
1

Exercises

P. J. Rayner,1,5 R. Giering,2 T. Kaminski,3 R. Ménard,4 R. Todling4 and C. M. Trudinger5

This chapter presents a series of exercises related to the tutorial material
presented in some of the earlier papers. Its aim is to help students familiarize
themselves with that material by the use of some simple examples. Further,
some of the examples provide skeleton applications on which students can
build. The software for the exercises is supplied on the accompanying CD-
ROM.

1. Introduction

This chapter contains a set of exercises which ac-
company the tutorial material in Prinn [1999], Giering

[1999], Enting [1999], Todling [1999] and Ménard [1999].
The exercises attempt to span and unite some of the ma-
terial presented elsewhere. For example, a simple box
model of atmospheric transport is used in three differ-
ent approaches to similar problems. This reduces the
learning overhead for a student interested in the meth-
ods and allows students to compare various approaches.

The material treats the three dominant methods pre-
sented throughout the book.

1. Adjoint methods. A series of both analytic and
computer-based exercises demonstrate the princi-
ples of adjoint code construction and its application
to sensitivity analysis and optimization.

2. Green’s function methods. A two-box model is con-
structed and the Green’s function (or synthesis in-
version) method is used to calculate estimates of
sources and concentrations as well as their uncer-
tainties.

3. Kalman filtering. A set of exercises explores the var-
ious properties of the Kalman filter and smoother.
These exercises range from a simple application of
the two-box model through to investigating the sta-
bility of the Kalman filter. Various more compu-
tationally tractable approximations to the Kalman
filter are also presented.

Students interested in one of the methods only should
be able to approach the relevant section without need-
ing to work through the other sections. This is true even
where the same model is used in several sections and we
make deliberate comparison of the methods. Students
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wishing to undertake any of the exercises using the sim-
ple box model (Exercises 1–23) should read section 2
first.

The exercises are presented with the simplest cases
first. The sections each contain at least one computer-
based example to provide hands-on experience. The
code and data for the computer-based examples are pro-
vided on the accompanying CD-ROM. The README file
on the CD-ROM gives an index of the directories where
each exercise can be found. Instalation instructions for
each exercise are found in the README file in the relevant
directory. Solutions and some discussion are provided
at the end of the chapter. The computer exercises have
been written in three different languages reflecting the
different authors’ preferences. Some of the exercises ex-
ist in two languages, Fortran and IDL. Some are written
in the scripting language of the algebra and graphics
package matlab. Some examples require the use of the
automatic differentiation tool TAMC described in Gier-

ing [1999]. TAMC operates on Fortran source code only
so these exercises are only available in Fortran.

The outline of this chapter is as follows:

• Introduce the two-box model used subsequently;

• Introduce the automatic differentiation system
TAMC;

• Demonstrate the principles of adjoint code genera-
tion [Giering, 1999] and use TAMC for a series of
sensitivity and optimization studies;

• Demonstrate a Bayesian synthesis inversion [Enting,
1999] and solve for sources in the two-box model;

• Present a set of examples demonstrating the Kalman
filter [Prinn, 1999; Todling, 1999; Ménard, 1999] and
suboptimal variants of it in some simple dynamical
and chemical systems.

2. Box models of transport

Box models generally divide the model domain (the
atmosphere for example) into a number of large boxes
and describe the exchange of constituents between them.
In the simplest case of two boxes representing the two
hemispheres we can write very simple equations for
the evolution of the concentration of a constituent. In
general the rate of change of tracer mass in a hemi-
sphere is the sum of transport (between hemispheres)
and sources.

M

2

∂c

∂t
= T + S (1)
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where M is the mass of the atmosphere, c the mass
mixing ratio (mass of tracer divided by mass of air), S
the source (as an emission rate) within the hemisphere
and T the tracer mass-flux (in mass per time) from the
other hemisphere. S may contain chemical sources or
sinks which may depend on c. A common form for S is
a simple first-order or linear loss rate

S = E − c

λ
(2)

where E is an emission rate and λ is the chemical life-
time. For radioactive decay ln 2 × λ is the half-life.

To produce a simple box model we need to express T
in terms of c. For a two-box model this is most simply
done by assuming a transport proportional to the dif-
ference between the average concentrations in the two
hemispheres; a diffusive approximation. Thus

T = −κ∆c (3)

where ∆c is the concentration difference between the
hemispheres. Substitution yields the usual form for the
two-box model, namely

M

2

∂c1

∂t
= s1 − κ(c1 − c2) (4a)

M

2

∂c2

∂t
= s2 − κ(c2 − c1) (4b)

where index 1 refers to the northern hemisphere. The
expression M

2κ represents a time and is conventionally
defined as the mixing time or exchange time τ . In the
absence of sources and with a fixed concentration in
one hemisphere the concentration in the other hemi-
sphere would equilibrate exponentially with decay time
τ . Physically, τ represents the average time for an air
parcel in one hemisphere to move to the other hemi-
sphere. It can be regarded as the time in which the air
in one hemisphere will be mixed into the other hemi-
sphere. Equivalently κ represents the fraction of the air
in one hemisphere mixed into the other hemisphere per
unit time. τ is used as a simple parameter to summa-
rize the rate of exchange between hemispheres in atmo-
spheric transport models (see, for example, Law et al.
[1996] Table 3).

The convention in the literature is to reformulate
equation (4) in terms of the average concentration,
c+ = c1+c2

2
, and the difference or gradient between the

hemispheres, c− = c2 − c1. (The average concentra-
tion is proportional to the total tracer mass because
both hemispheres have equal masses.) Also we intro-
duce s+ = s1 + s2 for the sum of the sources and
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s− = s2 − s1 for their difference. Adding and subtract-
ing equations (4a) and (4b) yields

M
∂c+

∂t
= s+ (5a)

M

2

∂c−
∂t

= s− − 2κc− (5b)

Frequently we will divide by the atmospheric mass so
that, e.g., equation (5b) can be written

1

2

∂c−
∂t

=
s−
M

− c−
τ

(6)

In the absence of sources, c− will evolve according to

c−(t) = c−(0)e−2t/τ (7)

This means the decay time for c− is τ
2
. This decay time

is different from the decay time derived above with one
fixed concentration. Taking account of the return flow
from the other hemisphere halves the decay time.

If s− is constant then asymptotically, i.e. for large t,

c−(t) =
s−
M

τ (8)

Note that various slightly different definitions of τ are
possible usually depending on whether the mass of a
hemisphere or the total atmosphere is used. The above
equations hold if τ is constant.

Several exercises in the following sections are based
around this two-box model with constant exchange time.
We use two datasets. The first is a set of emissions and
concentrations for the gas methyl chloroform (CH3CCl3)
which has been previously used to infer interhemispheric
exchange time and chemical lifetime for this trace gas
by Prinn et al. [1995]. We shall replicate this cal-
culation using a simple nonlinear optimization of the
two-box model outlined above. We shall also use a
Kalman filter version of the model to infer hemispheric
sources for this gas under various conditions. The sec-
ond dataset is a trivial example with constant sources
and exchange time. We will use this dataset to compare
the Green’s function and Kalman filter approaches to
deducing sources from concentrations.

3. Using TAMC for Automatic

Differentiation

3.1. Introduction

Giering [1999] has summarized applications for codes
which evaluate the derivatives of models. In particular
many of the problems encountered throughout this book
require the calculation of derivatives in some form. For
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example, many optimization calculations (such as esti-
mating optimal parameter values) require some knowl-
edge of the derivative of some cost function with respect
to the parameters (see section 4.1.2). In the Green’s
function approaches the derivative of simulated con-
centrations with respect to source parameters consti-
tutes the Jacobian matrix that is to be inverted (see
section 4.2). Recursive algorithms like the Kalman fil-
ter may require a linearized version of the model to
step either the state or its covariance forward. This
linearized model requires the calculation of the deriva-
tive of the new state with respect to the current state
(see section 4.3). In a nonlinear model this derivative
will depend on the actual state. Finally, the derivative
may be of direct interest, since it represents the sensi-
tivity of some output (e.g. mean surface temperature)
to some inputs (e.g. cloud amount, CO2 concentration).
In section 4.1.2 we show an example of the sensitivity
of concentrations at the end of a model integration to
sources throughout the integration.

In this section we briefly outline the use of the Tan-
gent linear and Adjoint Model Compiler (TAMC) which
has been introduced by Giering [1999]. While we dis-
cuss the generalities of the techniques we focus on a
specific example, namely the two-box model introduced
in section 2. TAMC applies a technique called au-
tomatic differentiation [Griewank, 1989] , which has
been briefly introduced by Giering [1999]. The source-
to-source translator is available remotely and various
utilities are described to facilitate some of the uses of
the code described above. A brief description of both
TAMC and the utilities is given in section 3.2. Finally
a set of exercises explains the use of TAMC for both
sensitivity and optimization calculations with the two-
box model. Many of the exercises require actual use of
TAMC and hence a computer capable of accessing the
TAMC server. For those readers who want to do the ex-
ercises without such access, the output of the program
is included in figures. More details about the topics in-
troduced in section 3.2 can be found in Giering [1997]
and Giering and Kaminski [1998]. In particular when
doing the exercises it is recommended to have these doc-
uments available.

3.2. TAMC and TAMLINK

Using the concept of automatic differentiation, the
task of constructing adjoint or tangent linear code can
be based on simple rules, such as those described in
Giering and Kaminski [1998]. These simple rules can be
applied automatically, e.g. by source to source transla-
tion programs. There are a number of these programs,
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e.g. Odyssée [Rostaing et al., 1993], GRESS [Horwedel,
1991], , or TAMC [Giering, 1997] for reverse mode and
ADIFOR [Bischof, 1992] or TAMC for forward mode
(see Bischof [1999] for more references). In this section
the program TAMC is introduced. The focus lies on
features that are necessary to understand the examples,
see Giering [1997] and Giering and Kaminski [1998] for
more details.

To briefly summarize the material in Giering [1999],
adjoint and tangent linear codes propagate derivatives.
In tangent linear or forward mode, the first set of deriva-
tives calculated are those of the first set of intermediate
results with respect to the input variables; then the
next set of intermediate results with respect to the first
and this process continues to the output variables. In
adjoint or reverse mode, the first derivatives calculated
are those of the output variables with respect to the
last set of intermediate results, then of the last inter-
mediate with respect to the second last and so on back
to the inputs. In TAMC there is a one to one corre-
spondence of variables in the model code to variables
which hold the derivatives. Those variables that either
have no influence on the output variables or do not de-
pend on the input variables are called passive variables.
For passive variables no derivatives need to be propa-
gated [Giering and Kaminski, 1998]. In contrast, active
variables are those that influence the output variables
and also depend on the input variables. For each ac-
tive variable, an adjoint (or tangent linear variable) is
declared in the adjoint (or tangent linear) code, to hold
the corresponding derivative. Tangent linear or adjoint
statements are generated for each statement in the code
which involves active variables. The derivatives are con-
structed according to simple rules. Exercises 3 and 4
include identification of active variables.

Many statements in the model code will contain non-
linear operations on active variables. In these cases
the derivative statements must also contain model vari-
ables and so the value of the derivative will depend on
the value of some model variables. Those variables are
called required variables. In tangent linear code values
for those variables can be easily provided (e.g. by in-
serting all tangent linear statements in the model code,
locating each tangent linear statement before the state-
ment it corresponds to). In adjoint code, providing
required variables efficiently is one of the major chal-
lenges. Exercises 3 and 4 include identification of re-
quired variables.

The TAMC system consists of two parts: a utility
that is to be installed on your local computer and the ac-
tual software that does automatic differentiation, which
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is installed on a remote machine. The source code of
the utility is provided with the code for the exercises.
TAMC is invoked by the utility through a UNIX shell
script tamc, which uses a UNIX remote shell to com-
municate with the remote machine. Through command
line options, the user defines the function to be differ-
entiated by naming a FORTRAN subroutine, its input
and output variables as well as the files containing the
code to be differentiated. Section 3.3 gives two exam-
ples for invoking TAMC.

To execute the generated derivative code, it has to
be embedded in a main program. For different appli-
cations of derivative code, a software package (TAM-
LINK) comprising a number of main programs is in-
cluded in the utility. The code is linked by a second
UNIX shell script named tamlink. tamlink expects a
set of subroutines with particular names and interfaces.
Section 3.3 gives a number of examples for invoking
tamlink.

