RSP EUROPEAN COMMISSION

* * DIRECTORATE-GENERAL

R Joint Research Centre

Institute for
Environment and
Sustainability

Evaluation of the Two-Stream Model Inversion Package

Lavergne Thomas (1), VolRbeck Michael (2), Pinty Bernard (1),
Kaminski Thomas (2) and Giering Ralf (2)

(1) European Commission — DG Joint Research Centre,
Institute for Environment and Sustainability
Global Environment Monitoring Unit, TP 440
|-21020 Ispra (VA), Italy

(2) FastOpt,
Schanzenstrasse, 36
D—-20357 Hamburg, Germany

November 2006 EUR 22467 EN



The mission of the Institute for Environment and Sustainability is to provide scientific and technical sup-
port to the European Union’s policies for protecting the environment and the EU Strategy for Sustainable
Development.

European Commission
Directorate-General Joint Research Centre
Institute for Environment and Sustainability

http://ies.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is responsible for the
use which might be made of this publication.

A great deal of additional information on the European Union is available on the Internet. It can be ac-
cessed through the Europa serhiip://europa.eu

EUR 22467 EN
ISSN 1018-5593
Luxembourg: Office for Official Publications of the European Communities

(© European Communities, 2006
Reproduction is authorised provided the source is acknowledged
Printed in Italy



Abstract

The behaviour of the two—stream inversion package is documented. Its capability to provide fast and ac-
curate estimates of key vegetation parameters (the Leaf Area Index, among others) from various synthetic
observational setups is investigated on a large set of scenarios. The study concludes on the possibility to use

this inversion package for the operational retrieval of land surface biophysical parameters from available
remote sensing flux products.
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Chapter 1

Introduction and rationale

This report aims at documenting the behaviour of the inverse package wfdketream model described
by Pinty et al. (2006). The inversion package itself was developed by Fasilet current report comple-
ments the companion paper Pinty et al. (2007) and provides additional results from synthetic cases.

The present report describes and analyses a self-contained benchmark, where the inversion package is
used to retrieve parameters of various vegetation systems when triggered by several observation setups.
While mainly focusing on results and analysis (in chapter 3), this report starts by shortly introducing the
forwardtwo-stream model of Pinty et al. (2006) (current chapter, section 1.1) and the associated inversion
package (current chapter, section 1.2). A description of chosen test cases and inversion setups follows in
chapter 2. Conclusions and comments are finally presented in chapter 4.

1.1 Thetwo-stream forward model

A new two-stream model for canopy radiation transfer was derived and validated in Pinty et al. (2006).
This model takes advantage of dedicated solutions for 2 different problems, namely the black-background
and the black-canopy conditions (Pinty et al. 2004).

e The black-background problem is solved by adapting the generic solution of Meador and Weaver
(1980) to the vegetation condition, deriving the appropriate; £oefficients for the case of bi-
Lambertian oriented leaves. The problem with an isotropic source of radiation is solved with the
same formalism, which significantly saves coding and maintenance efforts.

e A new analytical solution is derived for the black-canopy problem, expressing the flux transmitted
directly through the vegetation layer under isotropic illumination.

These two solutions are combined to yield the total (canopy + background + coupled) reflectance and trans-
mittance. The fraction of radiation absorbed in the vegetation is then derived by closing the radiative budget
of the layer.

A second important contribution of Pinty et al. (2004) (and Pinty et al. (2006)) is the uséeofive
(as opposed tarue or allometrig values for the vegetation state variables. This approach is required by
the mono-dimensional (1D) representation of three-dimensional (3D) effects iadtstream model and
ensures that the 1D reflected and transmitted fluxes are rightly balanced. In this formalism, however, the
(Lambertian) background scatters radiation withtiteereflectance value.

Although thetwo-stream model is designed to work in any optical waveband, climate applications are
usually interested in only two broadband domains. These are the broadband visible dojairdifiim]
(abbreviated VIS and note}) and the broadband near-infrared domain0ifT; 3.0um| (abbreviated NIR
and notedXs). Thus, for the sake of this presentation, the-stream model is operated in these two
broadband domains, hence usihgariables:

e the wavelength independent Leaf Area Index (wheffectivevalue is noted. Al);

e the single scattering albedo of vegetation elements in both wavelemgthstivevalues noteds; (\));

*http://www.FastOpt.com



¢ the forward scattering efficiency of vegetation elements in both wavelengfiest{vevalues, noted
d;(\) and defined as the ratio of the scatterer’s reflectay(ce to the scatterer’s transmittangé\));

e the underlying ground albedo in both wavelengtisdvalue noted-;(\)).

The spacéV of every possible combinations of these parameters is thus defined as a reBigrttof
cartesian axis corresponding to the state variables.

XeV; X = (LAI,wl()\l),dl()\l),Tg()\l),wl()\g),dl()\g),rg()\z))

V =R"x[0;1] x RT x [0;1] x [0;1] x R" x [0;1]

Applying the forwardtwo-stream model on a poinfX € V yields the vector of radiation fluxe¥® (X )
that the model can calculate in any of the two waveband domains: reflectance, absorption in the vegetation,
transmittance to the ground.

1.2 Inverse problem formalism

To present the general formalism underpinning the theory of inverse problems is outside the scope of this
contribution. Readers are directed to numerous books and articles dealing with that theory, including Taran-
tola (1987) and Tarantola (2005).

Following Tarantola (1987), we retain that solving the inverse problem is to characterise a PDF (Prob-
ability Density Function) on the space of model paramet€rsiUnder certain regularity assumptions, this
PDF is well approximated by a multi-dimensional Gaussian PDF:

P(X) =K x exp(—=(X — Xpost)Tc;(;st (X — Xpost)) X €V (1.1)

1
2
Xyost 1S the mean value of this posterior POK.is a normalisation constant so that the overall probability
inVis 1. Cy,,., is the covariance matrix @-posterioruncertainties on the model parameters. Its diagonal
elements are the squares of the standard deviatigns, of the marginal PDFs along each parameter
(cardinal) axis. Its off-diagonal elements are covariances which quantify-gasteriorbindings between
any parameters. The superscfiptienotes the transpose operator.

