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Adjoint models are increasingly being developed for use in meteorology and oceanography. Typical
applications are data assimilation, model tuning, sensitivity analysis and determination of singular
vectors. The adjoint model computes the gradient of a cost function with respect to control
variables. Generation of adjoint code may be seen as the special case of differentiation of algorithms
in reverse mode, where the dependent function is a scalar.

The described method for adjoint code generation is based on a few basic principles, which
permits the establishment of simple construction rules for adjoint statements and complete adjoint
subprograms. These rules are presented and illustrated with some examples. Conflicts that occur
due to redefinition of variables and loops are also discussed.

Direct coding of the adjoint of a more sophisticated model is extremely time consuming and
subject to errors. Hence, automatic generation of adjoint code represents a distinct advantage. An
implementation of the method, described in this paper, is the Adjoint Model Compiler (AMC).

General Terms: adjoint model, differentiation of algorithms, inverse modeling, reverse mode
Additional Key Words and Phrases: adjoint operator, data assimilation, implicit functions, opti-
mization, vectorization

1. INTRODUCTION

Adjoint models are tools developed for inverse modeling of physical systems. In-
verse modeling is used in various fields of science such as geophysics and molecular
physics. Among the applications of adjoint models in oceanography and meteorol-
ogy are data assimilation, model tuning, sensitivity analysis, and determination of
singular vectors.

In meteorology and oceanography, combining a model with data is a crucial task.
Several methods have been developed for data assimilation. Sequential methods
put a model in a state which is, in general, not consistent with its dynamics. The
model is disturbed and needs some time to reach dynamic consistency. To keep
the disturbance as small as possible, data are prepared and only a correction of the
model state ”in the direction” of the data takes place (Fig.1). Several sequential
methods differ in the degree of consistency of the correction with model dynamics,
e.g. Nudging, Successive Correction, Optimal Interpolation, Kalman Filter [Ghil
1989]. In contrast, the adjoint method always guarantees full consistency with
the dynamics. By variation of control variables it is intended to adjust a model
trajectory as close as possible to the data (Fig.2). To quantify the misfit of a
model prediction, a cost function is introduced. This cost function is minimized
by use of an iterative algorithm. Starting with a first guess, in each iteration step
an improved vector of control variables is searched. Thereby the search direction
is computed from the gradient of the cost function with respect to the control
variables. The adjoint model computes this gradient vector. In data assimilation,
the control variables typically determine the initial conditions or the forcing for the
model [Talagrand and Courtier 1987; Courtier and Talagrand 1987; Giering and
Maier-Reimer 1996]. The use of an adjoint model in an optimization procedure is
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Fig. 1: Schematic representation of sequential methods. The model state is represented by the
value on the Y-axis.
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Fig. 2: Schematic representation of variational methods. Several trajectories differing in the
respective value of the cost function are displayed.
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Fig. 4. Adjoint model : advection and diffusion of influence

described in section 2.

In case of model tuning, data are used to optimize the model equations them-
selves. Optimization is performed analogously to data assimilation, but the control
variables are parameters in the underlying equations (for example numerical diffu-
sion or coupling-constants) [Schroter 1992; Louis 1991].

In the context of inverse modeling it is useful to look at a model of a physical
system as a mapping H of a vector of control variables X onto a vector of predictions
Y. The aim is to infer information about the control variables X from the model
prediction Y. Linearization of the model around a given point X defines the
tangent linear model, which is represented by the Jacobian matrix A(Xy) of the
mapping H. The tangent linear model maps variations of the control variables 6 X
onto variations of the model prediction §Y. The adjoint model is represented by
the adjoint A*(Xj) of the Jacobian. It maps in the reverse direction and computes
the influence of the control variables on a given anomaly of the model prediction.
A more detailed introduction to adjoint models is given in section 2.

Sensitivity analysis is another application of adjoint models [Cacucci 1981]. A
tangent linear model can be used to analyze the impact of small disturbances.
For instance, consider a tangent linear model of the advection of temperatures by
horizontal currents. If the temperature at one point is changed, this anomaly is
transported downstream and broadened by diffusion (Fig. 3). In contrast, the
adjoint model can be used to analyze the origin of any anomaly. As shown in
Figure 4, a difference at one location can be caused by propagation of an anomaly
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from upstream. Thereby, due to the effect of diffusion, the possible origin of the
anomaly is located in a broader area.

In order to forecast the time development of a system, it is useful to know which
initial perturbations amplify most rapidly [Webster and Hopkins 1994]. A pertur-
bation 6X implies the largest possible perturbation éY if it points in the direction
associated with the dominant eigenvector of the operator A*A. The dominant
eigenvectors are called singular vectors or the most unstable modes.

Applications described above obviously require a numerical code of the model
and its adjoint. The question is how practical coding of adjoint models can be
done.

Suppose we want to simulate a dynamical system numerically. The development
of a numerical simulation program is usually done in three steps. First, the analyt-
ical differential equations are formulated. Then a discretization scheme is chosen
and the discrete difference equations are constructed. The last step is to implement
an algorithm that solves the discrete equations in a programming language. The
construction of the adjoint model code may be implemented after any of these three
steps.

The analytical model equations are transformed into the adjoint equations by
applying the rules for analytical adjoint operators. These equations subsequently
are discretized and solved by use of a numerical algorithm. Since the product rule
is not valid for discrete operators, one has to be careful in constructing the discrete
adjoint operators. This method is mostly applied to box models having simple
boundary conditions [Schroter 1989)].

Constructing the adjoint model from the discrete model equations is usually done
by defining a Lagrange Function. The derivatives of the Euler-Lagrange equations
with respect to the model variables yield the discrete adjoint equations. Applying
this method, no adjoint operators have to be constructed. However, extensive and
cumbersome coding is necessary. The boundary conditions are handled separately
in most cases. Thacker has introduced this method and applied it to simple models
[Long and Thacker 1989a; Long and Thacker 1989b] . Also the adjoint code of
the GFDL ocean model has been constructed this way [Tzipperman et al. 1992;
Tzipperman et al. 1992].

The present article is concerned with the third method, where the adjoint code
is developed directly from the numerical code of the model. A numerical model is
an algorithm that can be viewed as a composition of differentiable functions, each
representing a statement in the numerical code. Note that the order of evaluation
of the individual functions is imposed by the algorithm. Differentiation of the
composition can be done by applying the chain rule. The resulting multiple product
can be computed in different ways:

Operating in forward mode, the intermediate derivatives are computed in the
same order as the model computes the composition. In contrast, the adjoint model
operates in reverse mode, i.e. the intermediate derivatives are computed in re-
verse order. A detailed introduction to differentiation of algorithms is given in
section 3. This method is feasible even for highly sophisticated models with com-
plicated boundary conditions. In this approach, a distinct adjoint model code
fragment corresponds to each model code statement. The adjoint code fragments
are composed in reverse order compared to the model code. For each kind of state-
ment simple rules can be formulated for constructing adjoint statements [Talagrand
1991; Thacker 1991]. This simplifies considerably the adjoint code construction and
debugging.

In section 4 some basic concepts for adjoint code generation from the model
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code are introduced, such as active and passive variables, locality, modularity, and
readability. Following these concepts, simple rules for the adjoint of most types of
statements are derived. The general rules are illustrated by some Fortran examples.
A problem of the reverse mode is to provide required variables, i.e. variables com-
puted by the model code and used by the adjoint code. Conflicts occurring due to
redefinition of required variables are described and solutions are given. Programs
written in modular languages like Fortran consist of procedures and functions. The
generation of the corresponding adjoint structure is explained below. It consists
of the argument list, declaration of all variables, initialization of adjoint variables,
and the combination of the adjoint statements.

The existence of simple rules for the construction of adjoint code suggests per-
forming this task automatically. Giering [Giering 1992] has developed a source
transformation tool (Adjoint Model Compiler, AMC) based on most of these rules.
It accepts Fortran-77 code for the computation of a function and generates Fortran-
77 code for the computation of the derivative. Another system (Odyssée) has been
developed by Rostaing [Rostaing et al. 1993] organized as a toolkit. The forward
mode of automatic differentiation is implemented by ADIFOR [Bischof et al. 1994],
another precompiler.

In many simulation programs an implicit or semi-implicit time integration scheme
is applied. To perform one time step an implicit equation is solved using an iter-
ative method. Applying the rules described in the previous sections, the adjoint
code would also be an iteration, which requires variables for each iteration. In sec-
tion 5 an alternative adjoint code for nonlinear implicit functions is presented. It
avoids storing or recomputing required variables and thus saves memory resources
or computation time.

An important aspect of computer programs is their performance, especially on
vector machines. Occasionally, a formal application of the simple rules creates from
a vectorizable loop an adjoint code fragment, which is not vectorizable. In section 6,
we discuss how to overcome this problem with some typical examples.