3.3. Sensitivities of Box Model

In this section we illustrate the use of TAMC to cal-
culate the sensitivity of concentrations to various pa-
rameters in the simple two-box model of section 2. The
material provides explanation and hints for Exercises 3
and 4. Although the model is extremely simple, from
the viewpoint of automatic differentiation it contains
most of the important features found in complex trans-
port models.

The code of Boxmod is listed in Figure 1. Using pre- Figure 1
scribed hemispheric estimates of the sources of methyl
chloroform, which have been provided by Prinn et al.
[1992], and an atmospheric lifetime of 4.7 years as cal-
culated by Houweling et al. [1998], Boxmod simulates
the hemispheric concentrations of methyl chloroform.
Boxmod has a (single) transport parameter, namely the
rate of interhemispheric mixing, mixrate. One of the
optimization exercises is to tune this parameter using
sensitivities computed by the adjoint of Boxmod. Unlike
more sophisticated transport models, the transport in
Boxmod has neither seasonality nor interannual varia-
tions. The change in the simulated concentration de-
pends nonlinearly on the mixing rate and the inverse of
the atmospheric lifetime (invlif) but linearly on the
sources. The sensitivities (or response functions) that
quantify these linearizations depend on the values of
mixrate and invlif.

3.3.1. Adjoint. Exercise 3 can be solved by applying
TAMC to generate code for computation of the sensitiv-
ity of the concentration in box 1 at the last time step
with respect to the mixing rate, the inverse lifetime,
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and the source components. Since the function to be
differentiated has one output variable and many input
variables, the reverse mode is most efficient [Giering,
1999], so we calculate the adjoint of Boxmod. To pro-
vide all necessary information about the function to be
differentiated to TAMC we have constructed a subrou-
tine model (see Figure 2), which has in its argument Figure 2
list the number of input variables, the vector of input
variables X, and the output variable FC. (The related
header file is listed in Figure 3.) TAMC is called with Figure 3
the options
-module model -input X -output FC -reverse.

A particularly important feature for adjoint code gen-
eration, which is typical for transport models, is that
Boxmod overwrites the current concentration every time
step. For applications like Exercise 3, in which ei-
ther the mixing rate or the inverse lifetime are active
variables, the concentration c is one of the required
variables. There are further required variables (or pa-
rameters) such as ny, ntpy, kt2pptv, mixrate, and
invlif, but those are not overwritten and, thus, easy
to provide. By default TAMC generates a loop to re-
compute the required values of c, but TAMC also pro-
vides the alternative of storing the required values on
a ‘tape’, i.e. in memory or in a file. In Figure 2 the
storing feature is demonstrated, because recomputation
would require a second loop within the adjoint of the
main loop (see Giering [1999]) which, computationally,
for a three dimensional model would be prohibitively
expensive (see e.g. computational cost of the adjoint
of TM2 in Kaminski et al. [1999]). Directives are used
to make TAMC store and read the required variables
by calling special library routines. First an init direc-
tive is needed to initialize the ‘tape’, and then a store

directive is inserted right before the statement whose
adjoint uses the required variable (see Figure 2). Be-
fore the adjoint code is executed, the required values
are recomputed and stored, and during the execution
of the adjoint code they are read (see below).

The adjoint of Boxmod generated by TAMC is listed
in Figures 4–6. Figure 4 contains the declaration of re- Figures 4–6
quired and adjoint variables and the initialization of the
local adjoint variables adc and adcnew to 0. The global
adjoint variable adsrc is initialized by the subroutine
adzero. The global adjoint variable adfc has to be
initialized to 1 before calling admodel. The initializa-
tion strategy can be understood as a consequence of the
concept of locality. (For details see definition of locality
in Giering and Kaminski [1998].) The current values of
adjoint variables reflect the derivative of fc with respect
to the corresponding variable in the forward code. ‘Cur-
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rent’ refers to the place in the code of Boxmod where the
statement to which the adjoint statement corresponds
is located. Since admodel runs in reverse mode, the
end of model is the location to which the initialization
part of admodel corresponds. And at the end of model,
only a change in the variable fc could change the func-
tion value, all others don’t have any impact anymore.
Hence their adjoints must be 0. The adjoint computa-
tions part in admodel (see Figure 5) updates the values
of the adjoint variables by executing the adjoints of the
statements in model in reverse order. At the end of
admodel the adjoint of x holds the derivative of fc with
respect to x, and all other adjoint variables hold zeros.

As discussed above, the correct values of most of the
required variables are easy to provide. For instance the
values of mixrate and invlif can be recovered from x

at the beginning of the adjoint computations part. The
computation of fc is carried out during computation of
the value of the function (which TAMC adds by default
before the adjoint computations). fc is needed e.g. for
use in optimization procedures. (Generation of code for
the value of the function can be avoided by using the di-
rective -pure). Reading and writing and the necessary
bookkeeping are organized by the subroutines adstore
and adresto.

To actually compute the sensitivity needed to answer
Exercise 3, admodel has to be executed using the cor-
rect values of the input variables, i.e. sources, inverse
lifetime, and mixing rate. The subroutine can be exe-
cuted easily after linking the appropriate main program
for computing sensitivities by the tamlink script. This
main program requires that, besides model, three sub-
routines be provided:

• a subroutine numbmod defining the number of input
variables (see Figure 7), Figure 7

• a subroutine initmod doing all necessary initializa-
tion, in particular setting the values of the input
variables (see Figure 8), Figure 8

• and a subroutine postmod doing the post processing
(see Figure 9). Figure 9

To link the main program for computation of the sensi-
tivity in reverse mode, tamlink should be invoked with
the command line option -adjoint.

3.3.2. Tangent linear model. Exercise 4 can be solved
by applying TAMC to generate code for computation of
the sensitivity of the concentration in both boxes and
all years with respect to the inverse lifetime and the
mixing ratio. Since the function to be differentiated
has two input variables and many output variables, the
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forward mode is most efficient [Giering, 1999], i.e. we
should construct the tangent linear model to Boxmod.
We should stress again that the choice of forward or
reverse mode is a computational one. To provide all
necessary information about the function to be differ-
entiated to TAMC

• a subroutine func (see Figure 10), which has in its Figure 10
argument list the number of input variables, the
vector of input variables X, the number of output
variables, and the output variable Y has been con-
structed. Note this is different from the reverse
mode in which only one output variable was used.

• TAMC is called with the options
-module func -input X -output Y -ldg

-jacobian 20 -forward

(The -jacobian option sets the number of output
variables and has a default of 1. The option -ldg

extends the parameter list of g func).

The tangent linear code of Boxmod is listed in Figures
11 and 12. The tangent linear variables are marked by Figures 11 and 12
the prefix g . Recall that they hold the derivative of
the (active) variable they correspond to with respect to
the input variable x. Figure 4 contains the declaration
of forward code and tangent linear variables. Note that
unlike adjoint variables, tangent linear variables do not
have to be initialized, because, except for the tangent
linear variables corresponding to the input variable x,
they are not referenced before being set by at least one
tangent linear statement in g func. Each statement
from the function evaluation is preceded by its tangent
linear statement. Thanks to this scheme, correct values
of all required variables are naturally provided. It might
seem from this that the tangent linear or forward mode
must be more efficient than the adjoint or reverse mode.
However the extra pass through the function needed by
the adjoint model might be a very minor cost compared
to the calculation of unnecessary derivatives.

One advantage of tangent linear over adjoint code
is that it is much more readable, with statements oc-
curring in natural rather than reverse order. While the
function part of g computes y, the derivative part com-
putes g y.

As with the adjoint code, to actually compute the
sensitivity needed to answer Exercise 4, g func has to
be executed using the correct values of the input vari-
ables, i.e. sources, inverse lifetime, and mixing rate.
The subroutine can be executed after linking the ap-
propriate main program for computing sensitivities by
TAMLINK. This main program requires that, besides
func, three subroutines be provided:
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• a subroutine setfunc defining the number of input
and output variables (see Figure 13), Figure 13

• a subroutine initfunc doing all necessary initial-
ization, in particular setting the values of the input
variables (see Figure 14), Figure 14

• and a subroutine postfunc for post processing (see
Figure 15). Figure 15

Note that unlike the scalar valued function of the previ-
ous example, we are now differentiating a vector-valued
function. This is the reason for the differences in the
argument lists of the subroutines. To link the main
program for computation of the sensitivity in forward
mode, tamlink should be invoked with the command
line option -forward.

4. Exercises

4.1. Adjoint Methods Exercises

This section demonstrates the use of the tangent lin-
ear and adjoint compiler (TAMC) for both sensitivity
and optimization calculations. The computer-based ex-
amples all use the two-box model of atmospheric trans-
port introduced in section 2. The discrete equations are
given by

c1(k+1) = c1(k)+∆t

(

s1(k) − c1(k) − c2(k)

τ
− c1(k)

λ

)

(9)

c2(k+1) = c2(k)+∆t

(

s2(k) − c2(k) − c1(k)

τ
− c2(k)

λ

)

(10)
where the subscripts refer to the box and the k to the
time level. ∆t is the timestep of the model, τ the in-
terhemispheric exchange time and λ the chemical life-
time. Note that numerical stability is only guaranteed
for ∆t < τ and ∆t < λ. This is the well-known CFL
criterion (see Press et al. [1986, p627]). Also note that
the code uses κ = M

2τ and 1

λ for convenience. The sup-
plied basic model integrates this set of equations for-
ward from some initial condition according to a set of
prescribed sources and model parameters.

4.1.1. Sensitivity. Code for these exercises can be
found in the directory /adjoint/sens on the CD-ROM.

1 Imagine you have a very simple model which takes
5 inputs and produces 1 output. In between the
input and output, the model produces sets of inter-
mediate results, the first step produces 2, the sec-
ond 3, the third 3 and finally the fourth produces
the 1 output. Using the convention <number of
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rows> × <number of columns>, their respective
Jacobians are 2×5, 3×2, 3×3, and 1×3 matrices.

a Make a drawing of the matrix product and of its
evaluation in forward and reverse modes. What
physical quantities are represented by the entries
in the matrices?

b What is the largest matrix needed to hold an in-
termediate result in forward and reverse modes?

c How many additions and multiplications are needed
for the evaluation of the product in forward and
reverse modes?

2 a Compile and run boxmod (file boxmod 0.F) in the
adjoint/sens directory on the CD-ROM. For the
case of zero sources and either no chemical loss or
no interhemispheric mixing, verify that the nu-
merical solution approximates the exact solution.

b Set τ to 0.1 y. By considering the time evolution
of global concentration, compare the chemical life-
time as actually simulated to the input value.

c Calculate the response of concentrations to a unit
source in one hemisphere in the first year. This is
the so-called Green’s function [Enting, 1999, equa-
tion (2)]. The same result can be obtained with
TAMC as we shall see below.

3 Imagine you perform a unit change of the mix-
ing rate, the inverse lifetime, or any of the source
components. Which change, to first order, has the
largest impact on the simulated concentration in box
1 at the end of year 10 (this is an application for re-
verse mode)?
Which are the active variables?
Which are the required variables?
Detailed instructions (for those not familiar with
TAMC):

a Transform the code in boxmod 0.F to a Fortran
subroutine that computes the concentration at the
end of year 10 as a function of all sources, mixing
time and inverse lifetime in the form required by
TAMC and TAMLINK.

b Invoke tamlink -cost to check whether this mod-
ified code runs and computes the correct value for
the concentration in year 10.

c Invoke TAMC to compute the derivative of this
function.

d Check this derivative against finite differences by
using tamlink -check.

e Run the adjoint code by using tamlink -adjoint.
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4 In which box and for which year will the concentra-
tion be most strongly affected by a unit change of
the inverse lifetime or the mixing rate? This is an
application for forward mode.
Which are the active variables?
Which are the required variables?
Why are the active and required variables different
from the previous exercise?
Detailed instructions (for those not familiar with
TAMC):

a Transform the code in boxmod 0.F to a subrou-
tine that defines the concentration in all years and
both boxes as a function of mixing time and in-
verse lifetime.

b Invoke TAMC to compute the derivative of this
function.

c Check this derivative against the derivative com-
puted in reverse mode by using the command
tamlink -compare.

