GPP) of only 3 PgC yr−1 over the
assimilation period. The formulation of BETHY means that all parameters are
dimensionless with prior uncertainties unity and the difference in the uncertainty
of physical parameters is transmitted by different sensitivities within the model.
Most of this is irrelevant to DIAGBETHY except the parameter fs, which
appears explicitly. We list its apparent uncertainty along with the other inputs
to DIAGBETHY in table 1.
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(d) Experiments

Following the useful distinction of Gregory et al. [16], we wish to investigate
the uncertainty in the uptake with and without climate change, and before and
after confronting the model with the atmospheric data. The experiments are
complicated by the fact that BETHY is solely a model of the carbon balance.
As noted in Rayer et al. [19], it is abstracted from a larger model FULLBETHY,
which includes modelling of hydrology, phenology and energy exchange. Output
of soil moisture and leaf area index from FULLBETHY are used as inputs to
BETHY. This poses two problems. Firstly, our sensitivity analysis is necessarily
incomplete since it does not include the parameters in FULLBETHY that do not
appear in BETHY. Secondly, the simulations of FULLBETHY are performed
with prior parameters. Thus, there is likely to be a slight inconsistency between,
say, the carbon available for the formation of leaves in FULLBETHY and in
BETHY once the model parameters have been optimized. These inconsistencies
are probably not important for the uncertainties which are the focus of this paper.

We need a chain of models in the calculation. First, we extract climate output
from the Institut Pierre-Simon Laplace climate model, here the version used in
Solomon et al. [24]. We must choose a particular concentration scenario and,
for consistency with Friedlingstein et al. [2] we choose the SRES-A2 scenario. For
the climate-change scenario, we need consistency with the observed forcing during
the assimilation period but should also avoid a sharp discontinuity between the
observed and predicted periods. We achieve this by adjusting the output of the
climate model by the mean difference between the model and observed forcing
over the assimilation period so that for any quantity x

x(t) =
⎧⎨
⎩

xO(t)(t < 2000)

xM(t) −
[
xM(t∗) − xO(t∗)(t ≥ 2000)

]
,

(2.4)

where t∗ represents the month of year in a seasonal climatology. The required
fields to run FULLBETHY are the maximum and minimum air temperature,
precipitation, downward shortwave radiation, surface relative humidity and
surface wind speed. For the no-climate-change scenario, we repeat the observed
forcing six times to cover the period 1979–2100. For all scenarios, we increase
atmospheric CO2 concentration in line with the SRES-A2 scenario.

With these fields we run FULLBETHY that calculates fields of leaf area index
and soil moisture which, along with the fields from the climate model, are used as
inputs to BETHY whose outputs are, in turn, used as inputs to DIAGBETHY.

3. Results

(a) Fit to data

The overall performance of the CCDAS was discussed in detail in Rayner et al.
[19] and Scholze et al. [20] and the performance of this version was described in
Koffi et al. [21]. Central to the long-term response to climate change are the slow
processes surrounding heterotrophic respiration. Within the 20 year assimilation
window these processes will manifest themselves in the interannual variability
of fluxes. Thus, a useful indicator of model performance is the interannual
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Figure 1. Observed (filled squares), prior (broken line) and optimized (solid line) growth rate.
Growth rates are calculated following Rayner et al. [19].

variability in the CO2 growth rate simulated by the prior and optimized models.
Following Rayner et al. [19], we use the linear combination of three-quarters the
concentration at Mauna Loa plus one-quarter the concentration at the South Pole
and the procedures of Thoning et al. [25] to calculate interannual variability in
the growth rate.

Figure 1 shows the variation in growth rate for the observations, the prior
model and the optimized model. We see that the prior model produces a bad fit
with many of the variations occurring out-of-phase with the observations, while
the situation is greatly improved for the optimized model. In particular, we see
a large error in 1982. Although this is the first year for which we have data at
both stations, it is not a transient related to model spin-up but rather a response
to the anomalous climate associated with the 1982 El Niño event. Of course,
this is not an independent check of model quality since we are only testing the
fit to data that were assimilated. The significant change in the fit does suggest,
however, that important processes active on interannual time scales have been
greatly changed by the optimization.

(b) Simulated net ecosystem productivity

Although the focus of this paper is the uncertainty in future NEP rather than
the NEP itself, the two cannot be entirely separated. Figure 2 shows the decadal
mean NEP for the period 2000–2090 with the mean for 2000–2010 subtracted.
We denote this quantity dNEP. The figure shows the four cases, with and without
climate change and with optimized and prior parameters.