Furthermore X, is the point ofV which minimises a cost (or misfit) functioh J(X) is defined as
the sum of the distance between the observatiod seid the output of the modéll (X ) plus the deviation
of X from a-prioriknowledge on model parameters.

J(X) =+ {(M(X) = T CTHMX) = )+ (X = Xprion)TCRL (X = Xprior) ] (1.2)

2 prior

In Equation (1.2)Cq is the (Gaussian) uncertainty matrix on the set of measurendentsile Cx ..

is the (Gaussian) uncertainty matrix on tagriorimean estimate,,.;,,. These matrices and vectors are
described in more detail in section 2.2 and section 2.3. It is noteworthy that the posterior PDF (which is
approximated by Equation (1.1) can be formulated in terms:. of

P(X) =K' xexp(~J(X)) XeV . (1.3)

1.3 Remarks on the software implementations

1.3.1 Implementation of thetwo-stream forward model

Thetwo-stream model implementation which this study is based upoveision 2.42. The software was
designed, coded and is maintained at JRC. It can be downloadechftpiifapar.jrc.it/ . Al-
though both a C and Fortran90 version exist, current application uses the C implementation, only.

2As returned by2stream -v



1.3.2 Thetwo-stream inverse package

The inverse package was provided by FastOpt. It is a set of C routines and executables. The distribution
used for this report idist-4 although several functions were added to the original package (see appendix F
for a list of these modifications).

In order to findX,,,,: (see section 1.2), the adjoint model (routinedel _ad) of two-stream (routine
model in file twostream _solver.c) was used. The adjoint model provides the gradient of the cost fungtion
to a gradient algorithm for minimisation. The gradient algorithm selected is the C raiffimen available
from Press et al. (1986). As previously mentioned in section 1.1, state variables make sense as physical
gquantities only over some particular ranges. Those define the ddvhairhe implementation of the cost
function thus includes ”soft” boundsso that the minimum is only searched for insiée This proved
sufficient numerical stability in all cases.

The matrixCy,,., is approximated by the inverse of the Hessian/afhen evaluated at poinX,.,
V2J(X,0st). Routinemodel _ad _hes contains the code for evaluating this quantity. The matrix inversion
algorithm relies on a computation of the eigenvalues and eigenvectors. This was achieved with the routine
jacobi, also from Press et al. (1986). It should be noted that boundari¥sak not reflected by the-
posterioriGaussian PDF. The user should take care in interpreting values retrieved near the border of such
validity domains.

Both the adjoint and Hessian software code were generated from the routine for evaluation of Equa-
tion (1.2), which includes the code bfio-stream introduced in section 1.3.1. This generation process uses
FastOpt's automatic differentiation tool Transformation of Algorithms in C++ (TAC++) (MoRbeck et al.
2005). The tool essentially implements the concepts described by Giering and Kaminski (1998), Transfor-
mation of Algorithms in Fortran (TAF), the corresponding implementation in Fortran. The latter tool has
generated a similar inversion package for the RPV parametric model (Lavergne et al. 2006). The fully
automated derivative code generation process is particularly appealing for radiative transfer models under
development as it allows an almost instantaneous update of the corresponding inversion package.

Svalues ofJ(X) are drastically increased whe ¢ 'V using a power function for continuity and differentiability.
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Chapter 2

Experimental setup

A set of experiments was designed to study the behaviour afiheatream inversion package under ideal
conditions,i.e. applied on measurements generated by the forward model itself. In this chapter, we describe
these various experiments, as well as #apriori knowledge used throughout this report to constrain the
inversions.

2.1 Setup of vegetation canopy conditions

To investigate the behaviour of the inversion procedure under different conditions, 12 synthetic vegetation
canopies were designed. They sample the range of conditions that are to be studied by the inversion in
operational applicatioAs These 12 canopies differ with respect to their vegetation density (LAl), greenness
of leaves ¢, d;) and background reflectance valueg)(

Each of the 12 canopies is given a name. This identifier describes the values associated with state
variables. The canopy identifier is composed of three sub-strings as in:

|dentifier = DensityTag GreenessTag BackgroundTag

The 12 canopy identifiers are given in Table (2.1.1). Table (2.1.2), Table (2.1.3) and Table (2.1.4) assign
numerical values to the LAI, optical properties of scatterers and background reflectance, respectively.

sparse_green_dark sparse_green_medium sparse_green_bright
medium_green_dark medium_green_medium medium_green_bright
dense_green_dark dense_green_medium dense_green_bright
dense_brown_dark dense_brown_medium dense_brown_bright

Table 2.1.1: Canopy identifiers for the 12 canopy conditions

DensityTag | LAl value
sparse 0.70
medium 1.75
dense 3.50

Table 2.1.2: Correspondence between the density tag and the LAI value

1Snow conditions were not considered for this report, but can be treated as well



GreenessTag | wi(A1) | wi(A2) || di(A1) | di(A2)
green 0.1243| 0.8061| 1.30 1.30
brown 0.2200| 0.6200|| 1.70 1.70

Table 2.1.3: Correspondence between the greenness tag and the scatterers optical properties

BackgroundTag | rg(A1) | 74(A2)

dark 0.0625| 0.0797
medium 0.1182| 0.2108
bright 0.2227| 0.4255

Table 2.1.4: Correspondence between the background tag and the background optical properties

Because the canopy properties are those to be retrieved bydtstream inversion package, the values
associated to their parameters are referred to asubealues (denoted by(;,...). One should not confound
this wording and the distinction betweeffectiveandtruevariable values that was introduced in section 1.1.