4.1.2. Optimization by adjoint method. In these ex-
ercises we use a version of the two-box model, data
on sources and emissions of the gas methyl chloroform
(CH3CCl3) from Prinn et al. [1992], the capabilities of
TAMC to provide derivatives, and one of the power-
ful iterative minimisation algorithms that rely on avail-
ability of derivatives. We combine these ingredients
to solve for the chemical lifetime and interhemispheric
mixing rate of the gas. The forward version of the box
model and associated data files is found in the direc-
tory /adjoint/optim on the CD-ROM. As provided,
the code performs the necessary initialization for the
adjoint calculations but the model does not compute a
cost function.

5 Recast the model to calculate the mean squared mis-
match between observed and modelled concentra-
tions as a function of chemical lifetime and mixing
time assuming the sources are correct. Now use the
optimization routines provided with TAMC to find
the optimal values for τ and λ. You can do this sim-
ply by entering make optim in the directory. Plot
the observed and modelled concentrations to assess
how well such a simple model performs. What are
potential causes of any mismatch?

6 Exercise 5 assumes the sources are perfectly well-
known. We can include the impact of source uncer-
tainties by expanding the cost or mismatch function
to

C =
∑

(cmod − cobs)
2/e2

c +
∑

(smod − sobs)
2/e2

s

(11)
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where c and s refer to concentrations and sources,
“obs” and “mod” refer to observed and modelled
and the e in the denominator refers to errors. Recast
the model to include the sources as input parameters
and to use this cost function. This example should
collapse to Exercise 5 for very small es, check this.
What is the impact on lifetime and mixing time cal-
culations for a 10% standard deviation in sources?
What happens to the concentration mismatch from
Exercise 5? We can further expand the cost func-
tion to include a prior estimate for the lifetime and
mixing time.

4.2. Green’s Function Methods

These exercises illustrate the methods described in
Enting [1999] using the two-box model in section 2.
The Green’s function approach is restricted to prob-
lems in which concentrations can be approximated as
linear combinations of the sources and sinks. For such
problems estimates of uncertainties are more efficiently
derived with the Green’s function approach than the
optimization methods in section 4.1.2. Green’s function
methods are not well-suited to nonlinear problems like
Exercise 5 in which we solved for the chemical loss rate.
Such problems require iterative optimization methods.
Hence in this exercise we fix the inverse lifetime deter-
mined in Exercise 5 and solve only for sources. As we
can see from the right-hand side of equation (A2b) of
Enting [1999] we need to specify both prior estimates
and uncertainties for both sources and concentrations.

The following exercises use a trivial case with con-
stant sources so that answers can be checked analyti-
cally. This simple case also makes it possible to compare
with the Kalman filter case (section 4.3.1.1) in which we
are estimating a constant source. The concentrations
consist of a uniform trend in both hemispheres and a
constant offset between them. The value of τ in this
example is 1.0 and we also divide by atmospheric mass
so the value of M in equation (1) is also 1.0. Code and
data for the examples can be found in the Fortran and
IDL subdirectories of /greens on the CD-ROM.

7 Using the data from the CD-ROM (trivial.dat)
and equation (5a) and equation (6) calculate the
steady-state sources analytically.

8 Check the results with the supplied code. In the
code, there is no gradient assumed between the
hemispheres before the start of the calculation. How
does this affect the sources early in the inversion?
Why do the predicted uncertainties of sources change
throughout the time series?
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9 The inversion returns the estimated uncertainty in
the form of a covariance matrix (see Enting [1999,
equation (B5)]). In the supplied code we have
printed the square root of the diagonal elements of
the covariance i.e. the uncertainties of the individual
sources. We can also consider the variance of groups
of sources such as the global source or long-term
mean hemispheric source. The variance of a sum of
random variables can be calculated as the sum over
all elements in their covariance matrix. To compute
the variance of the mean of the same variables the
above sum should be divided by n2 where n is the
number of variables. Use this relation to calculate
the uncertainty in the time-averaged (over the pe-
riod of the inversion) northern hemisphere, southern
hemisphere and total source. How does this uncer-
tainty change with the length of the inversion and
why?

10 Notice in Exercise 9 that the uncertainty for the av-
erage total source is less than might be expected
from summing that from two hemispheres. This
suggests compensating errors in source estimates.
Confirm this by calculating the off-diagonal term in
the covariance matrix of long-term average sources.
From the governing equations, why might this oc-
cur? In general, for two variables with equal stan-
dard deviations, what correlation is required for
their sum to have a lower standard deviation than
either variable alone?

11 Until now we have used prior sources and concen-
trations which were consistent. Hence the calcu-
lated posterior estimates were the same as the pri-
ors. Using the original concentrations and uncer-
tainties, set all prior sources to zero. Noting that
the predicted sources are a weighted sum of the prior
sources and sources consistent with the data, vary
the prior source uncertainty and observe the change
in calculated sources.

12 In general we require some consistency between prior
and predicted estimates and the uncertainties we
specify. If the data mismatch or the changes be-
tween prior and predicted sources are much larger
than our specified uncertainties we should have more
caution about our set-up. This increased caution is
implemented by increasing the uncertainties we use
on initial sources and data. We quantify the mis-
match as the minimum value of the misfit function
[Enting, 1999, equation (A1)]. See Tarantola, [1987,
p211] for the derivation of this result. This misfit
function follows a χ2 distribution with degrees of
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freedom given by the number of data nd. The misfit
is often termed the χ2 (chi-squared) value for a par-
ticular inversion. The value χ2/nd should be near
1. If it is too large (our misfit is too large) then
we have been too confident either in our measure-
ments or prior source estimates. We should increase
uncertainties accordingly. Alternatively, a small χ2

value suggests we have been too conservative. A
discussion of what constitutes too large or small is
beyond our scope here. In the language of statistics
the question is rephrased as “significantly different
from 1”. Most statistical software packages will pro-
vide calculations of the significance levels for χ2 for
a given nd. Tables are presented by Abramowitz and

Stegun, [1970].

Calculate the χ2 for the case with the original un-
certainties (0.5 for sources and data) and zero prior
sources. Adjust the uncertainties by scaling source
and data uncertainties equally until the value is near
1. How does this impact the uncertainty of the aver-
age source? Note that an equal scaling of data and
source uncertainties does not change the final esti-
mate, why not? Now adjust the source uncertainties
only (like Exercise 11) until χ2 is near 1.

13 We have considered uncertainties in sources and
data so far. The relationship between sources and
data (embodied in the transport model) is also un-
certain, as demonstrated by Law et al. [1996]. Ent-

ing [1999, section 3] discusses the usual approach
to dealing with such uncertainty, namely increasing
the uncertainty in the data. As an example of the
problem, we can modify the artificial Jacobian. As
provided, the Jacobian has no mixing in the first
year then complete mixing. Modify this so that 1

3

of the extra injected tracer from a source is mixed
in the first year, then complete mixing occurs after
that. We can think of this as roughly changing the
mixing time from 1 year to 2

3
years. To implement

this, set the Jacobian in the same hemisphere as the
source to 5

6
and in the other hemisphere to 1

6
. What

is the impact on estimated sources. Why does the
uncertainty rise?

4.3. Kalman Filtering

This section presents an extensive set of exercises and
examples concerning Kalman filtering and related vari-
ants. For a derivation of the Kalman filter equations see
Prinn [1999] or Todling [1999, section 4]. The computer-
based exercises treat three relatively simple cases

1. The two-box model of transport used in sections 4.1.2
and 4.2.



17

2. A damped harmonic oscillator.

3. A one-dimensional advection problem.

In the third of these examples some more computation-
ally tractable approximations to the optimal Kalman
filter are introduced. The analytical examples cement
several of the key concepts in using the Kalman filter
and show methods by which important inputs to the fil-
ter may be derived, particularly correlation functions.

4.3.1. Box Model. This section presents an applica-
tion of the Kalman filter and smoother to the simple
two-box model of transport used in sections 4.1.2 and
4.2. In general we solve for sources given data on con-
centrations and an assumed interhemispheric exchange
time and chemical lifetime. The cases are the same as
sections 4.1.2 and 4.2, i.e. a trivial case with constant
sources and a more realistic case using the gas methyl
chloroform.

4.3.1.1. Trivial case: This case has been set up to
compare with the case in section 4.2. The true solu-
tion, with constant sources and hence constant growth
rate and fixed interhemispheric difference is the same.
We start with the simplest case, refining estimates of a
constant source. This is similar to the case described
in Prinn [1999, section 6] except that they solved for
the chemical lifetime rather than sources. This case
is directly comparable with the Green’s function Exer-
cises 7–13. As the final step we include some of the
complications normally included in a Kalman filtering
method such as evolution error. These lead on to the
next exercise in which we treat a more realistic example,
although still with a simple model.

There is one important difference between the Kalman
filter examples presented in Prinn [1999] and in this
section. Prinn [1999] used the transport model to com-
pute the measurement operator H which related the un-
knowns in the state vector (chemical lifetimes in that
case) to the observed concentrations. Here, we use the
transport model as part of the evolution operator M for
the state vector itself. Our state vector contains sources
and concentrations for each hemisphere and the Kalman
filter solves equation (4) for the evolution of concentra-
tions. We discuss the evolution of the sources in the
exercises below.

14 Run the code as supplied in either the Fortran or
IDL subdirectories of the /kalman/box/trivial di-
rectory and compare the final average source and
uncertainty of the source with that for the equiva-
lent Green’s function case. Compare the evolution
of the uncertainty in the two cases, why is it differ-
ent?



18

15 Let us now investigate more closely the similari-
ties and differences between the Kalman filter and
Green’s function cases. First make them as com-
parable as possible. We need to make the Green’s
function code obey the exact solution. Even with
correct sources this did not happen in section 4.2
because there was no initial gradient assumed be-
tween hemispheres so the inversion needed to spin
up. We can trick the code into an exact match by
adding 0.5 to all concentrations in trivial.dat in
the green subdirectory. This makes the total tracer
mass in year 1 consistent with the prior sources for
that year. Now both the Kalman filter and Green’s
function example should match the exact solution
throughout although their uncertainties will be dif-
ferent as we have just seen. Confirm that both codes
are behaving correctly. Now modify the Kalman fil-
ter code to set the initial state to include a source
of 1 for one hemisphere and 0 for the other. Sim-
ilarly modify the trivial.src file in the Green’s
function directory to set all initial sources to 1 for
one hemisphere and 0 for the other. Run both cases
and compare the evolution of the sources, can you
explain the behaviour? How does the average source
for the 10-year Green’s function run compare with
the final source from the Kalman filter run? Can
you explain this? Hint: consider the constraint to-
wards the initial average source in the Green’s func-
tion case.

16 In the Kalman filter example, effectively delete sev-
eral of the data points by greatly inflating their ob-
servational error. For example, for the years 1981–
1985, change the observational error for both hemi-
spheres from 0.5 to 10. What happens to both
source and concentration uncertainties? Referring
to the discussion by [Prinn, 1999, section 5], on in-
tuitive concepts of Kalman filter behaviour, can you
explain the different behaviour? Starting from the
usual incorrect initial state of (1, 0), what is the im-
pact on the final predicted source? Now repeat the
experiment setting data uncertainties to (0.5, 1.5)
throughout and starting from sources of (1, 0). Stu-
dents interested in pursuing the comparison with
Green’s function methods should repeat these data
deletion experiments in that case.

17 Now let us consider adding stochastic noise to the
problem. In our example we have a state contain-
ing sources and concentrations. The concentrations
evolve according to the two-box model. There is no
explicit evolution of the sources; we assume persis-



19

tence i.e. the evolution matrix M = 1. The evolu-
tion of both concentrations and sources is subject to
error and we can include this error in the stochastic
noise covariance matrix Q defined in Todling [1999,
equation (64)]. With correct initial sources, include
stochastic noise with σ = 0.5 for just the sources
(the last two elements in the state). How does the
uncertainty compare with the case with σ = 0? Now
try a range of values for the stochastic covariance
and a range of observational uncertainties. What
general relationship do you notice between the pre-
dicted uncertainty and the stochastic covariance, ex-
plain?

4.3.1.2. Methyl Chloroform Case: In this exercise we
revisit the problem of estimating sources for methyl
chloroform (CH3CCl3). Unlike the Kalman filter exam-
ple described in Prinn [1999] or the optimization Exer-
cise 5 we will estimate sources rather than chemical life-
time and mixing time. We use the same two-box model
as section 4.1.2 and 4.2 with mixing time and lifetime
taken from the solution of Exercise 5. The concentra-
tion data are taken from Prinn et al. [1995]. We use the
source data from that paper for comparison only.