2. ADJOINT MODELS

Consider a dynamical physical system and a model describing this system. Let
D € R™ (m € N) be a set of observations and suppose that the model can compute
the values Y € R™ corresponding to these observations. How can the model be ma-
nipulated in order to obtain an optimal fit between observations and corresponding
model values?

To quantify the misfit we introduce a cost function

J::%(Y—D,Y—D) (1)

by the choice of an appropriate inner product (-, - ). This implies that least-squares-
fitting is intended: The smaller J is the better the model fits the data.

In order to manipulate the model, we specify a set of n € N parameters X, which
are called control variables in the following. The dependence of Y on X within the
model is given by a mapping

H:R* — R™
X —Y . (2)
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Thus, J can be expressed in terms of X by
J:R* — R
1 (3)
X — i(H(X)_D’ H(X)-D) .
The problem is to determine the set of control variables X that minimizes .J.
Effective minimization algorithms require the gradient Vx.J(Xo) of J with respect

to the control variables at a given point Xy. To first order we write the Taylor
expansion of J:

J(X) = J(Xo) + (VxJ(Xo), X = Xo) + o(|X — Xo) (4)
or, in short terms,
8] = (VxJ(Xo), 6X) . (5)

In the following we will use this shorthand notation whenever linear approximations
are involved. Suppose H is sufficiently regular, then for each parameter vector Xy
a variation of Y can be approximated to first order by

§Y = A(Xy) 6X (6)
where A(Xj) denotes the Jacobian of H at Xj. Due to the symmetry of the inner
product and the product rule the differentiation of (3) yields

‘ L1
8] = - (A(Xo)éX , H(Xo)— D)+ §(H(X0)—D, A(X0)6X )

(7)
= " (H(Xp) ~ D, A(X0)6X )

N | —

Using the definition of the adjoint operator A*:
(v, Aw) = (A", w) | (8)
we obtain
6] = (A" (Xo)(H(Xo)—D),6X) . (9)

Therefore, according to the definition of the gradient (5), the gradient of the cost
function with respect to the control variables is

VxJ(Xo) = A*(Xo) (H(Xo) - D) . (10)

The linear operator A(Xjg) represents the tangent linear model. Its adjoint
A*(Xy), which is linear as well, represents the adjoint model. Both operators
depend on the point Xy at which the model is linearized. According to (10) the
difference H(Xo) — D can be interpreted as a forcing of the adjoint model.

The computation of the cost function and its gradient for a given vector of control
variables is shown in Figure 5. A detailed analysis of required basic numerical
operations yields that this computation takes only 2-5 times the computation of
the cost function [Baur and Strassen 1983; Griewank 1989]. Alternatively, the
gradient vector Vx J(Xp) could be approximated by finite differences, which needs
at least n + 1 computations of the cost function. The ues of the adjoint model has
two advantages compared to finite differences, especially for large n it saves a lot
of run time and the computed gradient is exact.

The application of the adjoint model for optimization is illustrated by an example
in appendix A. Here, the computation of the cost function and its gradient as
shown in Figure 5 is performed by a module, which is called several times by the
optimization procedure.
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Fig. 5. Illustration of the evaluation of the cost function and its gradient vector

3. DIFFERENTIATION OF ALGORITHMS

In this section we show how a function H, defined by a numerical algorithm, can
be differentiated. Representing each step of the algorithm by a function, the com-
position of those functions is differentiated by use of the chain rule.

Evaluation of the derivative results in a multiple product of matrices each be-
longing to a particular step of the algorithm. For differentiation of scalar valued
functions, in terms of run time, it is favorable to compute this matrix product in
reverse order as compared to the original algorithm. This approach is called reverse
mode. In the second part of this section the general rule for performing one step
in reverse mode is derived for a scalar valued function.

3.1 Application of the chain rule
Let
H:R*» — R™
X =Y (11)

be a function defined by a numerical algorithm. Since an algorithm can be long and
complicated, it might be difficult to find an explicit representation of . However,
anumerical algorithm can be decomposed into K € N steps, each having an explicit
representation

H o RM-1 — RM 1=1,..,K
Zl—l — ZI ) ( ) (12)

In this mathematical representation the components of the variables Z' are different
from the variables in the numerical code. The numerical variables can change their
values from step to step during one computation of H(Xp). In contrast, the vector
Z! holds all n; intermediate results that are valid after the l-th step of the algorithm.
In this context a result can be regarded as valid as long as it is kept on any memory
unit of the computer. Thus, for p # ¢, components of Z? and Z¢ may be the values
of the same variable at different steps of the algorithm.
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The composition H of differentiable functions H'
K
H=H 0. . oH ::O’Hl, (13)
=1

can be differentiated according to the chain rule. For a differentiable function H
the Jacobian is defined by

OH; (X . .

Aij(Xo) == % i=1,..m;j=1..n). (14)

X] X=X,

Applying the chain rule to (13) yields:

OHE oMt
AXy) = ———— (1 L V=T . 15
(%) = 5781 zx—lzb HI(Xo) 970 |70=xo (1)
=1

Since matrix multiplication is associative, at least two strategies for evaluation of
the right hand side of (15) exist. Operating in forward mode the multiple product
is evaluated in the same order as the composition in (13), i.e. first g;‘f - g;‘; is
computed, then % is multiplied by the result and so on. In contrast, the reverse
oHK  amF-l
9ZK-1 " gzK-2"
diate results have n columns and in the latter case they have m rows. Thus, for

n < m, the forward mode needs less numerical computations, whereas for n > m
the situation is the other way around!. In general, the intermediate results of the
preceding step are required for evaluation of the Jacobian (see eq. 15). This causes
an essential difference between the two methods. While in the forward mode the
intermediate results are required in the same order as computed, in the reverse
mode they are required in reverse order.

By rigorous application of this concept, differentiation of an algorithm can be
performed automatically.

mode starts with the evaluation of In the former case all interme-

3.2 Differentiation of a scalar-valued function

In the context of optimization a scalar valued function has to be differentiated, i.e.
n > m = 1. Thus, the reverse mode is preferable. For m = 1 operating in reverse
mode is called adjoint method and the algorithm for computing the gradient is
called adjoint model. The rest of the paper is concerned with this case.

Let the decomposition of H be

K
H=_>mH, (16)
=1

where
HE . RrE-r R (17)
and thus nxg = m = 1. For an intermediate result

Zy = ()M (Xo) (1<1<K) (18)

i=1

I The sparsity of Jacobians can be used to reduce the number of computations. In this case the
total number of computations in forward and reverse mode depends on additional criteria.
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a variation 6Z' depends on a variation of the control variables §X, and can be
written as

d (@ HZ'(X))

1 _
87" = 0X

6X (19)
X=Xq
where 67° := §X. The intermeditate variation depends on the previous intermedi-
ate variation by:
o' (Z")

T _
07 =

671 (20)

11
z1-1=z}

The adjoint of an intermediate result is defined as the gradient of H with respect
to the intermediate result:

k
87" =V ) H(Z)|gep - (21)
i=[+1
By the definition of the gradient (5) we obtain
§H = (62", 62") | (22)

where (-, -) denotes the Euclidean inner product. This shows that an adjoint value
can be interpreted as the influence of the corresponding intermediate results on the
cost function. Since (22) holds for every [, we obtain by using (20):

(SZl_l
Zl—lzZé_l

VAN VAR >

<6*ZI_1,6ZI_1> — <6*Zl,6ZI>

- (e, (2220)
(o)

This holds for all §Z*~1, so that

bl

. o' (Z-HY
§*7-1 = (76Z1_1 >

—1—ryl—=1
21-1=7]

PAVA (23)
Zl—I:Zé—l

Equation (23) is the general rule to perform one step in the reverse mode. According
to

§*7° = X = Vx X, (24)

the gradient of ‘H with respect to the control variables is evaluated in the last step.
Since for the Euclidean inner product the adjoint operator is the transposed
matrix, (23) can be written as:

s 7I-1 = < 87{;(21_1)
DY az-"

i=1

§*Z; . (25)
Zl—lzzé‘l

Equation (25) is the basic equation for adjoint code generation.
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4. ADJOINT CODE

This section is concerned with the implementation of the general rule (25) for ad-
joint code construction. Among the various ways to implement (25) a scheme of
adjoint code construction should guarantee that the adjoint code is good to survey,
efficient, easy to debug, and quickly adaptable to changes in the code that computes
the cost function. For this purpose, some basic concepts are presented (see [Tala-
grand and Courtier 1987]). Following these concepts, simple rules for the adjoint
of most types of statements are derived. For each kind of statement an example
illustrates the general rules for construction of adjoint statements. The code frag-
ments shown in the examples are written in the Fortran-77 programming language
with some Fortran-90 extensions. Nevertheless, they may be easily translated into
other languages. Finally, the construction of a complete adjoint subprogram from
the individual adjoint statements will be discussed.