2.2 Specifying thea-prioriknowledge on model parameters

The inverse problem associated with the retrieval of 7 state variables from (generally) fewer observations
is an ill-posed problem. In such conditions, one should take great care in definiagpit@i knowledge
available on the set of state variables. In theory, it should exactly reflect (no more and no less) the knowledge
we have on the model parameters, without contamination by the observations. In practice, however, this
characterization is seldom straightforward. As a guidelineatpeioriknowledge should be specified loose
enough so that the fitting of observations is not dominated but tight enough to avoid artificiallyatarge
posterioriuncertainties. It is noteworthy that the specification oggorioriknowledge can help to stabilise

the inversion process, possibly reducing the occurence of local minima of the cost function which is an
argument in favour of not too largeprioriPDF.

2.2.1 A-priori probability density function on state variables

In all considered experiments, theprioriPDF on state variables is specified using a 7-dimensional Gaussian
PDF P,.;or. It is hence fully described by a 7-dimensional vectoragbriori meanX,,.;,, and a &7
covariance matrix oé-prioriuncertaintiex .. The use of a unique prior PDF for all cases is justified
by the foreseen operational application when nothing distinguishes a vegetated target from another until the
observations are acquired and processed.

Table (2.2.1) reports tha-prioriPDF on state variables used for all the subsequent inversions. Values
for X,ior and associated standard deviatieis, ., are reported in the first two columns. Values entering
the full matrix of a-prioriuncertaintie<C'x . are in the next columns. Thepriori covariancegrespec-
tively correlation¥are reported as elements of an upgespectively lowénriangular matrix. Figure (2.2.1)
proposes a graphical sketch of thegriorimatrix of correlations. Figure (2.2.2), shows a graphical repre-
sentation in the VIS-NIR plane of tleeprioriknowledge on spectral parametessandr,, as well as some
of the measure points (leaves, soils and snow) on which this knowledge is based.

It can be easily seen that the variables are mainly uncorrelated except for the two background re-
flectances. In the following section, we will justify the choice of the mean values, associated uncertainties
and correlations.

2.2.2 Comments on thea-prioriknowledge

Leaf Area Index

Almost no constraint is put on this variable, reflecting the lack of knowledge we (want to) have on the
density of vegetation. This avoids introducing biases when performing the inversions.



Xpm'm. gXpr'io'r' LAI wi ()\1) dl ()\1) 'I’g()\l) wy ()\2) dl()\Q) Tg()\g)
LAI +1.500| +5.000 || +25.000 0 0 0 0 0 0
wi(A\1) | +0.170| +0.120 0 +0.0144 0 0 0 0 0
d;(A\1) | +1.000| +0.700 0 +0.4900 0 0 0
rg(A1) | +0.100| +0.096 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0
dy(X2) | +2.000| +1.500 0 0
rq(A2) | +0.180| +0.200 0 +0.0400

Table 2.2.1: Gaussian PDF afprioriknowledge. Mean values and associated standard deviations
are in the first two columns. The full uncertainty matrix is then reported in the next
columns, withcovariances$respectively correlatiohss elements of an uppeeépec-
tively lower) triangular matrix.

Single scattering albedo

The mean values and uncertainties for the single scattering allyedere mainly estimated from the spec-

tral data sets available from LOPEXHosgood et al. 1995) or generated with the PROSPECT model of
Jacquemoud and Baret (1990). Thadlemetricvalues ofw; were then slightly modified to reflect the ef-

fect of possible clumping in the vegetation system (see section 1.1). Indeezffabivesingle-scattering

albedo value can be reduced by a factofafto 0.8 with respect to thectualvalue when multiple scat-

tering occurs (like in the NIR domain) (Pinty et al. 2004). In a sense, the spectral correlation that should
be observed between the spectral properties in the the VIS and NIR domains for such phytoactive scattering
elements is blurred out by the need to account for the possible clumping of these scatterers in complex 3D
structures (like shoots, trees) inside the observed system. Moreover, barks and trunks can also be embedded
in the vegetation layer, these usually being "less green” than leaves. Graphically, these remarks translate in
the apparent shift of the centre of thepriori2D marginal PDF with respect to the clouds of measured leaf
albedo values in Figure (2.2.2).

Forward scattering efficiency

Similar arguments were used to set tprioriknowledge on the forward-scattering efficiengy Indeed,

Pinty et al. (2004) have shown theffectivevalues ford; could be largerrespectivelower) thanl in the

NIR (respectively/1S) domain. This is particularly true for needles when clumped into shoots (Smolander
and Stenberg 2003). Accordingly, the uncertainty on these parameters was enlarged to cover the range of
not clumped to clumped vegetation systems.

Soil reflectance

As mentioned in section 1.1, thectualvalues of the background reflectanggV' 15) andr,(NIR) are
used by thewo-stream model. The correlation between the spectral reflectances of soil surfaces (the well-
known "sail line”) can hence be safely introduced as part ofayrioriknowledge. The chosen numerical
value for the mean and correlation betwegf\;) andr,(\2) in the a-priori Gaussian PDH,,.;,, hides
away the complex modelling of the spectral reflectance of soils which depends, among other parameters, on
the surface roughness, the material of which the soil is constituted and the presence of water. It allows to
capture the main dependence between the two soil reflectance values, yet avoiding to increase the number
of state variables.

It should be noted that snow conditions are deemed very unlikely (see the asterisks on Figure (2.2.2)). An
update of thea-prioriPDF for the spectral background reflectances will be necessary to treat such conditions
(not considered in the current report).

%the Leaf Optical Properties Experiment
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Figure 2.2.1: Graphical representation of tiprioricorrelation matrix.

2.2.3 Remarks on the calculation of broadband reflectance values

The broadband visible (VIS) and broadband near-infrared (NIR) reflectansebtained by a weighted
average (Equation (2.1)) of the spectruti\) over the domair\s, \,] of interest (see chapter 1). The
weighting functionW (\) was chosen a&y(A\). The latter is the amount of energy available at the top

of atmosphere and was computed with thé 68ftware of Vermote et al. (1997). Compared to a simple
average (use of a constant weight function) the soil values are mostly identical, byt ¢ and (too a

lesser extend); (A1) are higher, due to the variations &% with \. The use ofi (\) = TéOA()\), the

energy available at the bottom of a standard, clear-sky atmosphere, is not expected to modify drastically the
average values.