The code is supplied in the fortran or IDL subdi-
rectories of the kalman/box/ch3ccl3 directory on the
CD-ROM. As supplied there is no stochastic covariance.

18 Run the supplied code. By considering the evolu-
tion of the source uncertainty can you explain the
mismatch to the concentrations from the late 1980s
onwards?

19 How should you interpret the mismatch with sources
in this case?

20 As with the Green’s function examples (Exercises
11 and 12) we can quantify the mismatch between
our evolution model and observed data in a variable
with the χ2 distribution and expressed as

χ2 = (Hx − z)T (HPHT + R)−1(Hx − z) (12)

This expression is similar to Enting [1999, equation
(A1)]. An important difference is that in the Green’s
function case we specify an initial estimate for our
sources while in the Kalman filter case we specify
a model for how these sources will evolve. This
can seem a little confusing at the moment since our
source evolution model is completely trivial but later
examples show cases with more sophisticated evolu-
tion models for the state. Turn on the χ2 calculation
in the code which should enable you to quantify the
conclusions from Exercise 19.
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21 Unlike the trivial case it is clear we need some
stochastic noise here to allow the sources to vary.
It can play the same role as the prior uncertainties
in the Green’s function case and we can choose our
value so that χ2 remains reasonable. Add stochastic
covariance with σ = 5 Tg y−1. What is the maxi-
mum value of χ2? The average? Does this suggest
5 Tg y−1 is a reasonable choice?

22 As mentioned in Prinn [1999, section 5, equations
(24) and (25)] and Todling [1999, section 4] an exten-
sion to the Kalman filter, the Kalman smoother, en-
ables all data to influence predicted sources. In the
filter version only previous and current concentra-
tions impact source estimates. It makes sense to al-
low future concentrations to help constrain sources.
This happens naturally in the Green’s function ap-
proach but not in the regular Kalman filter, a de-
ficiency addressed by the Kalman smoother. By
default the Kalman smoother part of the code is
turned off. With no stochastic covariance, activate
it. To what do you attribute the apparently wild
behaviour? Now add the same Q as before i.e.
σ = 5 Tg y−1 for sources. What is the impact of
the smoother on calculated concentrations, sources
and uncertainties?

23 Finally we should demonstrate that any inversion is
only as good as the model which underlies it. What
happens to predicted sources and concentrations if
you double the atmospheric lifetime? What about
doubling the mixing time?

4.3.2. Oscillator example. In this section we consider
the application of the Kalman filter to a simple dynam-
ical system. The example is partially based on Lewis,
[1986, Example 2.5-2]; see also the mass–spring oscilla-
tor example in Wunsch [1996, section 6.2.1]. Students
should also be familiar with the terminology introduced
in Todling [1999].

Consider the damped harmonic oscillator which has
the governing equation

ÿ(t) + 2αẏ + ω2 = 0 (13)

We can write a discrete version as

xk

(

x1(k)
x2(k)

)

=

(

1 T
−ω2T 1 − 2αT

) (

x1(k − 1)
x2(k − 1)

)

+

(

η1(k − 1)
η2(k − 1)

)

(14)

where the η represents noise. We make observations z
on the state x via some linear measuring process repre-
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sented as

z(k) =
(

1 0
)

(

x1(k)
x2(k)

)

+ ǫ(k) (15)

i.e. we only observe one of the state variables.
We assume the state x is distributed according to a

bivariate normal distribution so that x(k) ∼ N (0,Q),
and that the observational errors are also normally dis-
tributed so that ǫ(k) ∼ N (0, r/T ) and both are un-
correlated from each other at all times. We take the
covariance Q to be given by

Q =

(

0 0
0 T

)

(16)

and we assume the initial state to be normally dis-
tributed as N (0,Pa

0). For the choice of parameters:
ω = 0, α = −0.1, r = 0.02 and T = 0.02, address the
following questions:

24 Is the dynamical system stable or unstable?

25 Using matlab, simulate the stochastic dynamical
system from k = 0 to k = 500, starting from

x0 =

(

0.1
0.2

)

. Plot the state xk against k.

26 Using the linear Kalman filter, simulate the evolu-
tion of the error covariance matrix, starting from
the initial condition Pa

0 = I, where I is the 2 × 2
identity matrix. Plot the analysis error variance,
in both variables, for the same time interval as in
Exercise 24.

27 Is the filter stable or unstable? Explain.

28 Are your answers to questions 24 and 27 incompat-
ible? Explain.

29 Plot the true state evolution together with the anal-
ysis estimate for both variables and for the time in-
terval in Exercise 25.

Hint: Remember that your initial estimate should
be sampled from the initial state statistics. When
the initial is distributed as N (0,Pa

0), a sample can
be obtained from

xa
0 = x0 + V ∗ D1/2 ∗ randn(:) (17)

which is the multivariate version of a sample from
a normal distribution. The matrices V and D arise
from the eigendecomposition of the initial error co-
variance matrix: written symbolically as

[V,D] = eig(Pa
0) (18)
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Let us now study the behavior of two suboptimal fil-
ters. Before starting, however, replace the analysis er-
ror covariance equation in your matlab program by the
Joseph formula [Todling, 1999, equation (80)] if you are
not already using it. We mentioned in Todling [1999,
section 4] that the Joseph formula is valid for any gain
matrix K̃k, thus we can use it to evaluate the perfor-
mance of suboptimal filters.

30 Assuming the calculation of the forecast error co-
variance is computationally too costly for the present
problem, we want to construct a suboptimal filter
that somehow replaces the calculation of P

f
k by a

simpler equation. Let us replace the equation for
P

f
k by the simple expression P

f
k = I. With this

choice of forecast error covariance, it is simple to
see that the gain matrix becomes

K̃k = HT (HHT + r/T )−1

= 1

1+r/T HT (19)

where we used explicitly that H = (1, 0) for the sys-
tem under consideration. Keeping the equation for
P

f
k , in your matlab code as dictated by the Kalman

filter, replace the expression for the optimal gain
by the one given above. This turns the state esti-
mate into a suboptimal estimate. Also, since you
have kept the original expression for the forecast
error covariance evolution, and you are using the
Joseph formula for the analysis error covariance,
these two quantities provide filter performance in-
formation about suboptimal choices of gains. With
the “approximate” gain matrix above, is the result-
ing filter stable or unstable? Explain. If this is not
a successful choice of gain matrix, can you explain
why that is?

31 Let us now build another suboptimal filter that re-
places the gain by the asymptotic gain obtained
from the optimal run in Exercise 25. To obtain the
optimal asymptotic gain, you need to run the exper-
iment in Exercise 25 again, output the gain matrix
at the last time step from that run, and use it as a
suboptimal choice for the gain matrix in this item.
You should actually make sure that the gain has sta-
bilized by looking at its value for a few time steps
before the last time step, and verifying that these
values are indeed the same. Now rerun Exercise 30
but using the asymptotic gain for the suboptimal
gains at all time steps. Is the resulting filter stable
or unstable? (Note: This choice of gain corresponds
to using the so-called Wiener filter.)
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4.3.3. Linear Advection Equation. In this section we
consider the application of the Kalman filter to a sim-
ple transport problem. Consider the one–dimensional
advection equation

∂u

∂t
+ U

∂u

∂x
= 0 (20)

where U = const represents the advection speed, ap-
plied to a periodic domain defined by the interval [−2, 2]
over the line. Take for the initial condition a “rectan-
gular” wave of the form

u(x, t = 0) =

{

1, for −1 ≤ x ≤ 0
0, otherwise

(21)

Using an up–wind finite difference scheme we can write
an approximate solution to the advection equation as

vj = Cvj−1 + (1 − C)vj (22)

where vj represents the numeric solution for u(x =
j∆x) with ∆x as the spatial interval, and where C =
U∆t/∆x is the Courant number, with time step ∆t [see
Press et al., 1996].

32 Simulation experiments: Using the parameters in
Table 1, obtain plots of the state evolution at the Table 1
initial and final times for an integration taken from
T0 = 0 to Tfinal = 1 using the following Courant
numbers: C = 1, C = 0.95, and C = 0.90. Explain
the difference in the results.

Let us now slowly build the components for a Kalman
filter assimilation experiment. We assume that all error
statistics necessary for the filter are normal and uncor-
related. We need to construct error covariance matri-
ces for all stochastic processes involved in the problem.
For simplicity, we take the perfect model assumption,
so that we do not have to worry about the model er-
ror ηk and its error covariance Qk, i.e., ηk = 0 at all
times. Moreover, we assume there are no correlations
among observational errors, so that the observation er-
ror covariance matrix Rk is diagonal. Furthermore, this
matrix is assumed to be time independent with diago-
nal elements specified for each experiment. The only
error covariance left to specify is that of the initial es-
timate, Pa

0 . Constructing valid spatial error covariance
functions is somewhat difficult. Here, we use a matlab

function gcorr provided with this exercise to construct

an appropriate error correlation field that can be used
to generate the covariance matrix. Use the ‘help’ of
this function to see its usage. For three choices of the
decorrelation length parameter (Ld = 0.5, 1.0 and 1.5),
answer the following questions
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33 Is the matrix you constructed an acceptable corre-
lation matrix?

34 Plot the two–point correlation function at two dis-
tinct arbitrary locations. Comment on what you
see.

35 Make a contour plot of the correlation matrix. What
you will see corresponds to the “shape” of a homo-
geneous and isotropic correlation matrix.

Now we have all the necessary components, write a
matlab program with the Kalman filter equations for
the state estimates x

f
k and xa

k, and their corresponding

covariances P
f
k and Pa

k, respectively. We will now use
this program in a series of so-called simulated observa-
tion experiments in which we take the actual solution
of the advection equation at specific places and times
then add Gaussian noise to them. This can be done in
matlab using the random number generator randn for
normally distributed variables. In particular, we inves-
tigate the ability of the Kalman filter to reconstruct the
true solution starting with an initial guess of zero, i.e.,
xa

0 = 0. Such experiments are usually termed ‘wave
generation’ in the literature.

In what follows, you are asked to make plots for the
true state and its estimate at the final time of the as-
similation as well as plots of the time evolution of the
domain–averaged forecast and analysis error standard
deviation.

The first case we consider is one for which the obser-
vations are all located over the left–half of the domain.

36 Following the choice of parameters in Table 2, obtain Table 2
the output for the true state and its estimate at the
final time of the assimilation experiment.

37 What happens if the observation error level is in-
creased to 0.1?

38 What happens if in Exercise 37, the assimilation pe-
riod is 5 time units?

39 Comment on the results you just obtained.

40 You can try lots of other combinations and possibil-
ities with this little program. Changing at least one
of the parameters in Table 2, here are a couple of
other possible scenarios to investigate:

a Take observations at every grid point.

b Change the Courant number to make the dynam-
ics more (numerically) dissipative, i.e. reduce the
timestep.

What happens to the filter results in these cases?
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4.3.4. Analytic Exercises. The following exercises are
based on the material in Ménard [1999]. Students
should familiarize themselves with that material before
attempting the exercises. The exercises are of more
general application than Kalman filtering but the ex-
perience gained in manipulating the statistical and al-
gebraic quantities discussed here are useful in Kalman
filtering.

41 Show that the analysis error variance can be ob-
tained as

P a(ri, ri) = P f (ri, ri) − pT
i Γ−1pi (23)

where

pi =
[

P f (ro
1, ri), P

f (ro
2, ri), . . . , P

f (ro
p, ri)

]T
(24)

is the forecast error covariance between all observa-
tion locations {ro

1, . . . , r
o
p} and the grid point ri (see

Ménard [1999, section 3]).

Assume that the observational error and forecast er-
ror are uncorrelated, as usual in Kalman filtering;
(a) First show that the analysis error covariance can
be written as,

Pa = (I− KH)Pf (I − KH)
T

+ KRKT (25)

where K is the Kalman gain matrix.
(b) Second, using equation (10) from Ménard [1999]
for the Kalman gain show that the above expression
for analysis error covariance reduces to

Pa = (I − KH)Pf (26)

Then get the desired result.