For convenience, we refer to the code, which computes the cost function, simply
as code. The code computing the adjoint model is denoted by adjoint code.

4.1 Basic concepts

4.1.1 Adjoint variables. The intermediate results Z! of section 3 denote the values
of variables in the code. In the adjoint code we compute the adjoints §* Z} of these
values. In order to hold those adjoint values, adjoint variables have to be defined.
Since the periods of validity of the values of one variable do not overlap and there
is a one to one mapping between values and adjoint values, the periods of validity
of the adjoint values do not overlap either. Thus, to hold these adjoint values, it is
sufficient to define one adjoint variable for each variable.

4.1.2 Active and passive variables. Variables depending on the control variables
and having an influence on the cost function are called active. An inter-procedural
data dependence analysis has to be applied to determine the active variables. Since
we deal with differentiation, only variables characterized by real numbers can be
active.

A constant does not depend on an intermediate result except for intermediate
results which are constants as well. In the former case the Jacobian corresponding
to the definition of the constant has a column consisting of zeros. Thus, according
to (23) the corresponding component of the adjoint intermediate result is lost. In
the latter case the adjoint intermediate result is also lost, because it is only used to
compute adjoint intermediate results, which will be lost later.

A diagnostic value does not influence any other intermediate result except for
other diagnostic values. In the former case the Jacobian corresponding to the step
where the diagnostic value disappears has a row consisting of zeros. Thus, according
to (25) the component of the adjoint intermediate result is zero. In the latter case
the adjoint intermediate result is also zero, because it is a linear combination of
adjoints of diagnostic values, which are zero.

Therefore, for constants and diagnostic values no corresponding adjoint values
have to be computed and thus no corresponding adjoint variables are needed. In
context of differentiation of algorithms they are called passive variables.

To each statement computing one or more active variables a corresponding ad-
joint statement must be constructed. All the remaining statements only change
values of passive variables and thus do not need an adjoint statement.

4.1.3 Locality. The position of an adjoint statement within the adjoint code is
determined by the order of statements in the code, if the adjoint code is a strict
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implementation of the reverse mode. It is consistent and useful to construct an
adjoint subprogram for every subprogram computing active variables. This concept
makes it easier to adapt the adjoint code to changes in the cost function computing
code. The adjoint code, constructed this way, is safer and errors will be found much
easier, although in some cases unnecessary statements will be constructed following
this concept.

4.1.4 Modularity. According to (23), for the computation of the I-th statement
of a program, basically all intermediate results Z'~! should be available. In general,
however, the adjoint code of a statement does not need all results. All variables
holding results needed are called required variables. Modularity is given, if for each
adjoint statement the correct values of all required variables are available. Extra
statements must be included in some cases to meet this demand. In case a required
variable changes its value during code execution, conflicts in the recomputation of
its values can arise, since in the adjoint code the values are required in reverse order
(see sec. 4.2.3 and sec. 4.2.4). Following the concept of modularity each part of the
adjoint code can be developed and maintained, i.e. adapted to changes in the code,
independently from the rest of the adjoint code.

4.1.5 Readability. Tt is strongly recommended to follow a mnemonical convention
for generating adjoint names. Considering the number of significant characters of
a name, the new adjoint name must be distinguishable from all other valid names
denoting the same structure.

In the examples given below, the adjoint names consist of the original name
preceded by a short string: The generated adjoint name of a variable called X is
ADX. Variables of the code required for the adjoint code computations have the same
name in both codes. Hence, statements computing required variables can be copied
directly from the code into the adjoint code. In addition the adjoint code is easy
to understand.

4.2 Statements
The code of a numerical model consists mainly of only a few elements:

—assignments

—conditional statements

—Iloops

—sequences of statements (blocks)
—procedure calls

—input-, output statements (I/O-statements)

The following sections show the construction of the corresponding adjoint state-
ments.

4.2.1 Assignment. Only assignments to active variables do have corresponding
adjoint assignments (concept of active variables, see sec. 4.1.2). An assignment can
be considered as an operator acting on the vector of active variables. In general,
not all active variables are involved in an assignment. Hence, for representation of
the assignment, it is sufficient to use a restricted operator acting only on the subset
of involved active variables. The restricted vector of active variables consists of the
left hand side (LHS) variable and all active variables of the right hand side (RHS)
expression except variables inside subscript expressions (such as I in A(4*I)).

In order to construct the adjoint statement we determine the Jacobian of the
operator. This is equivalent to constructing the tangent linear assignment. The
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variation coefficients form the first row of the Jacobian. The other rows consist
of zeros and ones in the diagonal elements. The adjoint matrix is the transposed
Jacobian. From this matrix the adjoint assignments are formulated.

For illustration, consider the following assignment performing the I-th step of a
numerical algorithm:

Z = X % SIN(Y**2)

Assuming that X, Y and Z are active variables, the vector of involved active variables
consists of these three variables. The tangent linear statement of the assignment is

62" = [SIN(Y'™ % #2)] % 6X' 1 + [ X7 % COS(Y'™ % 42) 2+ YI7 ] x5y

Using the Jacobian, this can be expressed by the matrix-vector expression:

§Z\' [0 X'mLxCOS(Y'=1%42) %2+ Y=L SIN(Y'=1x2)\ [ 62\ ™"
sy | ={o 1 0 5Y |
§X 0 0 1 §X

where the index [—1 (I) denotes the values of the variables just before (after) the
execution of the assignment. The adjoint operator is the transposed matrix acting
on the adjoint variables (see eq. 23).

-1 {

57 0 00\ /62
5y = | X4 CoS(Y L xs2)x 25y 10 | [ 6V
5*X SIN(Y'=1 % %2) 01/ \&x

Using the notation of section 4.1.5 this is translated to the assignments:

ADY = ADY + ADZ * X*COS(Y**2)*2*Y
ADX = ADX + ADZ * SIN(Y#*%*2)
ADZ = 0.0

The adjoint assignments refer to the variables X and Y. For the execution their values
just before the execution of the original assignment are required. The previous value
of Z is overwritten by executing the assignment. Consequently, the previous value
has no influence on the cost function. This is reflected by setting the adjoint variable
ADZ to zero. An expression is added to the two other adjoint variables ADX and ADY
denoting the additional influence of X and Y through Z on the cost function by the
assignment to Z.

The assignment to the adjoint variable of the LHS variable must be the last one,
because its previous value is used by all other corresponding adjoint assignments.
The previous value must not be overwritten by one of the other adjoint assignments.
Such an error could result from not recognizing that the LHS variable is referenced
in the RHS expression, e.g. in case those variables are components of an array
determined by subscript expressions. Whenever it is not possible to decide whether
the same variable is used, the adjoint code has to be constructed according to a
more general rule. This more general rule can be derived by introducing an auxiliary
variable to hold the result of the assignment. The adjoint of this hypothetical code
is then constructed and simplified.

This strategy is illustrated by the example in Figure 6. The subscript expressions
I and 2*I-1 yield the same component of X for I=1. The hypothetical code and its
adjoint are shown in Figure 7. Assuming that the auxiliary variable ADH is not used
by other statements in the adjoint code we can simplify the adjoint hypothetical
code and obtain the adjoint code on the right hand side of Figure 6.
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code adjoint code

X(I) = X(2%I-1) + Y(DI) ADH = ADX(I)
ADX(I) =0.0
ADX(2*I-1) = ADX(2*I-1) + ADH
ADY(I) = ADY(I) + ADH

Fig. 6. Adjoint statements of an assignment (X and Y are active variables)

hypothetical code adjoint hypothetical code

H(I) = X(2%I-1) + Y(I) ADH = ADH + ADX(I)

X(I) = H(I) ADX(I) = 0.0
ADX(2*I-1) = ADX(2*I-1) + ADH
ADY(I) = ADY(I) + ADH
ADH =0.0

Fig. 7. Adjoint statements of an assignment with auxiliary variable

If the values of computed indices are known, the auxiliary adjoint variable can be
ommitted by simplifying the adjoint code in Figure 6, which yields the adjoint code
in Figure 8. In this case the same code would have been constructed according to
the less general rule.

Function calls in the RHS expression will be discussed in section 4.2.6.

4.2.2 Conditional statement. A conditional statement executes statements ac-
cording to the value of a condition (Fig. 9).

The adjoint code has to execute the adjoints of the statements which have been
executed in the code. Consequently, the values of the conditions must be known in
the adjoint code in order to decide which adjoint statement has to be executed. The
actual boolean value of the condition may be stored during the model code execution
and restored in the adjoint code. Otherwise the condition must be evaluated again

in the adjoint code (right hand side of Fig. 9).