[ dAW (V)R

(2.1)
Jay dAW (A)

2.2.4 Re-appraisal of the 12 canopy scenarios in the light of thee-prioriknowledge

The 12 canopies chosen in section 2.1 should make sense in the contextgbioei PDF described in

section 2.2. This compatibility ensures that the inverse routine will not be asked to search for a solution
(one of the 12 canopies) in regions of the parameter space which are excludeakyribiePDF. The three
vegetation densities correspond to LAl values aroundatpgiorimeanL Al,.;,» = 1.5 and anyway well

inside the uncertainty range of 41,,,,, = 5. The two single scattering albedo paigsden andbrown) lie

inside thel.50 ellipse in a VIS-NIR plane (Figure (2.2.2)). Theprioriuncertainties on parameteig\)

are so large that the values used in the 12 canopies are well inside the range. Finally, the three background
reflectance pairslérk, medium andbright) are along the "soil line” in the VIS-NIR plane of Figure (2.2.2)
although thebright pair remains on the edge of théo ellipse for ground reflectances.

3Second Simulation of the Satellite Signal in the Solar Spectrum
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Figure 2.2.2: Graphical representation of thgriori knowledge on spectral parametess (for
leaves) and, (for the background conditions) in the VIS-NIR plane. Bold crosses
locate the meaa-prioripoints and the solid line ellipses encompassitfie uncer-
tainty region of the respective prior PDFs. Measurements of various leaves (diamond),
soils (circle) and snow (asterisk) reflectance are also reported (see section 2.2.2 for
references)

2.3 Synthetic Observational Setup

2.3.1 Number and type of observations

In its current setup, thewo-stream model can be inverted against 3 types of observations: the reflectance
and transmittance of the whole radiative system (vegetation and background) and the absorption of the
vegetation. These 3 fluxes can be specified in the two broadband VIS and NIR domains. Eventually, each
of these observations can be associated with 2 types of illumination conditions: collimated and isotropic
sources.

Although the package is built to deal efficiently with an arbitrarily large number of observed fluxes,
the foreseen applications are always characterised by a small number of available measurements to con-
strain the model. The typical situation would be when only 2 observations are to be used: the BHR
(Bi-Hemispheric Reflectance Factor in the visible domain) and the BHRBi-Hemispheric Reflectance
Factor in the near-infrared domain). The FAPAR (absorption by the phytoactive elements, in the visible
domain) can be made available from other space-borne sensors or from field campaigns. It can be either
depending on the Sun illumination angle or can be specified for an isotropic source of radiation. Another
typical scenario is when the transmitted flux below the canopy is estimated duowsitg campaigns, either
with radiometers or from spherical camera photographs. These transmissions could also be coupled with
in-situor remotely sensed estimations of the reflectance at the same location and time.

Six sets of conditions were designed in order to testtthestream inversion procedure on a large
variety of such observation scenarios. Table (2.3.1) labels and describes these sets in terms of number and
type of observed fluxes. Each time the absorption is used it is intendé@as= 40°). Transmitted and
reflected fluxes are all using a perfectly isotropic source of radiation.

The 6 sets in Table (2.3.1) are expected to reveal the lexaejafsteriorknowledge (in terms of biases,
uncertainties and correlations) that can be expected using different sources of information.

10



label # obs R()\l) T()\l) A()\l) R()\Q) T()\Q) A()\Q)
allGiven 6 X X X X X X
onlyRR 2 X X

onlyA 1 X

RRA 3 X X X

onlyTT 2 X X

RRTT 4 X X X X

Table 2.3.1: Content of synthetic observational setups for the inversions

2.3.2 Uncertainty associated with observations

Like in any inversion procedure, neither the observations nor the model are perfect and are, thus, associated
with some level of uncertainty. Those selected for this study reflect the level of confidence one can have on
the various observations.

The reflectance and transmittance are associated witlaéive uncertainty (in terms of a Gaussian
standard deviation) of 5%, i.eps = 0.05 * Obs.

The standard deviation on FAPAR (absorption) is estimated atbanlutevalue of0.1, independently
from the actual value of FAPAR (Gobron et al. 2006).

11



Chapter 3

Results

Results of the processed inversions are presented and commented in this chapter. Particular attention is
drawn on the capability of the inverse routine to retrieve an accurate knowledge on the model parameters,
both in terms of mean value and associated uncertainty. In a first section, the various graphs, tables and
statistics used in this chapter are briefly introduced. Figures and tables themselves are found in appendix to
this report (appendix A to appendix E). Section 3.3, section 3.4 and section 3.5 discuss the retrieval of the
LAI, scatterers and soil optical properties.

3.1 Description of graphical material and tables

3.1.1 Mean and covariance matrix for thea-posterioriGaussian PDF

Tables grouped in appendix D (starting on page 49) display the values tak&p,QyandC,,., for the

series of performed inversions. The format is the same as the one of Table (2.2.1). The information included
in these tables completely characterisedhmosteriorPDF and all subsequent graphs and statistics are based
on these values.

Table (D.4.1), which reports on an inversion case for only transmitted flax&sI(T), shows a striking
effect: the parametef;(NIR) has a posterior uncertainty af529, compared to a prior uncertainty of
1.50 (see Table (2.2.1)). In contrast to what we intuitively would expect, the inclusion of a new piece of
information (from the observation) has not decreased the uncertainty, as in most of other cases and for most
of other parameters.

This effect is analysed by Figure (3.1.1), which displays the respective mis-fit function contributions (see
Equation (1.2)) by the priors (red curve), the observations (blue curve) as well as their sum (green curve)
around the pointX,,.. Only d;(NIR) is varied (x-axis) around ita-posteriorivalue (dashed vertical
line). The fourth (and black) curve shows the approximation of the cost function that corresponds to our
approximation of the-posteriorPDF (Equation (1.1)). This parabalg,; is defined by (X, ), the zero
gradient atX,,,s;, and the Hessian &, the inverse of which i€’y ,_,, and takes the form

Jpost(X) - J(Xpost) + (X - Xpost)TC_)_(;OSt (X - Xpost) (31)

We see that this parabola is indeed a good approximation of the full cost function. The inversion procedure
has identified the minimum accurately and approximates the curvature well, i.e. the inversion package has
worked reliably.