42 Let B(r, r′) = B0(‖r − r′‖) and C(r, r′) = C0(‖r −
r′‖) be homogeneous and isotropic correlation func-
tions that are twice differentiable. Defining the cor-
relation length-scale by

L2
B =

1

−
(

d2B0

dρ2

)

ρ=0

(27)

where ρ = ‖r − r′‖, and similarly for C, show that
the Hadamard product

D(r, r′) = B(r, r′)C(r, r′) (28)

is a homogeneous isotropic correlation function with
correlation length scale L2

D given by

1

L2
D

=
1

L2
B

+
1

L2
C

. (29)

(see Ménard [1999, section 4])
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43 Show that the gradient of the log-likelihood function
L(α) (i.e. Ménard [1999, equation (58)]) is given by

∂L

∂αm
= trace

[

(

Γ−1 − Γ−1
νν

TΓ−1
) ∂Γ

∂αm

]

(30)

(see Ménard [1999, section 5]).

First, use the cofactor expansion of the determinant
of a matrix A = [aij ],

det(A) =
∑

i

aijAij (31)

where Aij is the (i, j) cofactor. Second, use the fol-
lowing formula for the inverse

A−1 =
1

det(A)
(Ac)T , (32)

where Ac = [Aij ] is the matrix of cofactors, to eval-
uate

∂

∂αm
log (det (A)) . (33)

The differentiation of the inner-product of the log-
likelihood function is obtained by using a formula

for ∂A
−1

∂αm

obtained by differentiating AA−1 = I.

44 Show that the covariance model P [Ménard, 1999,
equation (75)] is anisotropic on a sphere S2, but its
corresponding covariance B in logarithmic space is
isotropic on S2 with a variance approximately equal
to γ2 for γ ≪ 1 (see Ménard [1999, section 7]).

5. Solutions

1 a Refer to Figure 16. If we consider each step in the Figure 16
model as a function, then the matrices represent
the partial derivatives of the output of that step
with respect to the input. Multiplying these ma-
trices is really applying the chain rule. In forward
mode, if we start evaluating this multiple matrix
product from the right, each successive multipli-
cation yields the partial derivatives of some inter-
mediate result (and finally the output variables)
with respect to the input variables. In reverse
mode, if we start from the left, each multiplica-
tion yields the partial derivatives of the output
variables with respect to some intermediate model
result (and finally the input variables).

b In forward mode it is the 3×5 matrix after the first
product has been evaluated, and in reverse mode
it is the 1×5 matrix holding the final result.
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c In forward mode, the number of multiplications
is:

nm = 3 × 2 × 5

+ 3 × 3 × 5

+ 1 × 3 × 5

= 90,

and the number of additions is:

na = 3 × (2 − 1) × 5

+ 3 × (3 − 1) × 5

+ 1 × (3 − 1) × 5

= 55.

In reverse mode, the number of multiplications is:

nm = 1 × 3 × 3

+ 1 × 3 × 2

+ 1 × 2 × 5

= 25,

and the number of additions is:

na = 1 × (3 − 1) × 3

+ 1 × (3 − 1) × 2

+ 1 × (2 − 1) × 5

= 15.

2 a On a UNIX system you can enter make run.
More generally you can compile and run boxmod 0.F.

b With a sufficiently rapid mixing time and no
sources we can calculate the chemical lifetime
from the time evolution of the global mean con-
centration. Using the concentration at year 5 sug-
gests a lifetime of 4.67 y, very close to the input.
Note that a much more rapid mixing rate, say
0.01 y, will violate the rather crude numerics of
this example.

3 The active variables are x, mixrate, invlif, src,

c new, c, and fc.
The required variables are c, ny, ntpy,

kt2pptv, mixrate, and invlif.

a Refer to Figures 2 and 7–9.

b Enter: ‘make cost’.

c Enter: ‘make boxmod 1 ad.f’.

d Enter: ‘make check’.
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e Enter: ‘make adjoint’ or refer to Figure 17. Figure 17

A unit change of the inverse lifetime has the largest
impact on the simulated concentration in box 1 at
the end of year 10 (−424 pptv × year). Note that
the answer depends on what units we choose for the
input and output variables.

4 The active variables are x, g p , mixrate, invlif,

c new, c, and y.
The required variables are c, g p , ny, ntpy,

kt2pptv, mixrate, and invlif.
The active and required variables are different from
the ones in the previous exercise, because the func-
tion that is differentiated is different. Switching
from reverse to forward mode does not change active
or required variables.

a Refer to Figure 10.

b Enter: ‘make forward’ or refer to Figure 18. Figure 18

c Enter: ‘make jacobian’.

The concentration in box 1 after year 10 is affected
most strongly by a unit change of the inverse life-
time (−424 pptv × year). The concentrations in
both boxes after year 10 are affected equally strongly
by a unit change of the mixing rate (±10.4 pptv ×
year). This time the answers do not depend on the
units chosen.

5 The modified code is provided in the solution sub-
directory. The values for the chemical lifetime and
interhemispheric mixing time are 5.03 y and 0.80 y
respectively. The sources may not be perfectly cor-
rect at all times. The model also assumes transport
does not vary from one year to the next. Finally, the
chemical lifetime is affected by the chemical state of
the atmosphere which may also change over time.

6 The computed values of lifetime and mixing time
change very little as we allow sources to be changed.
The concentration mismatch improves since the op-
timization can now adjust sources as well as model
parameters. We can see this as we loosen constraints
on sources (change rs in boxmod.h). However we
have now increased the number of degrees of freedom
in the problem and consequently the uncertainty of
any solution will also rise.

7 We see from trivial.dat that ∂c+

∂t = 1. In the
supplied code, the mass of a hemisphere is 1 so that
substituting into equation (5a) yields s+ = 2. We
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also see that c− = 1 always. Substituting into equa-
tion (6) yields s− = 1. Manipulating the definitions
of s+ and s− yields s1 = 1.5 and s2 = 0.5.

8 See the file README for instructions on running ei-
ther the Fortran or IDL versions. The zero gradient
between the boxes before the start of the calculation
means the calculation is not in steady-state at the
beginning. It takes a few years for the sources and
concentrations to come into equilibrium as the initial
state is forgotten. The uncertainties increase gradu-
ally through the calculation because of the amount
of data constraining each source at a given time.
A source in a given year is constrained by all data
after that time. This implies a stronger constraint
for early sources. The increase is small because of
the peculiar Green’s functions in this simple case
which give a response of 1.0 in the same hemisphere
and same year and 0.0 for the other hemisphere
(i.e mixing) and 0.5 in both hemispheres after that
(complete mixing). More physically realistic Green’s
functions would have a stronger link between current
sources and future data. Hence future data would
exercise more influence over source estimates.

9 For the 10 timestep case as supplied, the hemi-
spheric standard deviations are 0.08 and the global
0.06. These increase as the time period for the in-
version is decreased. The reason is that the average
total source s+ is constrained by the time trend in
concentration. For a fixed observational error this
trend is better constrained by longer records.

10 The covariance between the average source in each
hemisphere is -0.01. This negative correlation im-
plies that the sum of the two hemispheric sources
(i.e. the global source) is better constrained than ei-
ther source alone. For two variables with standard
deviation σ and correlation x, the variance of their
sum is 2σ2 + 2xσ2 < σ2 implying x < −0.5.

11 As we increase the uncertainty, the predicted values
approach the ‘correct’ value, i.e that consistent with
the data.

12 The minimum value of the cost function (which is
also the χ2 value for the inversion) is given by

(Ts0 − d0)
T

(

TC(s0)T
T + C(d0)

)−1
(Ts0 − d0)

(34)
where s is sources, d is data, T is the Jacobian ma-
trix, C(x) is the covariance matrix of x and the
subscript zero refers to initial estimates (see Taran-

tola [1987, p211]). For the initial uncertainties and
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zero prior sources χ2 = 3.91 i.e the misfit is too
large. Doubling the initial uncertainty will reduce
this to near 1 at the cost of doubling all predicted
uncertainties. This uniform scaling of uncertainties
will not change the final estimate since it does not
change the relative weighting of prior sources and
data. This can be seen by equally scaling the co-
variance matrices in Enting [1999, equation (A2b)].
Doubling only the source uncertainty gives χ2 = 1.1
and increases the uncertainty on the time-averaged
source in one hemisphere from 0.08 to 0.11.

13 The source difference between the hemispheres rises
from 1 to 1.16. The uncertainty rises because the
Jacobian is now more bland than the original. This
is a general property of Green’s function methods
that the more structure present in the Jacobian the
better sources will be resolved.

14 As supplied, the sources for both the Green’s func-
tion example and the trivial Kalman filter exam-
ple are consistent with the data. In the case of
the Kalman filter the initial state is also consistent
whereas in the Green’s function case we assumed
zero gradient between the hemispheres before the
start of the calculation. Thus the sources in the
Kalman filter case do not change at all whereas they
approach the true asymptotic value in the Green’s
function case. The uncertainty for the source in the
Kalman filter case decreases throughout the period.
This is because, with no stochastic covariance, the
Kalman filter is merely a recursive estimation of the
average source. The uncertainty decreases as more
and more data is added at each timestep. The final
uncertainty then is the same as the uncertainty for
the average source in the Green’s function case.

15 From the initial (incorrect) estimate of the sources
the two estimates evolve quite differently with the
Kalman filter case approaching the true solution and
the Green’s function case departing from it. This
can be explained by the amount of data which in-
fluences each source estimate. In the Kalman filter
as run in this example, the inclusion of more data
refines the estimate of the long-term average source.
Thus the final value of the source is most controlled
by data and least by the initial state. In the Green’s
function case the situation is reversed. The poste-
rior source calculated for the first year is influenced
by all subsequent data. In the last year, the cal-
culated posterior source is only influenced by the
last datapoint hence the prior estimate has greater
impact. This points out one important difference
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between the calculations. In the Green’s function
example we are estimating 20 independent sources
while in the Kalman filter example only 2. The av-

erage northern hemisphere source estimated by the
Green’s function run is 1.469 for this case while the
final value for the Kalman filter is 1.495. The dif-
ference occurs because the prior estimate acts as a
stronger constraint in the Green’s function than the
Kalman filter case. We saw in Exercise 9 that the
uncertainty for an average of equally and normally
distributed random variables is σ/

√
n where σ is the

standard deviation for each variable. This also holds
for initial estimates so that while the uncertainty on
each source is 0.5, the uncertainty of the average is
0.5/

√
10 ≈ 0.16. Thus the average source cannot

adjust as close to the true solution as might first ap-
pear. If we increase the uncertainties by the factor√

10 in the Green’s function example we produce the
same average source in that case as the final Kalman
filter estimate.

16 With the dramatically increased observational error,
concentration errors grow slightly through the pe-
riod. The source uncertainty continues to fall since
the estimates are still being refined by the observa-
tions, albeit only slowly. The simulated concentra-
tion error is controlled much more by the source er-
ror than the observational error. The uncertainty on
the final source is only slightly different despite the
great deal of essentially absent data from the mid-
dle of the run. This is because the average source,
here as in the Green’s function case, is controlled
by the long-term gradients and trends. Similarly,
with an initial incorrect state of (1, 0) the final es-
timate for the northern hemisphere source is 1.495
with the missing data compared with 1.496 with all
data. A case with the incorrect initial state and un-
certainties of (0.5, 1.5) throughout produces a final
estimate of (1.05±0.21, 0.49±0.19) i.e. only a small
change in the estimate but almost a doubling in the
uncertainty. Note that increased uncertainty in one
hemisphere affects uncertainty everywhere, an un-
fortunate and general property of inversions using
transport models.

17 In general the uncertainty is greater than the stochas-
tic covariance. The reason for this is somewhat sub-
tle but the underlying cause is that the sources are
not directly observed, we infer them from changes
in concentration. Hence to estimate sources at time
t we require concentrations at time t + 1 but these
are not available to the Kalman filter until we are
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estimating sources at time t + 1. At each timestep,
the new variance for the sources is equal to the old
one + the stochastic covariance. In the update step
of the Kalman filter, this covariance will be reduced
by the presence of data. However because current
data does not influence current sources this impact is
limited. The source uncertainty will not continue to
grow, but nor can we reduce it below the stochastic
covariance. At its most general this merely shows
that for an unobserved variable we are reliant on
the quality of our model. This would not happen if
we included some observations of the sources them-
selves.

18 With no Q the source uncertainties drop quickly af-
ter the start of the run. By the time there is a
change in slope of the concentrations (correspond-
ing to a change in sources) the uncertainty on the
source evolution is too small to allow sources to ad-
just. Recall from Exercise 17 that the ‘no Q’ case
corresponded to estimating constant sources, an as-
sumption obviously violated by the methyl chloro-
form record. Note that the concentration downturn
corresponded to the implementation of the Montreal
Protocol limiting the use of this gas.