4.2.3 Loops. In Fortran-77 one major application of loop constructs is assigning
values to arrays. For construction of adjoint code, it is important to know, whether
the result of one loop pass depends on the results of another. Such dependence
analysis is very similar to the dependence analysis performed for vectorization or
parallelization of loops.

4.2.3.1 Parallel loops. If there are no dependencies between different loop passes,
the adjoint of the loop is a loop with the same bounds but the adjoint kernel.
(Fig. 10).

4.2.3.2 Sequential loops. If the result of a loop pass depends on a result of a
previous pass, the order of the loop passes is important. The adjoint loop has to
compute the adjoint kernel in reverse order. The upper and the lower bound have
to be exchanged and the negative step size has to be used (Fig. 11). If, in the loop,

adjoint code for T # 2*I-1 adjoint code for I = 2*I-1,i.eI = 1
ADX(2*I-1) = ADX(2*I-1) + ADX(I) ADY(I) = ADY(I) + ADX(I)
ADY (D) = ADY(D) + ADX(I)

ADX(I) = 0.0

Fig. 8. Adjoint statements of an assignment (X and Y are active variables)
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code

IF (condition A) THEN
statement A

ELSE IF (condition B)
statement B

adjoint code

IF (condition A) THEN
adjoint statement A
ELSE IF (condition B)
adjoint statement B

ELSE ELSE
statement C adjoint statement C
END IF END IF
Fig. 9. Adjoint conditional statement
code adjoint code

DO I = low, up, step DO I = up, low, step

statement adjoint statement
END DO END DO

Fig. 10. Adjoint DO-loop

the upper bound is not reached, the lower bound of the adjoint is no longer up but
the expression

low + step * INT((up — low)/step) ,

where the notation of Fig. 11 is used.

Since the adjoint kernel needs required variables in reverse order of computation,
a conflict occurs whenever the loop kernel overwrites required variables (see sec-
tion 4.1.4). In the example in Fig. 12 the variable FAC holds an intermediate result
which is overwritten in every loop pass. On the other hand the current values of
FAC are required by the adjoint of the loop kernel.

For this conflict three solutions are suggested in the following:

(1) The values of FAC can be stored during every execution of the kernel and read
before execution of the adjoint kernel.

(2) The variable FAC can be expanded by one dimension, so that no value is over-
written during execution of the loop. Thus for the adjoint of the loop the values
of FAC can be provided either by a single read operation or by a single loop for
recalculation (see Fig. 13).

(3) The required value of FAC can be recomputed before every pass of the adjoint
kernel. For recomputation an inner loop is inserted (see Fig. 14). This is the
most expensive solution in terms of run time but it needs neither additional
memory nor additional T/0O.

An important application of sequential loops is the computation of the limit of a
converging sequence. For construction of the adjoint of such loops, an alternative
scheme avoiding conflicts is described in section 5.

4.2.4 Block of statements. In order to obtain the adjoint of a block of statements,
the adjoint of each statement must be constructed and arranged in reverse order

code adjoint code

DO I = low, up, step DO I = up, low, -step
statement adjoint statement

END DO END DO

Fig. 11. Adjoint DO-loop
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Code
FAC = 1.0
DOI=1, X
FAC = FAC * X(I)
END DO

Fig. 12. Example of a conflict, FAC is overwritten (FAC and X are activ)

Code adjoint code
H(0) = 1.0 ADH(HW) = ADFAC
ADFAC = 0.0
DOI=1, 1 DO I =W,1,-1
H(I) = H(I-1) * X(I) ADX(I) = ADX(I) + ADH(I)*H(I-1)

ADH(I-1) = ADH(I-1) + ADH(I)*X(I)
ADH(I) =0.0

END DO END DO

FAC = H(N) ADH(0) = 0.0

Fig. 13. Solution of a conflict by introducing an auxiliary array H(0:N)

(right hand side in Fig. 15). These adjoint statements may depend on variables
of the original code defined inside the block or required by the block (arrows be-
tween left and right hand side in Fig. 15). All statements within the block, which
are needed for providing intermediate values, are included in front of the adjoint
statements (left hand side in Fig. 15). A data flow analysis determines these state-
ments. This might be done by computing the sets of input and output variables of
each statement and including statements, which define a required variable. A more
sophisticated data flow analysis would take array indices into consideration which
can be arbitrary complex.

The set of required variables for the adjoint block consists of variables directly
used by an adjoint statement and those needed for computing intermediate vari-
ables. Thus, the adjoint block is a composition of statements defining intermediate
variables followed by the adjoint statements. The scheme of the adjoint of three
statements is

AB C* B* A* (26)

(the dashed line in Fig. 15 denotes this order of computations). The automatic
adjoint code generation tool AMC [Giering 1992] applies this method.

The example in Figure 16 illustrates the method applied to a block of three
statements. Variables located on the left hand side of an arrow denote referenced

code
DOI=m,1, -1
FAC = 1.0
DOL=1, I-1
FAC = FAC * X(I)
END DO
ADX(I) = ADX(I) + ADFAC * FAC
ADFAC = ADFAC * X(I)
END DO
ADFAC = 0.0

Fig. 14. Solution of a conflict by recomputation of the value of the required variable FAC
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Fig. 15: Graph of an adjoint block of statements ( A,B, and ' are statements, A*, B*, and C'*
are the corresponding adjoint statements )

variables; while those located on the right hand side denote defined variables. The
constructed adjoint block is shown in Figure 17. This block requires the values
of the variables X, OM, PI, and RHOW. They must be provided in order to obey
modularity (see sec. 4.1.4).

A conflict occurs whenever a variable of the code is referenced by two or more
adjoint statements requiring different values, because the variable is overwritten
inside the block. This is often the case with auxiliary variables, which are used
more than once to hold intermediate results.

The terms on the RHS of the first and third assignment of the code in Figure 18
depend in a nonlinear way on the active variable X. Thus, the corresponding adjoint
statements both reference X. But different values of X are required because the
second statement changes the value of X. Therefore, the block obtained by applying
scheme (26) to this example is not the adjoint block.

In order to solve this conflict, i.e. to ensure that the right value will be used by
the adjoint statements, as in the case of conflicts caused by loops, there are different
possibilities:

(1) The required value is stored during the code execution and then can be used
in the adjoint code.

2) The required value is assigned to an auxiliary variable and the adjoint state-
g
ments use the auxiliary variable.

(3) The required value is recomputed. For a block of statements ABC', in contrast
to the scheme (26), this yields the following scheme of adjoint block construction

ABC* AB* A* . (27)

By this scheme an additional recomputation (A) of required variables is in-
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X,0M,PL,RHOW ADZ,ADY,ADX
X,0M
X,0M ADX,ADY
Y = 2 * SIN(X * OM
( ) ADX = ADX + ADY * 2*COS(X*OM)*OM
ADY = 0.0
Y
PLRHOW ADX,ADY
FAC = 2 * PI * RHOW
FAC . ADZ,ADY
Y,FAC "
ADY = ADY + ADZ * FAC*2*Y
7 = FAC * Y**2
ADZ = 0.0
z ADZ,ADY
Y,FAC,Z ADZ,ADY,ADX

Fig. 16: Examples of an adjoint block of statements (X, Y, and Z are active variables, OM, FAC,
PI, and RHOW are passive variables). The order of execution inside the blocks on the right hand
side is top down.

Y =2 x SIN(X * OM)

FAC = 2 * PI * RHOW

ADY = ADY + ADZ * FAC*2%Y

ADZ = 0.0

ADX = ADX + ADY * 2%COS(X*0M)*0M
ADY = 0.0

Fig. 17. Adjoint code of a block of statements

cluded. The execution of AB C* might change variables used for computation
of A B* and A*. Therefore, to ensure that all required variables have correct
values, some variables possibly have to be reset before execution of AB*, or A*,
or both. Applied to the example in Figure 18, the variable X has to be reset
before the second execution of the first assignment.

4.2.5 Procedure call. Procedures computing active variables are called active and
a corresponding adjoint procedure has to be constructed. The adjoint statement of
a procedure call is the call of the adjoint procedure, in some cases followed by some
additional statements. The adjoint procedure itself contains the adjoint block of
statements (see section 4.3.1). The variables required by the adjoint procedure are
not known until the adjoint procedure has been constructed. Since the adjoint pro-
cedure call contains required variables as arguments, the formulation of the call may
depend on details of the adjoint procedure. Thus, the construction of the adjoint
procedure must precede the construction of its call>. When the adjoint procedure
is called, the required variables must be provided (modularity, see section 4.1.4).