All four cases show large increases in dNEP, particularly at the start of
the period. The optimized cases (solid lines) produce greater dNEP than the
unoptimized cases. The impact of climate change is, however, different. For the
unoptimized cases (broken lines), climate change increases dNEP throughout
the period while for the optimized cases (solid lines) climate change reduces dNEP
at the end of the period.

The rapid increase in dNEP without climate change suggests large sensitivity
to CO2. We verified this by running the model over the assimilation period with
CO2 set at 355 ppm then at 356 ppm. The mean GPP was 0.3 PgC yr−1 larger with
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Figure 2. dNEP, the decadal mean NEP from DIAGBETHY for the period 2000–2090 with the
mean for 2000–2010 subtracted. Broken lines show the case for prior parameters and solid for
optimized. Thick lines show the cases with climate change and thin lines with the observed climate
for 1979–1999 repeated.

1 ppm extra CO2. This is a large sensitivity. It suggests, for example, an increase of
about 10 PgC yr−1 over the assimilation period and would, for reasonable values
of residence times, suggest an unrealistically large terrestrial uptake over the
twentieth century. We therefore expect the dNEP values from BETHY to be an
upper estimate.

(c) Uncertainty in net ecosystem productivity

Using linear error propagation through the tangent linear version of
DIAGBETHY, we can calculate the uncertainty in dNEP arising from uncertainty
in BETHY and DIAGBETHY parameters. Figure 3 shows this uncertainty as a
standard deviation. The parameter uncertainties used are the prior uncertainties
or the posterior covariance as generated by Koffi et al. [21].

As another measure we can calculate the uncertainty of the integrated dNEP
between 2000 and 2090. The results are shown in table 2 along with the values for
summed dNEP. Both figure 3 and table 2 show that uncertainty in dNEP is large.
For the case most pertinent to a climate model (that with prior parameters and
climate change), we see that the uncertainty in dNEP is larger than dNEP itself.

Considering the differences between the ‘climate change’ and ‘no climate
change’ scenarios for prior parameters, we see that the uncertainty of the
interaction of climate change with the biosphere dominates other contributions.
Another way to express this is to calculate the uncertainty in the gain G =
dNEPC/dNEPN, where the subscripts C and N refer to ‘climate change’ and ‘no
climate change’ respectively. To do this, we first calculate the Jacobian VPG
(where P is a vector of the parameters of DIAGBETHY) using the product rule:

VPG = VPdNEPC

dNEPN
− VPdNEPN

dNEPC

dNEP2
N

, (3.1)
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Figure 3. Uncertainty in dNEP (expressed as 1s standard deviation). Broken lines show the case
for prior parameters and solid for optimized. Thick lines show the cases with climate change and
thin lines with the observed climate for 1979–1999 repeated.

Table 2. Uncertainty in integrated dNEP from 2005 to 2085 for the four experiments.

uncertainty
case sum (PgC) (1s PgC)

prior no-clim 278 126
prior clim-change 656 1141
optimized no-clim 717 78
optimized clim-change 799 107

then use conventional error propagation. We note that all the terms
in equation (3.1) are available from the tangent linear model. Applying
equation (3.1) to the prior model yields an uncertainty for G of 3.5. This is
unrealistically large but is an indicator of the immense uncertainty of the climate
feedback even within the same model. We can go a little further to ask what
parameter contributes the most to this uncertainty. This is possible because with
the diagonal C(P) for the prior parameters, equation (2.1) simplifies to

C(G) =
∑

i

V2
Pi

GC(P)i,i . (3.2)

This calculation shows that 80 per cent of the variance is contributed by the
parameter k from equation (2.3) while fs contributes 14 per cent. This suggests
that while Jones et al. [26] found the sensitivity of respiration to temperature
(embodied in the parameter Q10) dominated the climate response of the biosphere,
here it is the sensitivity to soil moisture, or rather this sensitivity weighted by its
uncertainty. Soil moisture and its response to climate change are highly variable
suggesting this dominance may be even larger at smaller scales. Our results
underline the importance of detecting soil moisture changes and their interaction
with the atmosphere.
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The analysis of equation (3.2) also enables us to allay an obvious concern with
DIAGBETHY. The initial pool size is almost unconstrained. It makes, however,
almost no contribution to the uncertainty of either dNEP or G. The main reason
for this is the use of dNEP in which the NEP for a baseline period is subtracted.
This removes most of the sensitivity to the initial pool size.