19 The sources here are not used in the calculation at
all, unlike the Green’s function calculation. We can
regard the mismatch with sources as a commentary
on the trivial chemical transport model we are us-
ing or the veracity of reported sources. Unlike the
Green’s function calculation the Kalman filter is not
inherently a consistency check between estimated
sources and concentrations. We could perform such
a check by including extra observations correspond-
ing to prior estimates of the sources. This would
render the evolution model for the sources irrele-
vant so while the problem would be still formally a
Kalman filter it would not be a very interesting one.

20 The χ2 value naturally increases greatly around the
time of the onset of the Montreal Protocol when the
constant source approximation breaks down.

21 The average χ2 is 1.25 and the maximum 16.7.
Note that the sources change so rapidly through the
record that a given Q cannot hope to capture the
behaviour completely. In fact it is our random walk
evolution which fails. Given our trivial model for
evolution, we must either pick a Q so large as to
make our uncertainties large or so small as to pro-
duce a very spiky mismatch function. Note, though,
that χ2 is a random variable itself. It is properties of
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its distribution, including its trend in time, which we
should use as guidance. Finally note that Q repre-
sents a growth-rate of error i.e the rate of departure
of our random-walk model. Thus it is dependent on
the timestep of our numerical model.

22 With no stochastic covariance for the sources the
Kalman filter reduces to a recursive least squares
method in which data are used to successively refine
an estimate of the average source over the whole
period. By the end of the filter pass, all data has
been used so there is nothing for the smoother to
add. Since the estimate is being refined by succes-
sive data, the variance of the sources is quite small
by the end. The smoother uses this variance to ini-
tialize the variance of the backward pass and ulti-
mately the variances become small enough to cause
numerical problems.

As we have seen, a single average source is not a very
good representation for methyl chloroform over the
study period. The smoother in this problem makes
little sense in the absence of stochastic covariance.
Once we add Q things behave more sensibly. Calcu-
lated concentrations are closer to the observations,
in particular the levelling and decrease in concen-
trations is better simulated with the smoother than
the filter. Uncertainties are smaller as they must
be since the smoother refines the filter pass. Most
strikingly the sharp decrease seen in the reported
sources is captured with the smoother. The forward
pass does not decrease quickly enough since we need
future concentrations to estimate current sources.

23 The impact on modelled concentrations of all these
changes is small. If transport is slowed (mixing
time doubled) northern hemisphere sources will de-
crease since transport consitutes a loss to the north-
ern hemisphere. The reverse occurs in the southern
hemisphere. If lifetime is doubled (the chemical loss
reduced) then sources reduce everywhere. Doubling
the mixing time actually reduces the χ2 value from
1.25 to 1.0. This should not be interpreted as sug-
gesting the greater mixing time as a better parame-
ter choice however since the Kalman filter does not
take the prior estimates of sources into account.

24 24–31 A Matlab program named RTsolve1 in the
directory kalman/harmonic walks you through the
solution to Exercises 24–31. You can start running
this program from the Matlab prompt by invoking
its name, and hitting the carriage return key on your
keyboard after the explanatory pauses.
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32 32–40 The solutions to Exercises 32–40 can be seen
by running the Matlab program rtsolve2 in the
kalman/advect directory. Once again, the program
will pause from time to time with a small explana-
tion about the solution.

41 Subtracting the true state x we get from equa-
tion (9) in Ménard [1999] and using equation (3)
in Ménard [1999],

x̃a
k = (I − KH)x̃f

k + Kεo
k (35)

where x̃a
k = xk − x̂a

k and x̃
f
k = xk − x̂

f
k . Taking the

outer product of x̃a
k, then the conditional expecta-

tion, and assuming that x̃
f
k is uncorrelated with εo

k,
we get

Pa
k = (I − KkHk)Pf

k (I− KkHk)
T

+ KkRkK
T
k

(36)
where Pa

k = 〈x̃a
k(x̃a

k)T |yo
k, . . . ,yo

1〉, and

P
f
k = 〈x̃f

k

(

x̃
f
k

)T

|yo
k, . . . ,yo

1〉. Expanding (36), we

get

Pa
k = P

f
k − KkHkP

f
k − P

f
kH

T
k KT

k

+KkHkP
f
kH

T
k KT

k + KkRkK
T
k

= (I − KkHk)Pf
k − P

f
kH

T
k KT

k

+Kk(HkP
f
kH

T
k + Rk)KT

k . (37)

Substituting equation (10) from Ménard [1999] into
the last expression of (37) we get

Pa
k = (I − KkHk)Pf

k − P
f
kH

T
k KT

k + P
f
kH

T
k KT

k

(38)

= (I − KkHk)Pf
k (39)

Using the Kalman gain [Ménard, 1999, equation
(10)], (39) can be rewritten as

Pa
k = P

f
k − (HkP

f
k)T Γ−1

k (HkP
f
k) (40)

The matrix HkP
f
k is p × n, and it represents the

forecast error covariance between the p observation
locations and the n grid points. Let pi denote the
column vector of forecast error covariances between
all p observations and a single grid point ri,

pi =
[

P f (ro
1, ri), P

f (ro
2, ri), . . . , P

f (ro
p, ri)

]T
. (41)

We verify that

⌊
(

HPf
)T

Γ−1
(

HPf
)

⌋i,j = pT
i Γ−1pj (42)

which gives the result

P a(ri, ri) = P f (ri, ri) − pT
i Γ−1pi (43)
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42 Since B and C are homogeneous and isotropic func-
tions, D can only be a function of ρ = ‖r − r′‖.
Moreover, at ρ = 0, D0(0) = 1, thus D is a homo-
geneous isotropic correlation function. From

D0(ρ) = B0(ρ)C0(ρ), (44)

we get

∂2D0

∂ρ2
=

∂2B0

∂ρ2
+ 2

∂B0

∂ρ

∂C0

∂ρ
+ B0

∂2C0

∂ρ2
. (45)

At ρ = 0, B = C = 1, and ∂B
∂ρ = ∂B

∂ρ = 0, and thus
we get

(

∂2D0

∂ρ2

)

ρ=0

=

(

∂2B0

∂ρ2

)

ρ=0

+

(

∂2C0

∂ρ2

)

ρ=0

, (46)

from which the result on correlation length-scales
follows.

43 Let us first write

∂

∂αm
det(A) =

∑

ij

∂det(A)

∂aij

∂aij

∂αm
. (47)

Differentiating the expansion in cofactors we get

∂det(A)

∂aij
= Aij , (48)

since in the cofactor expansion all the Aij do not
contain aij . It then follows

∂

∂αm
det(A) =

∑

ij

Aij
∂aij

∂αm

=
∑

i





∑

j

Aij
∂aij

∂αm





=
∑

i

[

(Ac)T ∂A

∂αm

]

ii

= trace

[

(Ac)T ∂A

∂αm

]

. (49)

Using the formula for the inverse we get,

trace

[

(Ac)T ∂A

∂αm

]

= trace

[

det(A)A−1 ∂A

∂αm

]

= det(A)trace

[

A−1 ∂A

∂αm

]

=
∂

∂αm
det(A), (50)
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from which we obtain

∂

∂αm
log(det(A)) = trace

[

A−1 ∂A

∂αm

]

. (51)

Differentiating AA−1 = I we get

∂A−1

∂αm
= −A−1 ∂A

∂αm
A−1, (52)

from which the inner product can be readily evalu-
ated as

∂

∂αm
ν

TA−1
ν = −ν

TA−1 ∂A

∂αm
A−1

ν

= trace

[

−ν
TA−1 ∂A

∂αm
A−1

ν

]

= trace

[

−A−1
ν

T
νA−1 ∂A

∂αm

]

.(53)

44 The anisotropy of the covariance model

P (r, r′) = γ2χ̂(r)χ̂(r′)C(r, r′), (54)

arises from the fact that for any orthogonal trans-
formation g(•),

χ̂(g(r))χ̂(g(r′)) 6= χ̂(r)χ̂(r′), (55)

except when the mixing ratio field is uniform. Ac-
cording to equation (29) from Ménard [1999] we ob-
tain

B(r, r′) = log

[

1 +
P (r, r′)

χ̂(r)χ̂(r′)

]

= log
[

1 + γ2C(r, r′)
]

≈ γ2C(r, r′), (56)

and thus the covariance function B is isotropic.
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Appendix: System and Software Requirements

Note that this information is also included in the README
file on the CD-ROM.

Exercise 1 does not require any software. Exercise 2
requires a Fortran compiler, either Fortran-77 or Fortran-
90. To run the supplied code, compile then execute the file
boxmod_0.f in the adjoint/sens directory.

Exercises 3–6 require that the TAMC system be installed.
Ideally this should use a Unix system connected to the inter-
net. If internet connection is not available, the output from
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the TAMC programme is provided for each exercise. This
output should be linked with the relevant TAMC libraries.
UNIX commands to install these libraries are described in
the INSTALL file in the adjoint/tamc directory on the CD-
ROM.

Exercises 7–13 can be run in two different ways. The
green/idl directory contains IDL scripts to execute the ex-
amples. The supplied code may be executed by typing
@rungreen at the IDL> prompt. The green/fortran direc-
tory contains Fortran-90 code to execute the examples. It
can be run by compiling and linking the two files green.f90
and bayesinv.f90. No external libraries are required. On a
system supporting the make utility, a Makefile is included
to compile, link and execute the example with the single
command make green.

Exercises 14–17 can be run in two different ways. The
kalman/box/trivial/idl directory contains idl scripts to
execute the examples. The supplied code can be run by
typing @runkf1 at the IDL> prompt. Equivalent Fortran-
90 code is contained in kalman/box/trivial/fortran. It
can be run by compiling and executing the file kf.f90. No
external libraries are required. On a system supporting the
make utility, a Makefile is included to compile, link and
execute the example with the single command make kf.

Exercises 18–23 can be run in two different ways. The
kalman/box/ch3ccl3/idl directory contains idl scripts to
execute the examples. The supplied code can be run by
typing @runkf2 at the IDL> prompt. The equivalent Fortran-
90 code is contained in kalman/box/ch3ccl3/fortran. It
can be run by compiling and executing the file kf.f90. No
external libraries are required. On a system supporting the
make utility, a Makefile is included to compile, link and
execute the example with the single command make kf. The
idl version is preferable since it contains graphical display
of the results which will make interpretation easier. Note
that on systems with 8 character file-names + 3 character
extension (such as MS-DOS), you may need to change the
names of the c_CH3CCl3.d and src_CH3CCl3.d files.

Exercises 24–40 require the MATLAB program. The code
for Exercises 24–31 is found in the kalman/dynamic/oscill
directory. It can be started by running the program lew252m
from within MATLAB. The code for Exercises 32–40 is
found in the kalman/dynamic/advect directory. It can be
started by running the program rtsolve2 from within MAT-
LAB.

Exercises 41–44 are analytical and do not require any soft-
ware.
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program boxmod

implicit none
c parameters

integer ny ! number of years
integer ntpy ! number of time steps per year
parameter(ny=10,ntpy=50)

real src(2,ny) ! sources
real mixrate, invlif ! 1/mixing rate; 1/life time

real kt2pptv ! conversion source to concentration
integer i,l ! loop counters

real c(2),cnew ! concentrations
integer y ! year of source
real src n,src s,tot ! fraction in nh and sh, total in kt

c initialize sources
c read three comment lines plus the 1977 record,

c i.e. start with the 1978 sources
open(unit=1,file=’src CH3CCl3.d’,status=’old’)
read(1,’(////)’)

do i=1,ny
read(1,’(8x,i4,2(f6.3),f6.1)’) y,src n,src s,tot

src(1,i) =src n*tot
src(2,i) =src s*tot

end do
close(1)

c initialize transport and sink

mixrate = 1. ! mixing rate in 1/year
invlif = 1./4.7 ! inverse lifetime in 1/year

! sander houweling found 4.7 years
c conversion for kt to pptv within a hemisphere

kt2pptv = 0.471 * 2 * 12/133.5

c initialize concentration with values for 1978
c(1) = 84. ! northern box

c(2) = 60. ! southern box
c output

write(*,’(a50)’) ’The simulated concentration is : ’
write(*,’(a10,2(a20))’),’year’,’box1’,’box2’
write(*,’(i10,2(12x,f8.4))’)

. 0,c(1),c(2)
c calculate concentrations with forward differencing box model

c and add contribution to misfit function every year
c (cnew stores the new value of c(1) because the old is
c needed for computation of c(2) )

do i=1,ny
do l=1,ntpy

cnew = c(1) + 1./ntpy *
. ( kt2pptv*src(1,i) - (c(1)-c(2))

. * mixrate - invlif*c(1) )
c(2) = c(2) + 1./ntpy *

. ( kt2pptv*src(2,i) - (c(2)-c(1))

. * mixrate - invlif*c(2) )
c(1) = cnew

enddo
c output

write(*,’(i10,2(12x,f8.4))’)
. i,c(1),c(2)
enddo

end

Figure 1. The code of Boxmod.