2This strategy is known as bottom up.
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X,FAC,CONST ADX,ADY,ADZ
X,FAC
X,FAC ADX,ADY
ADX = ADX 4+ ADY * FAC*2*X
Y = FAC * X**2
ADY = 0.0
Y ADX,ADY
X,CONST
X =4 * X + CONST ADX = ADX * 4
X
FACX X.FAC ADX,ADZ

ADX = ADX + ADZ * FAC*COS(X)
Z = FAC * SIN(X)

ADZ = 0.0
z ADX,ADZ
Y,X,Z ADX,ADY,ADZ

Fig. 18: Example of a conflict (X, Y, and Z are active variables, FAC and CONST are passive
variables)

code adjoint code

CALL SUB( X, Y, 4 ) CALL ADSUB( X, Y, A, ADX, ADY)

Fig. 19: Example of an adjoint procedure call ( A is a passive variable, X and Y are active variables)

Required arguments are passed as arguments as well. Global variables belonging
to COMMON-blocks are taken into account by including the COMMON-block in
the adjoint procedure. The argument list of the adjoint procedure consists of the
required variables of the original argument list and the adjoint variables correspond-
ing to the active variables of the original argument list. Obviously, the number and
types of arguments in the call must correspond to the argument list of the adjoint
procedure.

A simple example illustrating the call of an adjoint procedure is shown in Fig-
ure 19. Arguments used inside the procedure have a bar, while underlined argu-
ments are computed by the procedure. The latter must be called by reference (a
pointer to the argument is passed), the former, which only have a bar, may be
called by value (the value of the argument is computed and passed).

In order to fulfill modularity we assume that each adjoint variable in an argument
list will be used and computed inside the adjoint procedure. This is similar to the
adjoint of an assignment (see section 4.2.1) where we regarded all involved active
variables as input and output.

According to the Fortran-77 standard, expressions can also be an argument of a
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code adjoint code

CALL SUB ( X, 4xX+2%Y, A ) CALL ADSUB( X, 4*X+2x=Y, A, ADX, ADP2 )
ADX = ADX + ADP2 * 4
ADY = ADY + ADP2 * 2
ADP2 = 0.0

Fig. 20: Example of an adjoint procedure call having an expression in its argument list ( 4 is a
passive variable, X and Y are active variables)

hypothetical code adjoint hypothetical code
P2 = 4xX + 24Y P2 = 4*%X + 2+4Y
CALL SUB( X, P2, 4 ) CALL ADSUB( X, P2, A, ADX, ADP2 )

ADX = ADX + ADP2 * 4
ADY ADY + ADP2 * 2
ADP2 0.0

Fig. 21: Substitution of a procedure call without expressions within the argument list ( A is a
passive variables, X, Y, and P2 are active variables)

procedure call. This saves introducing auxiliary variables. Assume the expression
is substituted by an auxiliary variable and the expression is assigned to this variable
just before the call. The call of the adjoint procedure is constructed as described in
the previous section using the adjoint of the auxiliary variable. After this call, the
adjoint of the assignment to the auxiliary variable is generated by applying the rules
of section 4.2.1. If the expression is a required argument of the adjoint procedure,
the auxiliary variable is replaced by the expression it stands for. Figure 20 shows
an example. The hypothetical code avoiding expressions as arguments is shown in
Figure 21. The adjoint auxiliary variable ADP2 represents the indirect influence of
the second argument, i.e. the expression 4*X+2*Y, on the cost function by means
of the procedure®. The expression itself depends on the active variables X and Y.
An example of the procedure SUB is given in section 4.3.1.

4.2.6 Function call. Functions return a result and are called only inside an ex-
pression. For user defined functions an adjoint procedure should be generated.
Intrinsic functions can be directly differentiated. The adjoint of call to a user de-
fined function is the call of the corresponding adjoint procedure. The argument list
is constructed according to the rules for an adjoint procedure call (see above). This
adjoint procedure has one more argument, namely the adjoint variable correspond-
ing to the function result. In the example shown in Figure 22 this is the adjoint
variable ADZ, the last argument in the list. If the LHS variable of the assignment is
an argument of the function call, then the variable appears also on the RHS and an
auxiliary variable must be introduced according to the general rule for an adjoint
assignment. Otherwise two arguments of the adjoint procedure would be the same
variable which is not allowed according to the Fortran-77 standard.

3 Adjoint auxiliary variables must be initialized as local adjoint variables (see sec. 4.3.1).

code adjoint code
Z = FCT( X, Y) CALL ADFCT( X, Y, ADX, ADY, ADZ )
ADZ = 0.0

Fig. 22. Example of an adjoint function call ( X, Y and Z are active variables)
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code adjoint code

Y = SIN(X) ADX = ADX + ADY * C0S(X)
ADY = 0.0

Fig. 23. Example of an adjoint predefined function call ( X and Y are active variables)

code adjoint code

Z = 4%X + Y+#FCT( X#*2, 4xY ) CALL ADFCT( X**2, 4%Y, ADP1, ADP2, ADZ*Y )
ADX = ADX + ADZ*4 + ADP1%2xX
ADY = ADY + ADZ#FCT( X#*2, 4%Y ) + ADP2%4
ADZ = 0.0
ADP1 = 0.0
ADP2 = 0.0

Fig. 24: Example of an adjoint function call having more than one active expression in its argument
list ( X, Y, and Z are active variables)

In case of an assignment containing a predefined function, the derivative of the
function with respect to the argument is inserted in the RHS of the adjoint as-
signment, constructed according to the rule for the adjoint of an assignment (see
sec. 4.2.1). Figure 23 shows an example.

An expression, which is the argument of a function call, is handled as described
previously for a procedure call.

The additional influence of an active variable as an argument of a function is taken
into account by an additional term inside the RHS expression of the assignment to
the corresponding adjoint variable. This is shown in Figure 24. On the left hand
side an assignment to the variable Z is shown. The expression on the RHS contains
the call of the function FCT. The actual arguments of the function are expressions
depending on active variables.

The left hand side of Figure 25 shows the hypothetical code avoiding expressions
as arguments. The auxiliary variables P1 and P2 have been introduced to substitute
these expressions and FCTH to hold the function result. The corresponding adjoint
code is shown on the right hand side of Figure 25. The adjoint subprogram call
is constructed by applying the rules described previously. The adjoint auxiliary
variable ADFCTH might be replaced by the expression ADZ#Y, since this argument is
called by value. Thus, this auxiliary variable is not needed. The assignments to the
adjoint variable ADX (ADY) can be combined to a single assignment. Replacing the
auxiliary variables P1, P2, and FCTH by the expressions they substitute, the adjoint
code on the right hand side of Figure 24 is created.

4.2.7 Input and oulput statements. In terms of data flow, writing a value into a
file and reading it is equivalent to assigning the value to a variable and referencing
the variable. The only difference is the internal organization of how values are
stored.

If active variables are written into a file and read from it, this file is called ” active
file” and a corresponding ”adjoint file” has to be introduced. All I/O-statements
effecting this file have corresponding adjoint statements. The values in the adjoint
file represent the influence of the corresponding values in the active file on the cost
function.

When a variable is read, the adjoint variable has to be set to zero, since its
old value is lost and has no influence on the cost function. The value which is
read affects the cost function by means of the variable. Hence, the value of the
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hypothetical code adjoint hypothetical code

P1 = X*k*2 P1 = X*k*2

P2 = 4x*Y P2 = 4x*Y

FCTH = FCT( P1, P2 ) FCTH = FCT( P1, P2 )

Z = 4xX + Y*FCTH ADX = ADX + ADZ*4
ADY = ADY + ADZ*FCTH

ADFCTH = ADFCTH + ADZx*Y
ADZ =0.0

CALL ADFCT( P1, P2, ADP1, ADP2, ADFCTH )
ADFCTH = 0.0
ADY = ADY + ADP2%4

ADP2 = 0.0
ADX = ADX + ADP1%2%X
ADP1 = 0.0

Fig. 25: Substitution of a function call without expressions within the argument list (X, Y, Z, P1
, P2, and FCTH are active variables). The lower group of statements on the right hand side is the
adjoint to the upper group of statements on the left hand side.

code hypothetical code adjoint hypothetical code adjoint code

OPEN (8) ADXD = 0.0 DPEN(9)

WRITE(8) X XD = X ADXD = ADXD + ADZ WRITE(9) ADZ
ADZ = 0.0 ADZ = 0.0

READ(8) Z Z = XD ADX = ADX + ADXD READ(9) ADXD
ADXD = 0.0 ADX = ADX + ADXD

ADXD = 0.0
CLOSE(8) CLOSE(9)

Fig. 26: Example of adjoint I/O operations. Please note that the adjoint code shown on the right
hand side is executed top down. Thus, the first adjoint statement corresponds to the last code
statement.

corresponding adjoint variable has to be written into the adjoint file.

On the other hand, by writing a variable into the active file, the value in the file
depends on the control variables. Thus, the corresponding value in the adjoint file
has to be added to the adjoint variable.