The case for optimized parameters is very different. Along with the rise in
dNEP evident from figure 2, table 2 shows a dramatic reduction in the uncertainty
of dNEP by a factor of 10. Even more remarkably the uncertainty in the climate
feedback is reduced from 3.5 to 0.04. This is driven by an uncertainty reduction
of 99 per cent for the parameter k. Thus, it appears there is considerable scope
for reducing the uncertainty of the carbon-cycle climate feedback by formally
confronting carbon-cycle models with contemporary data.

4. Discussion

The very large uncertainty of dNEP for our control case (prior parameters and
climate change) is likely overestimated for two reasons. Firstly, the large increase
in NPP (more than 50% between the decades 2000–2009 and 2080–2089) means
that any uncertainty in respiration will act on large carbon stocks and so be
inflated. In this respect, G is perhaps a more robust model property. Also, this
is an off-line experiment where other negative feedbacks on CO2 concentration
(such as ocean uptake or CO2 fertilization itself) are unable to act. We can roughly
estimate this effect by using the current airborne fraction of 40 per cent suggesting
our sensitivities should be roughly halved.

Even taking these into account, the uncertainty in integrated dNEP is
important. Halving it to account for the missing feedbacks then converting to
parts per million, we see an uncertainty around 270 ppm, large when compared
with the range in Friedlingstein et al. [2]. It also suggests that our result of a
negative feedback of climate change on the carbon cycle (i.e that climate change
increases NEP and hence reduces radiative forcing) should not be given too much
weight since it is highly uncertain.

One of the most striking results is the dominant role of soil moisture in
determining the carbon-cycle/climate feedback, particularly compared with Jones
et al. [26]. There are some structural reasons for this in BETHY and its derived
models. Parameter k appears in the equations for the respiration of both the litter
pool and soil pool while there is a different Q10 value for each pool. This might
reduce the dominance somewhat but even the summed impacts of the two Q10
parameters on the uncertainty are negligible compared with that of k. Analysis
of the Jacobians which are multiplied to generate the term vG/vk shows that the
main impact comes through its impact on the respiration of the litter pool. This
is important since the dynamics of the litter pool are generally fast enough to be
observed within the 21 year assimilation window we use.

The relation of the important time scales for centennial changes in NEP to the
two decades of observations we use to constrain them could limit our approach;
clearly if important processes are too slow to be observed in 20 years then our
observations will not help much. This is not the case with the model as it stands
since the observations do provide a strong constraint. However, much of the
dynamics missing from BETHY is slow, e.g. succession. The large-scale mortality
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seen in Cox et al. [9] and responsible for about one-third of the carbon loss would
undoubtedly contribute its own uncertainty and it is unlikely the observational
period would constrain it. Furthermore, climate sensitivity was an important
contributor to the feedback shown by Friedlingstein et al. [13] so its uncertainty
is likely to be comparably important.

The simplicity of our model leaves our analysis somewhere between a technical
demonstration of a methodology and a physically significant result. The model is
missing various important processes that could respond to climate change, such as
fires, ecosystem composition and weathering. The results are interesting enough,
and the methodology simple enough, to recommend a similar approach be tried
on a spatially explicit model without the simplifications present in DIAGBETHY.
The spatial richness available in such an approach will yield a great deal of
information on model dynamics and suggest what and where to measure to reduce
uncertainty. There also seems no reason to limit the approach to biogeochemical
models. One could easily imagine a tangent linear version of a climate model
giving a good deal of information on the uncertainties of the climate sensitivity.

5. Conclusions

We constructed a diagnostic box model of the terrestrial carbon cycle consistent
with and driven by the BETHY model. We forced this chain of models with
outputs from climate models to estimate future terrestrial carbon fluxes. Using
a tangent linear version of the models, we calculated uncertainties in this future
uptake. The conclusions can be summarized as follows.

— NEP increases rapidly into the future and climate change enhances
this uptake. This is most probably owing to unrealistic sensitivity of
photosynthesis to CO2 concentration.

— Uncertainty in future uptake is large, especially the interaction with
climate change. The dominant component in this uncertainty is the
sensitivity of heterotrophic respiration to soil moisture.

— Assimilating 21 years of atmospheric observations to constrain model
parameters can greatly reduce this uncertainty.

P.R. is the recipient of an Australian Research Council Professorial Fellowship (DP1096309).
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