Figure 1. The code of Boxmod.
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C================================================

C The subroutine "MODEL" is called by the optimization
C procedure. It has to calculate the cost function "FC"

C depending on the control vector "X(N)".
C================================================

SUBROUTINE MODEL( N, X, FC )

implicit none
INTEGER N

REAL X(N), FC

#include "boxmod.h"
integer i,j,l ! loop counters
real c(2),cnew ! concentrations

c tamc directive to initialize a tape for the trajectory

c cadj init tape1 = ’trajectory’
c alternatively memory can be used
cadj init tape1 = MEMORY

c copy control variables

mixrate = x(1)
invlif = x(2)

do i=1,ny
do j=1,2

src(j,i)=x(2+i+(j-1)*ny)

enddo
end do

c initialize concentration with values for 1978
c(1) = 84. ! northern box
c(2) = 60. ! southern box

c calculate concentrations with forward differencing box model

c and add contribution to misfit function every year
c (cnew stores the new value of c(1) because the old is

c needed for computation of c(2) )
do i=1,ny

do l=1,ntpy

cadj store c = tape1
cnew = c(1) + 1./ntpy *

. ( kt2pptv*src(1,i) - (c(1)-c(2))

. * mixrate - invlif*c(1) )
c(2) = c(2) + 1./ntpy *

. ( kt2pptv*src(2,i) - (c(2)-c(1))

. * mixrate - invlif*c(2) )

c(1) = cnew
enddo

enddo
c set output variable

fc=c(1)

END

Figure 2. Subroutine model defining the function to be
differentiated in Exercise 3. The subroutine has been con-
structed by rearranging the code of Boxmod. The header file
boxmod.h is listed in Figure 3.

Figure 2. Subroutine model defining the function to be differentiated in Exercise 3. The subroutine has
been constructed by rearranging the code of Boxmod. The header file boxmod.h is listed in Figure 3.
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c header file for boxmod

c parameters
integer ny ! number of years

integer ntpy ! number of time steps per year
parameter(ny=10,ntpy=50)

c variables

real src(2,ny) ! sources
real mixrate, invlif ! 1/mixing rate; 1/life time

real kt2pptv ! conversion source to concentration
common /vars / mixrate, invlif, src, kt2pptv

c
c values of control variables:

real src0(2,ny) ! sources

real mixrate0, invlif0 ! 1/mixing rate; 1/life time
common /cvars / mixrate0, invlif0, src0

Figure 3. Header file boxmod.h for subroutines numbmod,
model, initmod and postmod.

Figure 3. Header file boxmod.h for subroutines numbmod, model, initmod and postmod.
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subroutine admodel( n, x, fc, adx, adfc )

C************************************************************
C************************************************************

C** This routine was generated by the **
C** Tangent linear and Adjoint Model Compiler, TAMC 4.97 **
C************************************************************

C************************************************************
implicit none

C==============================================
C define parameters

C==============================================
integer ntpy
parameter ( ntpy = 50 )

integer ny
parameter ( ny = 10 )

C==============================================
C define common blocks
C==============================================

common /advars/ admixrate, adinvlif, adsrc
real adinvlif, admixrate, adsrc(2,ny)

common /vars/ mixrate, invlif, src, kt2pptv
real invlif, kt2pptv, mixrate, src(2,ny)

C==============================================
C define arguments
C==============================================

integer n
real adfc, adx(n), fc, x(n)

C==============================================
C define local variables
C==============================================

real adc(2), adcnew, c(2), cnew
integer i, ip1, j, l

C----------------------------------------------
C RESET GLOBAL ADJOINT VARIABLES

C----------------------------------------------
call adzero

C----------------------------------------------

C RESET LOCAL ADJOINT VARIABLES
C----------------------------------------------

do ip1 = 1, 2
adc(ip1) = 0.

end do

adcnew = 0.

Figure 4. The adjoint and modified forward codes of
Boxmod, declaration and initialization of adjoint variables.
TAMC output has been slightly edited to fit better in the
figure.

Figure 4. The adjoint and modified forward codes of Boxmod, declaration and initialization of adjoint
variables. TAMC output has been slightly edited to fit better in the figure.
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C----------------------------------------------

C ROUTINE BODY
C----------------------------------------------

C----------------------------------------------
C FUNCTION AND TAPE COMPUTATIONS
C----------------------------------------------

mixrate = x(1)
invlif = x(2)

do i = 1, ny
do j = 1, 2

src(j,i) = x(2+i+(j-1)*ny)
end do

end do

c(1) = 84.
c(2) = 60.

do i = 1, ny
do l = 1, ntpy

call adstore( ’memory 1 model c’,16,c,8,2,1+((-1)+i)

. *ntpy+l-1)
cnew = c(1)+1./ntpy*(kt2pptv*src(1,i)-(c(1)-c(2))

. *mixrate-invlif*c(1))
c(2) = c(2)+1./ntpy*(kt2pptv*src(2,i)-(c(2)-c(1))

. *mixrate-invlif*c(2))
c(1) = cnew

end do

end do
fc = c(1)

C----------------------------------------------
C ADJOINT COMPUTATIONS
C----------------------------------------------

mixrate = x(1)
invlif = x(2)

adc(1) = adc(1)+adfc
adfc = 0.

do i = ny, 1, -1
do l = ntpy, 1, -1

call adresto( ’memory 1 model c’,16,c,8,2,1+((-1)+i)

. *ntpy+l-1 )
adcnew = adcnew+adc(1)

adc(1) = 0.
adinvlif = adinvlif-adc(2)*1./float(ntpy)*c(2)
admixrate = admixrate-adc(2)*1./float(ntpy)

. *(c(2)-c(1))
adsrc(2,i) = adsrc(2,i)+adc(2)*1./float(ntpy)*kt2pptv

adc(1) = adc(1)+adc(2)*1./float(ntpy)*mixrate
adc(2) = adc(2)*(1-1./float(ntpy)*(mixrate+invlif))

adc(2) = adc(2)+adcnew*1./float(ntpy)*mixrate
adc(1) = adc(1)+adcnew*(1-1./float(ntpy)

. *(mixrate+invlif))

adinvlif = adinvlif-adcnew*1./float(ntpy)*c(1)
admixrate = admixrate-adcnew*1./float(ntpy)

. *(c(1)-c(2))
adsrc(1,i) = adsrc(1,i)+adcnew*1./float(ntpy)*kt2pptv

adcnew = 0.
end do

end do

adc(2) = 0.
adc(1) = 0.

do i = 1, ny
do j = 1, 2

adx(2+i+(j-1)*ny) = adx(2+i+(j-1)*ny)+adsrc(j,i)

adsrc(j,i) = 0.
end do

end do
adx(2) = adx(2)+adinvlif

adinvlif = 0.
adx(1) = adx(1)+admixrate
admixrate = 0.

end

Figure 5. The adjoint and modified forward codes of
Boxmod, function computation including computation and
storing of c as well as adjoint computations including read-
ing of c. TAMC output has been slightly edited to fit better
in the figure.
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Figure 5. The adjoint and modified forward codes of Boxmod, function computation including compu-
tation and storing of c as well as adjoint computations including reading of c. TAMC output has been
slightly edited to fit better in the figure.
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subroutine adzero

C************************************************************
C************************************************************

C** This routine was generated by the **
C** Tangent linear and Adjoint Model Compiler, TAMC 4.97 **
C************************************************************

C************************************************************
implicit none

C==============================================
C define parameters

C==============================================
integer ny
parameter ( ny = 10 )

C==============================================
C define common blocks

C==============================================
common /advars/ admixrate, adinvlif, adsrc
real adinvlif, admixrate, adsrc(2,ny)

C==============================================
C define local variables

C==============================================
integer ip1, ip2

admixrate = 0.
adinvlif = 0.
do ip2 = 1, ny

do ip1 = 1, 2
adsrc(ip1,ip2) = 0.

end do
end do
end

Figure 6. The adjoint and modified forward codes of
Boxmod, subroutine adzero for initialization of global ad-
joint variables. TAMC output has been slightly edited to fit
better in the figure.

Figure 6. The adjoint and modified forward codes of Boxmod, subroutine adzero for initialization of
global adjoint variables. TAMC output has been slightly edited to fit better in the figure.
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C================================================

C This subroutine sets the number
C of control variables

C================================================
SUBROUTINE NUMBMOD( N )
implicit none

#include "boxmod.h"
INTEGER N

n = 2+2*ny

END

Figure 7. Code of Subroutine numbmod. numbmod is one of
the subroutines needed by TAMLINK to link admodel to a main
program for computation of the sensitivity. The header file
boxmod.h is listed in Figure 3.

Figure 7. Code of Subroutine numbmod. numbmod is one of the subroutines needed by TAMLINK to link
admodel to a main program for computation of the sensitivity. The header file boxmod.h is listed in
Figure 3.
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C================================================

C The subroutine "INITMOD" is called before the
C optimization. It must set a first guess

C of the parameter vector.
C It may also contain the initialization of
C the model.

C================================================
SUBROUTINE INITMOD( N, X )

implicit none

INTEGER N
REAL X(N)

#include "boxmod.h"

integer i,j ! loop counter

integer y ! year of source
real src n,src s,tot ! fraction in nh and sh,

! total in kt

c initialize sources
c read three comment lines plus the 1977 record,

c i.e. start with the 1978 sources
open(unit=1,file=’src CH3CCl3.d’,status=’old’)

read(1,’(////)’)
do i=1,ny

read(1,’(8x,i4,2(f6.3),f6.1)’) y,src n,src s,tot

src0(1,i) =src n*tot
src0(2,i) =src s*tot

end do
close(1)

c initialize transport and sink
mixrate0 = 1. ! mixing rate in 1/year

invlif0 = 1./4.7 ! inverse lifetime in 1/yr
! sander houweling found 4.7 years

c conversion for kt to pptv within a hemisphere
c we use 0.471 to transform from

c gigatons of carbon in co2 to ppmv in the entire atmosphere
c the ratio of the molecular weights of carbon and CH3CCl3

c is approximately 12/133.5
c replacing Gt by kt and ppmv by pptv cancels out

kt2pptv = 0.471 * 2 * 12/133.5

c set first guess of (potential) control vars

x(1) = mixrate0
x(2) = invlif0

do i=1,ny
do j=1,2

x(2+i+(j-1)*ny)=src0(j,i)

enddo
end do

END

Figure 8. Code of Subroutine initmod. initmod is one of
the subroutines needed by TAMLINK to link admodel to a main
program for computation of the sensitivity. The header file
boxmod.h is listed in Figure 3.

Figure 8. Code of Subroutine initmod. initmod is one of the subroutines needed by TAMLINK to link
admodel to a main program for computation of the sensitivity. The header file boxmod.h is listed in
Figure 3.
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C================================================

C The subroutine "POSTMOD" is called after
C the optimization.

C It should contain the output of the results.
C================================================

SUBROUTINE POSTMOD( N, X, FC, ADX )

implicit none

INTEGER N
REAL X(N), FC, ADX(N)

INTEGER I

#include "boxmod.h"

write(*,’(a25,3(2x,f13.4))’)
. ’The value of fc is : ’,fc

write(*,’(a25)’) ’Its derivatives are : ’
write(*,’(a55,1(2x,f13.4))’)
. ’with resp. to mixing rate : ’, adx(1)

write(*,’(a55,1(2x,f13.4))’)
. ’with resp. to inv. lifetime : ’, adx(2)

write(*,’(a55)’) ’with resp. to sources : ’
write(*,’(a10,2(a30))’),’year’,’box1’,’box2’

do i=1,ny
write(*,’(i10,2(22x,f8.4))’)

. i,adx(2+i),adx(2+i+ny)

end do
END

Figure 9. Code of Subroutine postmod. postmod is one of
the subroutines needed by TAMLINK to link admodel to a main
program for computation of the sensitivity. The header file
boxmod.h is listed in Figure 3.