The adjoint statement of an OPEN-statement is a CLOSE-statement and vice
versa. Since the adjoint statements are combined in reverse order, the same order
of I/O-operations will be applied to the adjoint file.

Figure 26 illustrates the construction of adjoint I/O-operations. On the left hand
side a simple sequence of I/O-operations is given and in the middle the hypothetical
code is shown.

Whenever a value of an active variable is read more than once, a modified algo-
rithm of adjoint code construction must be used. The value in the adjoint file has
to be changed as an adjoint variable due to a reference of the corresponding active
variable. By a READ statement followed by a WRITE statement concerning the
same file position a value is added to the value in the file. Hence, the adjoint file
has to be a direct access file, as indicated by the additional REC= in Figure 27.



22 . R. Giering and T. Kaminski

code hypothetical code adjoint hypothetical code adjoint code
OPEN(8) ADXD = 0.0 OPEN (9, ’ACCESS=DIRECT’)
WRITE(8) X XD = X ADXD = ADXD + ADZ WRITE(9,REC=1) ADZ
ADZ = 0.0 ADZ = 0.0
READ(8) Y Y = XD ADXD = ADXD + ADY READ(9,REC=1) ADXD
ADY = 0.0 WRITE(9,REC=1) ADXD+ADY
ADY = 0.0
REWIND(8)
READ(8) Z Z = XD ADX = ADX + ADXD READ(9,REC=1) ADXD
ADXD = 0.0 ADX = ADX + ADXD
ADXD = 0.0
CLOSE(8) CLOSE(9)

Fig. 27. Example of adjoint I/O operations of multiple input statements

The first write operation of the adjoint file is not preceded by a read operation,
since the file is empty. Thus, the last read operation of the active file has to be
identified in order to construct the adjoint code. Another method would be to
initialize the adjoint file with zeroes in the same manner as global adjoint variables
are initialized (see sec. 4.3.1) and always changing the values in the file. But this
is not a safe approach, since the length of the active file is not known a priori and
such an initialization takes additional run time.

In case an expression is written into an active file, additional adjoint code must
be inserted after reading a value of the adjoint file in the same manner as for
expressions in an argument list (see sec. 4.2.5).

4.3 Subprogram

4.3.1 Procedures (subroutines). A procedure uses and defines variables. Except
for local variables, they are passed as arguments of the argument list or as global
variables by a COMMON block. As a first step, the active variables are determined
(for data dependence analysis see sec. 4.1.2). The adjoint variables of active vari-
ables of the argument list are included in the argument list of the adjoint procedure.

Once all active variables of the procedure are known, the adjoint code can be
constructed as a block of statements. The required variables of the adjoint block
must be provided by the calling subprogram. All required arguments of the original
argument list should be passed to the adjoint procedure as arguments as well. Thus,
the argument list of the adjoint procedure contains adjoint variables and required
variables. How to handle required variables of COMMON blocks is explained below.

Many programming languages offer the possibility to pass names of subprograms
by the argument list. Using Fortran-77, such a name must be characterized by an
EXTERNAL declaration. If this subprogram is active and called, an adjoint name
must be generated, declared as EXTERNAL, and included in the adjoint argument
list.

Fortran-77 permits to pass return addresses as arguments of the argument list.
In this case recognizing the structure of the whole program is very difficult and
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SUBROUTINE SUB( X, Y, A )
IMPLICIT NONE

INTEGER N, I, J
PARAMETER( N = 100 )
REAL X(N), Y(N), A

REAL SUMX, SUMY, FAC

REAL XNORM
COMMON /COM1/ XNORM

SUMX = 0.0
SUMY = 0.0
DOI=1,N
SUMX = SUMX + X(I)
SUMY = SUMY + Y(I)
END DO
FAC = SUMX * SUMY * XNORM / A
DOI=1,N
J = N+1-T
X(I) = FAC * (X(I)#*2 + Y(J)*%2)
END DO
END

Fig. 28. FExample of a procedure

the construction of the adjoint code becomes a very complicated task. Thus, such
construction of code should be avoided.

The declaration part of an adjoint procedure consists of the declaration of the
required and the adjoint variables. An adjoint COMMON block is formed for every
COMMON block containing at least one active variable. The adjoint COMMON
block holds the corresponding adjoint variables. We assume that all variables in
COMMON blocks are global variables. Thus, the adjoint COMMON blocks must be
initialized with zeros before the adjoint code is executed. For this purpose a special
procedure must be constructed. Usually, memory will be allocated dynamically for
local variables whenever a procedure is called. A SAVE declaration changes this
proceeding, the local variable will be static and keeps its value as if it was a global
variable only used by the specific procedure containing the SAVE declaration. Thus
a static active variable can be handled as a global active variable and a special
adjoint COMMON block should be constructed containing all adjoint variables
corresponding to the active variables in the SAVE declaration. This COMMON
block can be initialized in the same procedure as the other adjoint COMMON
blocks.

The statement part of the adjoint procedure starts with the initialization of the
local adjoint variables. This is necessary because usually adjoint variables will be
changed by addition of other values. This part is followed by the adjoint block of
statements.

The construction of an adjoint procedure is illustrated by the example in Fig-
ure 28. Assume that the arguments X and Y are active variables as well as the global
variable XNORM of the COMMON block COM1. Thus the local variables SUMX, SUMY,
and FAC are active and the adjoint COMMON block ADCOM1 is constructed.
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The adjoint code shown in Figure 29 requires in addition to the arguments X, Y,
and A also the global variable XNORM. Thus, the COMMON block COM1 containing
XNORM is included in the declaration. The adjoint argument list contains the required
variables X, Y, A and the adjoint variables ADX and ADY.

After the declaration part, the local adjoint variables ADSUMX, ADSUMY and ADFAC
are initialized with zero. This is followed by the recomputation of SUMX, SUMY, and
FAC since their values are required by the adjoint statements of the block. The last
loop kernel defines and uses the variable J. Since J is also required by the adjoint
loop kernel, its definition precedes this kernel.

The last two assignments and the last assignment to ADFAC are not necessary,
since these adjoint local variables are not used afterwards. Nevertheless, they should
remain in the adjoint code keeping the adjoint code quickly and savely adaptable
to changes in the code (see modularity, sec. 4.1.4). Furthermore, code optimizing
compilers would recognize these redundant statements and ignore them.

4.3.2 Functions. Functions are handled in the same way as procedures. The
argument list is formed by applying the rules described in the preceding section. An
additional argument holds the adjoint variable of the result of the function. As an
example, the function FCT shown in Figure 30 consists only of one assignment. Since
the RHS expression depends in a nonlinear way on the active variables X and Y,
these variables must be passed through the adjoint argument list. The adjoint
variables ADX and ADY and the adjoint variable of the result are also part of the list.

4.4 Storing of required variables

In case a required value of a variable ought not to be recomputed in the adjoint
code, its value must be stored during the code execution. Therefore an additional
statement must follow the computation of the required variable in the code. This
should be the call of a special procedure. Just before execution of the adjoint state-
ment requiring this variable, another procedure, which restores its value, should be
called.

The values can either be stored on a temporary file, in dynamic memory, or in
a global variable. The choice depends on the access time and the size of available
memory.

The values are usually required in reverse order of computation. Thus, the values
must be accessible independently. If a file is used, this should be a direct access
file. The records of values can be accessed by a key composed of the name of the
variable and the subprogram computing it. In the case the subprogram is called
several times, the key must also contain the actual number of the call. Whenever
the variable is stored inside one or more loops, all loop index variables must be
taken into account additionally.

4.5 Problematic code structures

Our recipes to construct the adjoint code directly from the programming code of
the model do not apply for a few specific structures of the code. A short, probably
incomplete list of such structures is given.

Since the order of the execution of statements in the code is important for the gen-
eration of adjoint code, statements, which may define a complicated order, do not
have simple rules for adjoint code generation. This problem may arise in Fortran-77
when one of the statements ENTRY, RETURN, and GOTO is used. Fortran-77
permits to pass return addresses as arguments of the argument list. In this case
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subroutine adsub(x, y, a, adx, ady)

integer n

parameter (n = 100)
common /comil/ xnorm
real xnorm

common /adcoml/ adxnorm
real adxnorm

real x(n), y(n), a
integer i, j

real sumx, sumy, fac
real adx(n), ady(n)
real adsumx, adsumy, adfac

adsumx = 0
adsumy = 0.0
adfac = 0.0
sumx =

|
o O

B oo

0
sumy = 0.
doi=1
sumx = sumx+x(i)
sumy = sumy+y(i)

end do

fac = sumx*sumy*xnorm/a

do i=mn,1,-1
j = nt+i1-i
adfac = adfac+adx(i)*(x(1i)**2+y(j)**2)
ady(j) = ady(j)+adx(i)*fac*2%y(j)
adx (i) = adx(i)*fac*2*x(i)

end do

adsumx = adsumx+adfac*sumy*xnorm/a

adsumy = adsumy+adfac*sumx*xnorm/a
adxnorm = adxnorm+adfac*sumx*sumy/a
adfac = 0.0
do i=mn,1,-1

ady (i) = ady(i)+adsumy

adx(i) = adx(i)+adsumx
end do
adsumy = 0.0

1]
o
o

adsumx

end

code adjoint code

REAL FUNCTION FCT( X, Y ) SUBROUTINE ADFCT( X, Y, ADX, ADY, ADFCT )

REAL X, Y REAL X, Y, ADX, ADY, ADFCT
FCT = X*X + 2%Y*Y ADX = ADX + ADFCT*2%X
ADY =
ADFCT = 0.0
END END

Fig. 30. Example of an adjoint function (X, Y, and FCT are active)

ADY + ADFCT*4*Y

25

Fig. 29: Example of an adjoint procedure (this code was constructed by the AMC [Giering 1992])
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recognizing the structure of the whole program is very difficult and construction of
the adjoint code becomes a very complicated task.