The curvature of the total cost function is smaller than that of the prior contribution, which obviously
translates into an increased uncertainty. The reason for this effect is a slightly negative curvature in the
observation’s contribution to the cost function (blue curve) that is added to the curvature of the prior con-
tribution. Such a negative curvature is a strong indication thatwestream model is not linear in that
region of the space of parameters. The case is unusual in the sense that the observational contribution does
not dominate the one from the prior.
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Figure 3.1.1: Total mis-fit function (green) as well as the contribution from observations (blue) and
priors (red) around the minimum found for thearse_green_dark case usingnlyTT.
The x-axis is fowd; (A2 ) which varies around; (A2 ) y0st, all other parameters being kept
to theira-posteriorivalue. Our approximation of the total misfit function on which the
a-posteriorPDF is based is also plotted (black).

3.1.2 Graphical representation of 1D marginal PDFs for all parameters

Figures grouped in appendix A (starting on page 18) are graphical representationsfdrDhmarginal
a-posteriorPDFs when the inverse routine is run on all the canopy conditions, using all the observational
setups. In both panels, statistics using #iprioriknowledge are also reported to get a clear view of the
improvement with respect to that state of information (if any).

Top panel

The top panel reports, for each variable and each observational setl, ttmemalisedistance between

the best estimatg&,,; and the valueX,,... (Equation (3.2)), when projected in each of the 7 axes. The sign

of the difference is artificially introduced so that a positive (negative) value corresponds to an overestimation
(underestimation) of theuevalue.

2
X — X
Dac (Xtrue) - S(xpost - xtrue) X (p%tz—tTuE) (32)

Tpost
whereS(u) = +1 is the sign ofu. Small values foD,.(X;,.) indicate that the retrieved value is close
to the true value (tha-posterioruncertainty being accounted for) and, hence, that the inversion performed
well for that variable. On the contrary, large values indicate that the difference betwgeandz ;. iS
large compared to the reported .. Intuitively, [L7,.,,| > 1 corresponds to situations where the value

retrieved for parameter is no more in the rangey,.. + o,,,,. For univariate Gaussian PDF, the latter
range is associated with a probability of approximatets.

Bottom panel

The bottom panel is a bar plot representation of the value of the standard dewigigrof the 1D marginal
PDF for each variable and each observational setup.
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3.1.3 Graphical representation of 2D PDF for spectral parameters

Figures grouped in appendix B (starting on page 31) propose a graphical representation Gi-{hes2&iori

PDF of two spectral parameters (namefyandr,) in the VIS-NIR plane. Such graphs permit the visu-
alisation of the uncertainties and level of correlation between variables. The left panel displays the PDF
for (ry(VIS),r,(NIR)) pairs and the right panel f¢w;(V1S),w;(NIR)). On each panel, the pair corre-
sponding to theruevalue is plotted with a black disc. Optimiséth.s: (A1), Zpost(A2)) pairs retrieved using

the various observational setups are displayed using diamonds-pbsterioril .5¢ ellipses of uncertain-

ties are drawn around these points. In such a 2D space, the probability associated with the area enclosed in
the 1.50 (2.50) ellipse is 235 ~ 0.68 (#3° ~ 0.95). Thea-priori1.50 ellipse, already plotted on Fig-

ure (2.2.2) is reported here for reference. A more detailled discussion on multivariate Gaussian probability
can be found in appendix G.

3.1.4 Statistics in multi-dimensional spaces for selected parameters

The quantityD, (X ) introduced with Equation (3.2) only expresses a 1D probability in the 7D param-
eters space. Because thgposterioriPDF usually exhibits a high degree of correlation in the uncertain-
ties between the variables, it is interesting to also monitor multi-dimensional statistics, taking into account
the explicit binding between variables. Equation (3.3) generalises Equation (3.2) on the set of variables
(ml,wg, .. ,l‘p)i

Dml,zg,...,mp (Xtrue) — (Xpost - Xtrue)TC)_(;ost (Xpost - Xtrue) (33)

Compared to Equation (3.2){,.s: and X;,.,. are vectors composed of a setofvariables and whose
elements are extracted from the corresponding 7-dimensional vector. By the samétekenis a subset

of the total covariance matrix, obtained by extracting rows and columns corresponding to the variables of
interest. These multi-dimensional Gaussian PDFs are jparginalPDFs of variablesX. For example,

D, (x\),r,(12) (NOtedD;. ) is calculated from the following elements in the casenetlium_green_medium
usingRRA. Numerical values were extracted from Table (D.3.5) and Table (2.1.4).

be _ 0.1182 be _ 0.110 c _ 0.0081 0.0148
true 0.2108 post 0.209 Xpost 0.0148 0.0353

Unlike for the D, (X4 ), @ sign cannot be defined for multi-dimensional differences and, consequently,
values reported for Equation (3.3) are always positive.

In the following, 3 subsetsy will be used, namelyall = X, w; = {wi(A1),w;(A2)} andr, =
{rg(A1),74(A2)}. The first one uses the 7D vector with all variables and hence allows for an overall view of
the inversions, including all correlations between uncertainties. The other two give insights into the distance
between therueanda-posteriorpairs of spectral parameters in the VIS—NIR plane.

Values forDai1 (Xirue), Do, (Xtrue) and D, (Xirue) are grouped in tables in appendix E. Each of
these tables also presents a column labelRdbri with results of Equation (3.3) but using,i.- (Cx,,,.)
in place of X0t (Cx,,..)- This last column proposes hence numerical values supporting the discussion
in section 2.2.4. IntuitivelyDz, 4, ... 2, (Xtrue) < £? locates Xy, in the ¢ vicinity of Xpost, inside the
domain defined by’x,,.,. As discussed at length in appendix G, this domain is an ellipse in the case of two
dimensions (like on Figure (2.2.2) and on those presented in section 3.1.3).