Figure 9. Code of Subroutine postmod. postmod is one of the subroutines needed by TAMLINK to link
admodel to a main program for computation of the sensitivity. The header file boxmod.h is listed in
Figure 3.
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C================================================

C This is the top level routine,
C it has to calculate the dependent variables Y(M)

C out of the independent variables X(N)
C================================================

SUBROUTINE FUNC( N, X, M, Y )

INTEGER N, M
REAL X(N), Y(M)

#include "boxmod.h"

integer i,j,l ! loop counters
real c(2),cnew ! concentrations

c tamc directive to initialize a tape for the trajectory
c (adjoint code is generated to check tangent linear code)

c cadj init tape1 = ’trajectory’
c alternatively memory can be used
cadj init tape1 = MEMORY

c copy control variables
mixrate = x(1)

invlif = x(2)
c initialize concentration with values for 1978

c(1) = 84. ! northern box
c(2) = 60. ! southern box

c calculate concentrations with forward differencing box
c model and add contribution to misfit function every year

c (cnew stores the new value of c(1) because the old is
c needed for computation of c(2) )

do i=1,ny

do l=1,ntpy
cadj store c = tape1

cnew = c(1) + 1./ntpy *
. ( kt2pptv*src(1,i) - (c(1)-c(2))

. * mixrate - invlif*c(1) )
c(2) = c(2) + 1./ntpy *

. ( kt2pptv*src(2,i) - (c(2)-c(1))

. * mixrate - invlif*c(2) )
c(1) = cnew

enddo
c save output

do j=1,2

y(j+(i-1)*2) = c(j)
enddo

enddo
END

Figure 10. Subroutine func defining the function to be
differentiated in Exercise 4. The subroutine has been con-
structed by rearranging the code of Boxmod. The header file
boxmod.h is listed in Figure 3.

Figure 10. Subroutine func defining the function to be differentiated in Exercise 4. The subroutine has
been constructed by rearranging the code of Boxmod. The header file boxmod.h is listed in Figure 3.
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subroutine g func( n, x, m, y, g p , g x, ldx, g y, ldy )
C***********************************************************

C***********************************************************
C** This routine was generated by the **
C** Tangent linear and Adjoint Model Compiler, TAMC 4.97 **

C***********************************************************
C***********************************************************

implicit none
C==============================================

C define parameters
C==============================================

integer g pmax

parameter ( g pmax = 20 )
integer ntpy

parameter ( ntpy = 50 )
integer ny
parameter ( ny = 10 )

C==============================================
C define common blocks

C==============================================
common /g vars/ g mixrate, g invlif

real g invlif(g pmax)
real g mixrate(g pmax)
common /vars/ mixrate, invlif, src, kt2pptv

real invlif
real kt2pptv

real mixrate
real src(2,ny)

C==============================================

C define arguments
C==============================================

integer g p
integer ldx

integer ldy
integer m
integer n

real g x(ldx,n)
real g y(ldy,m)

real x(n)
real y(m)

C==============================================

C define local variables
C==============================================

real c(2)
real cnew

real g c(g pmax,2)
real g cnew(g pmax)
integer g i

integer i
integer j

integer l
C----------------------------------------------

C CHECK PACT LOWER EQUAL PMAX
C----------------------------------------------

if (g p .gt. g pmax) then

stop ’error : pact is greater than pmax’
endif

Figure 11. The tangent linear and forward code of Boxmod,
declaration and initialization of tangent linear variables.
TAMC output has been slightly edited to fit better in the
figure.

Figure 11. The tangent linear and forward code of Boxmod, declaration and initialization of tangent
linear variables. TAMC output has been slightly edited to fit better in the figure.
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C----------------------------------------------
C TANGENT LINEAR AND FUNCTION STATEMENTS

C----------------------------------------------
do g i = 1, g p

g mixrate(g i ) = g x(g i ,1)

end do
mixrate = x(1)

do g i = 1, g p
g invlif(g i ) = g x(g i ,2)

end do
invlif = x(2)
do g i = 1, g p

g c(g i ,1) = 0.
end do

c(1) = 84.
do g i = 1, g p

g c(g i ,2) = 0.

end do
c(2) = 60.

do i = 1, ny
do l = 1, ntpy

do g i = 1, g p
g cnew(g i ) = g c(g i ,2)*1./float(ntpy)*mixrate

$+g c(g i ,1)*(1-1./float(ntpy)*(mixrate+invlif))

$-g invlif(g i )*1./float(ntpy)*c(1)-g mixrate(g i )
$*1./float(ntpy)*(c(1)-c(2))

end do
cnew = c(1)+1./ntpy*(kt2pptv*src(1,i)-(c(1)-c(2))

$*mixrate-invlif*c(1))

do g i = 1, g p
g c(g i ,2) = g c(g i ,2)*(1-1./float(ntpy)

$*(mixrate+invlif))+g c(g i ,1)*1./float(ntpy)*mixrate
$-g invlif(g i )*1./float(ntpy)

$*c(2)-g mixrate(g i )*1./float(ntpy)*(c(2)-c(1))
end do
c(2) = c(2)+1./ntpy*(kt2pptv*src(2,i)-(c(2)-c(1))

$*mixrate-invlif*c(2))
do g i = 1, g p

g c(g i ,1) = g cnew(g i )
end do
c(1) = cnew

end do
do j = 1, 2

do g i = 1, g p
g y(g i ,j+(i-1)*2) = g c(g i ,j)

end do
y(j+(i-1)*2) = c(j)

end do

end do
end

Figure 12. The tangent linear and forward code of Boxmod,
function and tangent linear computations. TAMC output
has been slightly edited to fit better in the figure.

Figure 12. The tangent linear and forward code of Boxmod, function and tangent linear computations.
TAMC output has been slightly edited to fit better in the figure.
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C================================================

C This subroutine sets the number
C of independent and dependent variables

C================================================
SUBROUTINE SETFUNC( N, M )
implicit none

#include "boxmod.h"
INTEGER N, M

n = 2
m = 2*ny

END

Figure 13. Code of Subroutine setfunc. setfunc is one of
the subroutines needed by TAMLINK to link g func to a main
program for computation of the sensitivity. The header file
boxmod.h is listed in Figure 3.

Figure 13. Code of Subroutine setfunc. setfunc is one of the subroutines needed by TAMLINK to link
g func to a main program for computation of the sensitivity. The header file boxmod.h is listed in Figure
3.
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C================================================

C The subroutine INITFUNC
C must set the independent variables

C================================================
SUBROUTINE INITFUNC( N, X )
implicit none

INTEGER N

REAL X(N)
#include "boxmod.h"

integer i ! loop counter
integer y ! year of source

real src n,src s,tot ! fraction in nh and sh
! total in kt

c initialize sources
c read three comment lines plus the 1977 record,
c i.e. start with the 1978 sources

open(unit=1,file=’src CH3CCl3.d’,status=’old’)
read(1,’(////)’)

do i=1,ny
read(1,’(8x,i4,2(f6.3),f6.1)’) y,src n,src s,tot

src(1,i) =src n*tot
src(2,i) =src s*tot

end do

close(1)

c initialize transport and sink
mixrate0 = 1. ! mixing rate in 1/year
invlif0 = 1./4.7 ! inverse lifetime in 1/yr

! sander houweling found 4.7 years

c conversion for kt to pptv within a hemisphere
c we use 0.471 to transform from

c gigatons of carbon in co2 to ppmv in the entire atmosphere
c the ratio of the molecular weights of carbon and CH3CCl3
c should be something like 12/133.5

c replacing Gt by kt and ppmv by pptv cancels out
kt2pptv = 0.471 * 2 * 12/133.5

c set first guess of control vars
x(1) = mixrate0

x(2) = invlif0
END

Figure 14. Code of Subroutine initfunc. initfunc is
one of the subroutines needed by TAMLINK to link g func
to a main program for computation of the sensitivity. The
header file boxmod.h is listed in Figure 3.

Figure 14. Code of Subroutine initfunc. initfunc is one of the subroutines needed by TAMLINK to
link g func to a main program for computation of the sensitivity. The header file boxmod.h is listed in
Figure 3.
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C================================================

C The subroutine "POSTFUNC" is called at last
C It should contain the output of the results.

C================================================
SUBROUTINE POSTFUNC( N, X, M, Y, GDX, LDX )
implicit none

INTEGER N, M, LDX

REAL X(N), Y(M), GDX(LDX,M)

#include "boxmod.h"
integer i ! loop counters

write(*,’(a25)’) ’The sensitivities are : ’
write(*,’(a10,2(a20))’),’year’,’c box1’,’c box2’

write(*,’(a10,4(a10))’),’ ’,
. ’mixrate’,’1/lifet’,’mixrate’,’1/lifet’
do i=1,ny

write(*,’(i10,4(2x,f8.2))’)
. i,gdx(1,1+(i-1)*2),gdx(2,1+(i-1)*2),

. gdx(1,2+(i-1)*2),gdx(2,2+(i-1)*2)
end do

END

Figure 15. Code of Subroutine postfunc. postfunc is
one of the subroutines needed by TAMLINK to link g func
to a main program for computation of the sensitivity. The
header file boxmod.h is listed in Figure 3.

Figure 15. Code of Subroutine postfunc. postfunc is one of the subroutines needed by TAMLINK to
link g func to a main program for computation of the sensitivity. The header file boxmod.h is listed in
Figure 3.
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Figure 16. This diagram illustrates the differences in the
storage requirements and number of operations. The same
matrix product, whose result has 1 row and 5 columns, is
evaluated in forward mode, i.e. from right to left (top), and
in reverse mode, i.e. from left to right (bottom). In forward
mode the matrices holding the intermediate results have 5
columns, while in reverse mode they have 1 row.

Figure 16. This diagram illustrates the differences in the storage requirements and number of operations.
The same matrix product, whose result has 1 row and 5 columns, is evaluated in forward mode, i.e. from
right to left (top), and in reverse mode, i.e. from left to right (bottom). In forward mode the matrices
holding the intermediate results have 5 columns, while in reverse mode they have 1 row.
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===============================
COMPUTATION OF FUNCTION AND
DERIVATIVES IN REVERSE MODE

===============================
The value of fc is : 125.8274
Its derivatives are :

with resp. to mixing rate : -10.3982
with resp. to inv. lifetime : -424.1904
with resp. to sources :
year box1 box2

1 0.0056 0.0056
2 0.0069 0.0069
3 0.0086 0.0086
4 0.0106 0.0106
5 0.0132 0.0132
6 0.0163 0.0163
7 0.0202 0.0201
8 0.0251 0.0248
9 0.0327 0.0291

10 0.0554 0.0211

Figure 17. Sensitivities computed by adjoint model to Box-
mod.

Figure 17. Sensitivities computed by adjoint model to Boxmod.
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===============================
COMPUTATION OF FUNCTION AND
JACOBIAN IN FORWARD MODE

===============================
The sensitivities are :

year c box1 c box2
mixrate 1/lifet mixrate 1/lifet

1 –8.06 –71.67 8.06 –63.61
2 –8.64 –131.99 8.64 –123.34
3 –8.77 –185.58 8.77 –176.81
4 –8.49 –232.22 8.49 –223.73
5 –8.54 –272.68 8.54 –264.15
6 –9.12 –308.90 9.12 –299.78
7 –9.44 –341.67 9.44 –332.23
8 –9.53 –371.27 9.53 –361.74
9 –9.81 –398.41 9.81 –388.60

10 –10.40 –424.19 10.40 –413.79

Figure 18. Sensitivities computed by tangent linear model
to Boxmod.

Figure 18. Sensitivities computed by tangent linear model to Boxmod.
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Table 1. Parameters for the
finite–difference.

Domain for −2 ≤ x ≤ 2
Mesh size ∆x = 0.2
Time step ∆t = 0.05

Table 2. Observational error standard deviations.

Assimilation time period 1 time unit
Courant number 0.95
Obs frequency 4 × ∆t

Obs error std dev 0.02
Obs sparsity left–half of grid points
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