Fortran-77 permits static aliasing, i.e. different variables can share the same
memory location. Usually this is realized by EQUIVALENCE statements. But in
some constructs aliasing can not be detected only by analyzing the EQUIVALENCE
statements. The dependency analysis may become very difficult in such cases.

In most cases we are aware of, such structures are not essential. We recommend
to replace them by other elements of Fortran, which are consistent with the concept
of structured programming.

5. ADJOINT OF CONVERGING SEQUENCES

In many simulation programs an implicit equation is solved # which has the form

where p € R™ is given and z € R" is unknown and f : R® x R™ — R". If a pair
(2, p) fulfills (28), f is sufficiently regular, and
aof

1— g(az,p) =1—A(z,p) (29)

is invertible the implicit function theorem applies. It yields the existence of a
neighborhood U € R™ of p and of a differentiable function ¢ : U — R so that for
p € U the pair (Z = ¢(p), p) fulfills (29) and the derivative of g is

2, = (L= AW@).p)™" - Ble(p).p) . (30)
where
B(z,p) = %(m,p) . (31)
Assuming equation (28) in the code is solved by an iterative method:
S1: zg = first guess
S2: zn = f(xp-1,p) (n=1,..,N)
S3: xr = zn ,

where and N is the number of steps performed to reach an appropriate accuracy,
the adjoint algorithm is also an iteration consisting of the corresponding adjoint
operators:

S3*: *zny = 6%z
& x =0

S2* . 8*xp_1 = A*(xp-1,p) §*2p (n=1,..,N)
6*p = B*(zp-1,p) 6y
&z, =0

S1*: 6*xo =0.

If the function f is nonlinear, A or B depend on the intermediate result z,_;. In
this case, the adjoint iteration requires all intermediate results. Thus, they must
be stored during the iteration and restored during the adjoint iteration.

*When integrating dynamical systems, implicit equations occur due to an implicit or semi implicit
time step.
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code adjoint code

X = first guess

D0OI =1, N poIrI=m,1, -1
store X restore X
CALL FCT( X, P ) CALL ADFCT( X, P, ADX, ADP )
END DO END DO
ADX = 0.0

Fig. 31: Iterative algorithm for solving an implicit equation and the exact adjoint code (P and X
are active variables)

Figure 31 shows on the left hand side a simple example, where the iteration
is implemented as a DO-loop and X is computed depending on P. Suppose the
nonlinear function FCT is given by a subprogram and its adjoint ADFCT has been
constructed according to the rules described in section (4). Since 82* is the adjoint
operation to 82, the adjoint subprogram ADFCT is an implementation of S2*. The
corresponding adjoint code is shown on the right hand side of Figure 31, where
the required intermediate results are restored before execution of the adjoint loop
kernel.

Depending on the number of iterations, storing might require a huge amount of
memory. Hence, it would be advantageous to construct adjoint code, which does
not require intermediate results. Assuming that in the code the exact solution
z = g(p) of (28) has been computed this is possible. Equation (30) can be used to
compute a variation of z that results from from a variation of p:

b = (1= A(g(p),»)™" - Blg(p),p)ép . (32)
Introducing
6z := B ép (33)
according to (23) for the adjoints one obtains
e =[1—- A1 62 . (34)
Using basic properties of the adjoint yields an implicit equation for 6*z:
8%z =A" 62 + &w . (35)

Christianson [Christianson 1993] has shown that this equation can be solved by an
iteration that determines 6*z from 6*z:

$*zy = btz

8% zn_1 = A*(z,p) 6%z + 62 (n=1,..,N)
6%z, =0

6%z = 6%z

and that the convergence is as fast as for the iteration solving (28).
Using (33) the adjoint variable §*p can be computed from the solution §*z by

8*p= B*(z,p) 6z . (36)

Since A and thus A* do not depend on the intermediate results z,_1, only the
solution z of the iteration and p must be provided for the adjoint iteration. Com-
putation of (36) after the iteration saves run time compared to the exact adjoint
code. However, for the implementation the aim is to transform this algorithm into
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code adjoint code
X = first guess restore X
ADZ = ADX
ADPH = ADP
DoI=1, N poI="m, 1, -1
ADP = 0.0
CALL FCT( X, P ) CALL ADFCT( X, P, ADX, ADP )
ADX = ADX + ADZ
END DO END DO
store X ADX = 0.0

ADP = ADP + ADPH

Fig. 32: Iterative algorithm for solving an implicit equation and the adjoint code without requiring
intermediate results (P and X are active variables)

an adjoint algorithm in which the adjoint operators A* and B* can be replaced by
the call of the adjoint procedure ADFCT.

In a first step the algorithm can be transformed by splitting the assignment
to 6*z,_1 into two assignments and including the computation of B*é6*z in the
iteration:

$*zy = 6%z

¥zl = A* 8%z, (n=1,..,N)
6*p = B* 6z,

8z, =0

8% zp_1 = 6% 2,4 + bz

6* 2 = 6%z
Observing that S2* appears in this iteration operating on 6*z, instead of §*z,,
the adjoint procedure ADFCT can be used again for implementation. In order to
keep the argument names for ADFCT the variables ADX and ADZ are exchanged. The
resulting adjoint code is shown in Figure 32.

The adjoint auxiliary variable ADZ is initialized with the value of the adjoint
variable ADX. During the iteration this variable is added to the intermediate result
ADX. The previous value of ADP is saved in an auxiliary variable ADPH. After the loop
the saved previous value of ADP is added. Inside the adjoint procedure ADFCT values
are always added to ADP. To guarantee that only the last iteration determines ADP,
it is initialized with zero before the call of ADFCT. Since the iteration converges, this
has the same effect as computing B*6*z after the iteration.

6. VECTORIZATION OF ADJOINT CODE

Numerical simulations run mostly on high-performance computer systems charac-
terized by vector pipes or processors working parallel. In order to take the best
advantage of these features, optimizing compilers are used. In addition to translat-
ing the source program into machine language, they analyze it and apply various
transformations to it.

Among the various forms of analysis used by optimizing compilers, we make use
of dependence analysis in this section (a detailed description is given in [Banerjee
1988a; Banerjee 1988b; Bacon et al. 1993]). Two statements have a data dependence
if they cannot be executed simultaneously due to conflict uses of the same variable.
Loop-carried data dependences are dependences between statements due to their
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code non vectorizable adjoint code

ADHSCAL = 0.0

pDOI=1, N por=m, 1, -1

HSCAL = Z(I) ADHSCAL = ADHSCAL + ADX(I)
X(I) = X(I) + HSCAL ADZ(I) = ADZ(I) + ADHSCAL
ADHSCAL = 0.0
END DO END DO

Fig. 33: Example of adjoint code generated by described recipes, which will not be vectorized (X,
Z, HSCAL are active variables)

code after scalar expansion code after loop distribution
DOTI=1, O DOTI=1, H
HVECT(I) = Z(I) HVECT(I) = Z(I)
END DO
DOI=1, 8
X(I) = X(I) + HVECT(I) X(I) = X(I) + HVECT(I)
END DO END DO
HSCAL = Z(W) HSCAL = Z(W)

Fig. 34. Transformed loop

repeated execution in a loop kernel. There are three kinds of data dependences:
flow dependence, anti dependence, and output dependence.

It turns out that vectorization of loops applied to the code by the optimizing
compiler will not be applied in some cases to the corresponding adjoint code gener-
ated according to the rules described previously. The structure of the adjoint code
often has additional data dependences, that eventually prevent vectorization.

At present optimizing compilers are not yet able to detect the correctness of
transformations in all cases. Thus, the compiler needs support. Two cases will be
described in which the adjoint code can be modified in order to allow vectorization.