3.2 Analysis in the 7-dimensional parameters space

Table (E.3) gives an immediate overview of the quality of retrieved parameters when considered as an
ensemble. It reports values taken By;; (Xye) in all inversion cases. Values are generally small (with
respect ta2.85% = 8.1225), illustrating that retrieved parameters are close totthe conditions (taking

into account the-posterioruncertainties). Values reported in bold in Table (E.3) are conditions for which
the truepoint is outside th&.850 hyperellipsoid. From a statistical point of view, these bold values have a
probability of occurence of less th&f. This indicates that theuepoint can be viewed as an improbable
sample of thea-posteriorPDF and, thus, that thevo-stream inversion package did not retrieve the solution.
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Clearly, the only problematic conditions for the inversions are if usingRR with either a medium
density canopy associated to bright soils or a dense canopy with brown scatterers. In the first of these
cases, one can hypothesise that to decipher complex multiple scattering between the background and the
vegetation is still a challenge for theo-stream inverse package when only reflectances are available. As
for the second case, it was already mentioned thatn spectral conditions are close to the soil line. The
inversion package is possibly challenged at distinguishing between the dense canopy with brown leaves and
a sparse canopy (whose spectral signature mainly arises from the background).

Values in theaPriori column are sometimes smaller than those in other columns (when observations
are introduced). Counterintuitively, thteue canopy is associated with a greater probability in deriori
PDF than in thea-posteriorbne. This remark suggests to always comidihg; (X;,..) with other infor-
mation characterising the spread of the PDF. We could indeed very easisly baidréoriPDF for which
Da11(Xirue) is close to zero for all situations (using very lag@rioriuncertainties). In that case, ingesting
observations to retrieve the model parameters is likely to yield highmsteriorivalues forD 11 ( Xirue)
although we learnt some relevant information &p,s; (X,ost iS probably closer toXy,,. andCx,,,, de-
scribes a tighter PDF).

From results in Table (E.3) one concludes at the very good behaviour afvthetream inversion
package. Subsequent sections concentrate on the retrieval of each parameter.

3.3 Retrieving the wavelength independent LA

Top panels of Figure (A.1) to Figure (A.12) exhibit the values takeDhy ; (X1 ) Wwhen using the various
observational setups. In almost all cases, these values are closimdicating that theL. Al is found

in the neighbourhood of. A1,,.. This result confirms the very good behaviour of the inverse mode in
retrieving the value of this key vegetation parameter.

In the case where non-green leaves are embedded in the dense vegetated layer, the inversion using
lyRR returns value far away from the truth. It indeed retrieves low LAI values and with limited uncertainty
(compare with bottom panel of Figure (A.7)), as shown for example on Figure (A.10) and in Table (D.1.10)
to Table (D.1.12). As already explained (section 2.2.4),lwevn setup for leaves is approaching the
spectral domain of soils explaining why the inverse package fails when the albedos are usedralone (
lyRR). Such a condition could arise for temperate climate forests during the leaf senescence period and can
constitute a challenge for a remote sensing application.

Bottom panels of Figure (A.1) to Figure (A.12) show a certain hierarchy imthesterioriuncertainty
values for LAl when using the various set of observations. The LAI variable is much better controlled by
the specification of transmissionsn{y T T) than when the albedos only are giveml¢RR). Indeed, when
usingonlyTT, the oy, is reduced to approximately.15 (ranging from0.08 for sparse canopies to
0.20 for dense vegetation, Table (D.4.1) to Table (D.4.12)). UsingRR, theo 45 is only reduced to
values between.4 (sparse_green_bright, Table (D.1.3)) and.0 (medium_green_bright, Table (D.1.6)),
depending on théuevegetation density and soil brightness. The values one gets for,,,, when using
onlyA are in between these two situations, ranging fi@fto 1.4 (see Table (D.2.1) to Table (D.2.3)),
rising with the LAl of the canopy under study. As can be expected, albedos are carrying very limited
information on LAI as the signal is somewhat blurred by the reflectance properties of scatterers and soil.

From the three commented setslyRR, onlyA andonlyTT), the behaviour of the remaining observa-
tion combinations can be deduced easily. Adding the two albedos to the VIS absoRfiah does not
help much in retrieving the LAI. Statistics for this variable are close to the situationowiftd. To com-
bine more observations (RRTT or allGiven) gives the most accurate results, completely controlling the
vegetation density, with values fot. 47,,,, aroundo.1 in all cases.

3.4 Retrieving the spectral properties of scatterers

3.4.1 The single-scattering albedo

Both the vegetation density and the set of observations being used control the accuracy levels associated to
the retrieval ofv; (V' 1.S) andw; (NI R). Itis indeed quite intuitive that if little amount of scatterers is present,

15



their properties will remain uncertain. In that case, the information returned by the inversion process is not
different from thea-prioriknowledge that was specified, expressing the fact that little was learnt on these
parameters The variations ob, with vegetation density is illustrated by the overall decrease of its value,
in both spectral domains, when moving from thrse to thedense conditions (fromoy,,,,, = 0.12 for
VIS (respectively).15 for NIR) to approximately).05 as illustrated on the bottom panels of Figure (A.1) to
Figure (A.12).
The various observation types do not have the same capability for retrieMidgg Bottom panels of
Figure (A.7) to Figure (A.9) suggest that only the albedo of the system (embeddelyRR, RRTT and
allGiven) is of interest to characterise this spectral variable. The use of absorptigA) or transmission
(onlyTT) ends up in the-priorivalue foro,, (V 1.5) even fordense conditions. In the NIR domaimnly TT
performs rather well when the vegetation is dense enough. This different behaviour in both wavelengths is
most certainly linked to the greater contribution of multiple scattering transmission in the NIR domain.
Although the uncertainty level is lowered when moving to denser canopies, top panel of Figure (A.5)
seems to indicate a drop in the quality of the solution (high valueBgf X;,,.) in Table (E.1)) for
cases with a medium LAI. This is particularly true when usimgyRR. A more precise analysis using
Table (D.1.4) to Table (D.1.6) indicates that the worst scenaigetium_green_bright. Indeed, with an
intermediate LAI, both the scatterers and the underlying background contribute for a substantial amount
of the total albedo. These contributions moreover arise from complex multiple scattering events between
the vegetation layer and the ground surface (the "coupled” term in Pinty et al. (2004)). It is hence not
surprising that medium density canopies (especially associated with bright soils) constitute a challenge for
the two-stream inversion package. This situation is also illustrated on the right panels of Figure (B.4) to
Figure (B.6).

3.4.2 The forward-scattering efficiency

As for the single-scattering albedo, the forward-scattering efficiency should be best retrieved when a sub-
stantial amount of scatterers is in the canopy layer. However, the radiation transfer equation being so poorly
sensitive to its value, the characterisationdgf)) is a very difficult task. Top panels in Figure (A.1) to
Figure (A.12) show the good behaviour of the routine, with valueof (X;,..)| close to zero in both
spectral domains. This result is however balanced by the use ofdgpgeriuncertainties for this variable.

Itis possible to reduce the value ®f, () by using jointly observations at the top and bottom of the layer
conjointly (RRTT, allGiven) and provided that the LAl is large enough, as reported on Figure (A.8) (bottom
panel).

3.5 Retrieving the spectral ground albedo

The density of vegetation plays an important role in retrieving the ground albedo. Dense vegetation will
indeed tend to intercept radiation, lowering the relative influence of the background. In this situation, the in-
version package is expected to return no more thaa{oriknowledge on the soil reflectance parameters.
On the contrary, a good quality inversion of these parameters is expected if the vegetatioseis

Top panels of Figure (A.1) to Figure (A.12) show the overall good behaviour of the routine, with
DTQ(Al)(Xtme) and DTQ(AZ)(Xtme) taking on absolute values smaller than The only exception is for
dense_brown conditions, when usingnlyRR (see section 3.3).

As in section 3.4, the use of the various observations does not yield the same |la#plositeriori
uncertainty. From bottom panels of Figure (A.1) to Figure (A.12), it is clearly seen that knowledge on the
albedo is more relevant than the transmitted and absorbed fluxes. As can be expected, combinations like
RRTT orallGiven give the best results for these variables.

Table (E.2) gives the value 8, (X4 ) for the various measurement sets and canopies. As introduced
for 1-D statistics, values are usually smaller for measurement sets including the albedo apatsor
vegetation.

Left panels of Figure (B.1) to Figure (B.12) illustrate the capability to retrieve accurate estimates of the
ground reflectance provided that albedo are measured and that the vegetation is sparse enough.

LAt least for what concerns mean and standard deviations value. The correlation with the other variables is usually modified.
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Chapter 4

Conclusion

This report documents the behaviour of the-stream inversion package under a large set of model sim-
ulated conditions. Multiple vegetation canopy targets are designed to exercise the inversion package. In-
versions are moreover triggered with various synthetic observational setups to cope with the foreseen ap-
plications. Retrieval results are analysed using different statistics, both in terms of mean and uncertainty
values (standard deviations and correlations) associated witvplosteriorProbability Density Function.

We conclude that thewo-stream inversion package works in an accurate and stable manner. Thanks to its
implementation, the computer resources and the run time required by the inversion package are very limited.
This confirms the possibility to use this inversion package in an operational mode to generate biophysical
land surface products with documented accuracy from remote sensing measurements.
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Appendix A

Graphical representation of the a-posteriori
1D Gaussian statistics for all parameters
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Figure A.1: Graphical representation o#&-posteriori 1D Gaussian statistics for case
sparse _green dark and for each observational setup. Top panel plots values
of Equation (3.2) for each state variable. Bottom panel is a bar plot representation of
the standart deviation.
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Figure A.2: Graphical representation o#&-posteriori 1D Gaussian statistics for case
sparse _green _medium and for each observational setup. Top panel plots val-
ues of Equation (3.2) for each state variable. Bottom panel is a bar plot representation
of the standart deviation.
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Figure A.3: Graphical representation o#&-posteriori 1D Gaussian statistics for case
sparse green bright and for each observational setup. Top panel plots values
of Equation (3.2) for each state variable. Bottom panel is a bar plot representation of
the standart deviation.
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Figure A.4: Graphical representation o#&-posteriori 1D Gaussian statistics for case
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of Equation (3.2) for each state variable. Bottom panel is a bar plot representation of
the standart deviation.
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Figure A.5: Graphical representation o#&-posteriori 1D Gaussian statistics for case
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Equation (3.2) for each state variable. Bottom panel is a bar plot representation of the
standart deviation.
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Figure A.6: Graphical representation o&-posteriori 1D Gaussian statistics for
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ues of Equation (3.2) for each state variable. Bottom panel is a bar plot representation
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Figure A.7: Graphical representation o#&-posteriori 1D Gaussian statistics for case
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Equation (3.2) for each state variable. Bottom panel is a bar plot representation of the
standart deviation.
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Figure A.9: Graphical representation o#&-posteriori 1D Gaussian statistics for case
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Figure A.10: Graphical representation o&-posteriori 1D Gaussian statistics for case
dense brown dark and for each observational setup. Top panel plots values
of Equation (3.2) for each state variable. Bottom panel is a bar plot representation of
the standart deviation.
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Figure A.11: Graphical representation o&-posteriori 1D Gaussian statistics for case
dense brown medium and for each observational setup. Top panel plots val-
ues of Equation (3.2) for each state variable. Bottom panel is a bar plot representation
of the standart deviation.
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Appendix B

Graphical representations ofa-posteriori
PDFs ofw; and ry in the VIS-NIR plane

sparse_green_dark sparse_green_dark

__ 05 E 0.9 )
e —— onlyRR S‘
= 04 —— onlyA 3 /
m U.ar —— RRA N~ ya |
N onlyTT o 0.8 // d ‘
o, —— RRTT )
o 0.3 allGiven O
2 aPriori 2 / %
8 < 07
S ool 2 ©
T o 5
x = \
o I @ o 0.6
5 01 ° 2
o ) Q
D) (o]
00 A /I 1 1 1 UE') 05 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4
Ground Reflectance [0.4-0.7pm] Single Scattering Albedo [0.4-0.7um]