6.1 Temporary variables

In case a temporary variable holds an intermediate result inside a loop kernel and its
actual value does not depend on results of the previous loop passes, a transformation
called scalar expansion® of the temporary variable can be applied to the loop. This
transformation deletes the loop-carried dependence between the statement using the
temporary variable and the statement defining it. Thus, a second transformation
called loop distribution is permitted, that splits the loop in two loops.

Figure 33 shows an example, where HSCAL is the temporary variable. The trans-
formed code after applying scalar expansion to HSCAL is shown on the left hand side
of Figure 34. Substituting the scalar HSCAL by the array HVECT, the variable HSCAL
is not computed anymore. Hence an additional statement is inserted after the loop
by the optimizing compiler, which assigns to HSCAL the value of HSCAL after the
last pass of the original loop (left hand side of Fig. 34). After that, the loop is split
into the loops as shown on the right hand side. These loops can be vectorized.

Since, in the adjoint code, values are added to adjoint variables, the actual value
of the corresponding adjoint temporary variable ADHSCAL depends on its value after

5The variable is replaced by another variable having an additional dimension, which denotes the
loop index.
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vectorizable adjoint code

ADHSCAL = 0.0

ADZ(N) = ADZ(N) + ADHSCAL

DOI =0, 1, -1
ADHSCAL = ADX(I)
ADZ(I) = ADZ(I) + ADHSCAL
END DO

ADHSCAL = 0.0

Fig. 35. Modified adjoint code which can be vectorized

code adjoint code
DOI=1, DOI="H, 1, -1
Z(I) = X(I) + X(I-1) ADX(I) = ADX(I) + ADZ(I) S1
ADX(I-1) = ADX(I-1) + ADZ(I) S2
ADZ(I) = 0.0
END DO END DO

Fig. 36. Example of adjoint code which will not be vectorized (X and Z are active variables)

the previous loop pass (right hand side of Fig. 33). This additional dependence
hinders the loop distribution of ADHSCAL. However, this dependence can be removed
by simple modifications to the adjoint code. Observing that ADHSCAL is reset to
zero at the end of the loop kernel, the addition of an expression to ADHSCAL has the
same effect as assigning the expression to it. A possible non zero value of ADHSCAL
before the loop execution can be considered by an additional statement in front
of the loop. By changing the code in this way, the code shown in Figure 35 is
obtained. Since ADHSCAL is zero after the execution of the adjoint loop it must be
reset to zero after the modified adjoint loop.

Scalar expansion of ADHSCAL and loop distribution will be applied to the modified
adjoint loop by an optimizing compiler. We emphasize that inside the adjoint loop
kernel modularity is lost by these modifications.

6.2 Simultaneous references to different array elements

Suppose inside a loop kernel an active variable appears several times on the RHS
of an assignment. If the variable is an array and the subscript expressions reference
different components, then the corresponding adjoint array components occur on
the LHS and the RHS of the adjoint assignments. In this case the adjoint loop has
additional loop-carried data dependences hindering vectorization.

Figure 36 shows an example, where the code on the left hand side is a loop, whose
kernel is an assignment. The array X is appears twice on the RHS with different
subscript expressions. The adjoint loop kernel on the right hand side of Figure 36
consists of three statements. The statement S1 depends on S2 of the previous loop
pass, because S2 computes a component of the array ADX and S1 references the
same component in the next loop pass. Loop distribution (see section 6.1) is not
allowed in this case, since all statements S2 would be executed after all statements
S1, which violates the loop-carried dependence (Fig. 37). However, because adding
is a commutative operation, any order of execution of the statements yields the
same result. Thus, the transformation would be correct.

The order of the statements S1 and S2 is not laid down by the rule for an
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Fig. 37: A loop containing S1 and S2 cannot be distributed when S1 depends on S2. The dashed
arrow denotes the execution order after loop distribution. This is a modified picture from [Bacon
et al. 1993] page 24.

new adjoint code

DOI =0, 1, -1

ADX(I-1) = ADX(I-1) + ADZ(I) S2
ADX(I) = ADX(I) + ADZ(I) S1
ADZ(I) =0.0

END DO

Fig. 38. Modified adjoint code which will be vectorized (X and Z are active variables)

adjoint assignment. By exchanging S1 and S2, the adjoint code in Figure 38 is
retrieved. The loop-carried dependence of this adjoint loop is not violated by a
loop distribution, because all statements S2 are executed before the statements
S1. Hence, this loop will be vectorized by an optimizing compiler.

In general, the adjoint assignments to variables, which have the latest subscript
value with respect to the execution order of the loop kernel, should occur first inside
the adjoint loop kernel.
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7. SUMMARY AND CONCLUSIONS

Simple rules for adjoint code generation have been deduced for the most important
elements of numerical programs. The construction of the adjoint code of a Fortran-
77 subprogram formed by these elements has been described.

It has been shown that alternative adjoint code can be constructed for iterative
procedures solving implicit equations. If the equations are non linear this alterna-
tive code needs less memory resources. Modifications to the adjoint code have been
described in order to allow vectorization of adjoint loops, which correspond to loops
that can be vectorized. In summary, these general directions allow for construction
of adjoint code, which is easy to maintain, efficient, and fast.

For the execution of the adjoint code many intermediate results are required from
the code that computes the cost function. Problems arise whenever these results are
not accessible. Thus, the code must be analyzed to detect loss of values. For loops
a data dependence analysis similar to that for vectorization of loops is required. In
order to provide the intermediate results, one has to choose between recomputation
or recording the values into memory or file. Large memory or disc resources might
be necessary to record all required variables. On the other hand recomputation
consumes additional run time. We recommend a mixed strategy, which combines
recomputation and recording into memory and file. The best combination depends
on details of the application and on features of the computer which executes the
adjoint code. Further research is necessary in this direction.

Most of the described rules are implemented in the Adjoint Model Compiler [Gier-
ing 1992]. Given the toplevel routine to be differentiated and its independent and
dependent variables, the AMC determines all active variables and subroutines by
an interprocedural data dependence analysis. The adjoint routines are constructed
bottum up, in which recomputations are inserted wherever required. Alternatively,
directives can be inserted into the source code. In this case statements to store
(restore) will be inserted in the automatically generated code (adjoint code).

Using the AMC several adjoint codes have been constructed. Among them are
some complex models designed to integrate components of the climate system:
Hamburg Large Scale Ocean General Circulation Model (LSG) [Maier-Reimer and
Miokolajewicz 1992] , Hamburg Ocean Primitive Equation model (HOPE) [Latif
and Barnett 1984] , Tracer Model (TM2) [Heimann 1995] , and MIT ocean model
[Marshall 1995]. Basically, large disc or memory resources are required for storing
the trajectory of non linear models. However, resources were reduced considerable
by introducing additional checkpoints [Griewank 1992] with the cost of an additional
code run during adjoint code computation. Finally, those adjoint models need
between 2.5 and 4 times the execution time of the respective model. Some Fortran
extensions have been implemented by the AMC in order to read and generate code
for a parallel machine (Connection Machine CM5). Further extensions especially
of High Performance Fortran are planed.
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PROGRAM OPTIM
EXTERNAL QGBFUN
INTEGER N

PARAMETER ( @ = .. )
REAL X(N), FC, ADX(N)

! initialization of X() and the model

! start of optimization
CALL EO4DGF( W, QGBFUN, ..., FC, ADX, X, ...)

END

SUBROUTINE QGBFUN ( W, X, FC, ADX )
INTEGER N, I

REAL X(N), FC, ADX(N), ADFC

! computation of the cost function
CALL COST ( N, X, FC)

! initialization of the local adjoint variables

ADFC = 1.0
DO I =1,N

ADX(I) = 0.0
ENDDO

! dnitialization of the global adjoint variables
CALL ADZERO

! computation of the gradient vector by the adjoint model

CALL ADCOST (W, X, ADX, ADFC )
END

Fig. 39: Example of an optimization program (Arguments used inside the procedure have a bar,
while underlined arguments are computed by the procedure)

APPENDIX A. OPTIMIZATION

In this section we describe how the adjoint model is effectively used for minimization
of a cost function (see eq. 4).

The structure of an optimization program is shown in Figure 39. In this example
the routine EO4DGF of the NAG library [NAGLIB 1987] is used.

The array X holds the values of the control variables, and the integer variable N
denotes its length. The control variables must be initialized by a first guess before
the start of the optimization. In order to reduce run time, the initialization of the
model is separated and performed only once before the optimization.

The usage of E04DGF requires a subroutine QGBFUN, which computes the cost
function and its gradient vector. In the example QGBFUN calls the subroutine COST
to compute the cost function FC for a given vector of control variables X. The local
adjoint variables ADX and ADFC are initialized. The global adjoint variables are reset
to zero by the subroutine ADZERQO. Finally, the adjoint model subroutine ADCOST is
called to compute the gradient vector ADX.