Figure B.1: Graphical representation of r@osteriorPDF on spectral parameters in a VIS-NIR
plane for caseparse green dark. Thel.5¢0 ellipse is drawn for each observational
setup. It is centred on tha-posterioripair of VIS-NIR parameters (coloured dia-
monds). Black discs are used to locate thee pair of model parameters. The left
panel displays variablg, and the right panel;.
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Figure B.2: Same as Figure (B.1) but for canapyrse _green medium.
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Figure B.4: Same as Figure (B.1) but for canopgdium green dark.
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Figure B.5: Same as Figure (B.1) but for canopgdium _green _medium.
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Figure B.7: Same as Figure (B.1) but for canajeyise green dark.
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Figure B.8: Same as Figure (B.1) but for canaleyise green medium.
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Figure B.9: Same as Figure (B.1) but for canaleyise green bright.
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Figure B.11: Same as Figure (B.1) but for candpyse brown medium.
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Appendix C

Graphical representation of a-posteriori
correlations between parameters
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Figure C.1: Colour bar for interpretation of correlations between variables
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Figure C.2: Graphical representation of the correlation matrix-pbsteriorknowledge when in-
verting two-stream againstsparse _green dark using different sets of observations.
Numerical values can be found in Table (D.1.4)l¢RR), Table (D.2.1) ¢nlyA), Ta-
ble (D.3.1) RRA), Table (D.4.1)¢nlyTT), Table (D.5.1) RRTT) and Table (D.6.1)
(allGiven)
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Figure C.3: Graphical representation of the correlation matria-piosterioriknowledge when
inverting two-stream againstsparse green medium using different sets of obser-
vations. Numerical values can be found in Table (D.1&)yRR), Table (D.2.2)
(onlyA), Table (D.3.2) RRA), Table (D.4.2) ¢nlyTT), Table (D.5.2) RRTT) and
Table (D.6.2) §liGiven)
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Figure C.4: Graphical representation of the correlation matrix-pbsteriorknowledge when in-
vertingtwo-stream againssparse green bright using different sets of observations.
Numerical values can be found in Table (D.1.&)I¢RR), Table (D.2.3) ¢nlyA), Ta-

ble (D.3.3) RRA), Table (D.4.3)¢nlyTT), Table (D.5.3)RRTT) and Table (D.6.3)
(allGiven)
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Figure C.5: Graphical representation of the correlation matrix-pbsteriorknowledge when in-
vertingtwo-stream againsimedium _green _ dark using different sets of observations.
Numerical values can be found in Table (D.1d)I¢RR), Table (D.2.4) ¢nlyA), Ta-
ble (D.3.4) RRA), Table (D.4.4)¢nlyTT), Table (D.5.4)RRTT) and Table (D.6.4)
(allGiven)
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Figure C.6: Graphical representation of the correlation matrix-pbsteriorknowledge when in-
verting two-stream againstmedium green _medium using different sets of obser-
vations. Numerical values can be found in Table (D.1d)yRR), Table (D.2.5)

(onlyA), Table (D.3.5) RRA), Table (D.4.5) ¢nlyTT), Table (D.5.5) RRTT) and
Table (D.6.5) §llGiven)
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Figure C.7: Graphical representation of the correlation matria-posterioriknowledge when
inverting two-stream againstmedium _green _bright using different sets of obser-
vations. Numerical values can be found in Table (D.1&)yRR), Table (D.2.6)
(onlyA), Table (D.3.6) RRA), Table (D.4.6) ¢nlyTT), Table (D.5.6) RRTT) and
Table (D.6.6) §liGiven)
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Figure C.8: Graphical representation of the correlation matrix-pbsteriorknowledge when in-
verting two-stream againstdense green dark using different sets of observations.
Numerical values can be found in Table (D.1.a)I¢RR), Table (D.2.7) ¢nlyA), Ta-
ble (D.3.7) RRA), Table (D.4.7)¢nlyTT), Table (D.5.7) RRTT) and Table (D.6.7)
(allGiven)
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Figure C.9: Graphical representation of the correlation matria-posterioriknowledge when
inverting two-stream againstdense green medium using different sets of obser-
vations. Numerical values can be found in Table (D.18)yRR), Table (D.2.8)
(onlyA), Table (D.3.8) RRA), Table (D.4.8) ¢nlyTT), Table (D.5.8) RRTT) and
Table (D.6.8) §liGiven)
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Figure C.10: Graphical representation of the correlation matrax-pbsteriorknowledge when in-
vertingtwo-stream againstlense green bright using different sets of observations.
Numerical values can be found in Table (D.1.&)I¢RR), Table (D.2.9) ¢nlyA), Ta-

ble (D.3.9) RRA), Table (D.4.9)¢nlyTT), Table (D.5.9)RRTT) and Table (D.6.9)
(allGiven)
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Figure C.11: Graphical representation of the correlation matrax-pbsteriorknowledge when in-
verting two-stream againstdense brown _dark using different sets of observations.
Numerical values can be found in Table (D.1.18)I{RR), Table (D.2.10)¢nlyA),
Table (D.3.10) RRA), Table (D.4.10)¢nlyTT), Table (D.5.10)RRTT) and Table
(D.6.10) @llGiven)
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Figure C.12: Graphical representation of the correlation matrax-pbsteriorknowledge when in-
verting two-stream againstdense brown medium using different sets of observa-
tions. Numerical values can be found in Table (D.1.dyRR), Table (D.2.11)

(onlyA), Table (D.3.11) RRA), Table (D.4.11)¢nlyTT), Table (D.5.11)RRTT)
and Table (D.6.11)AIGiven)
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Figure C.13: Graphical representation of the correlation matrax-pbsteriorknowledge when in-
vertingtwo-stream againstlense _brown _bright using different sets of observations.
Numerical values can be found in Table (D.1.1&)I{RR), Table (D.2.12)¢nlyA),
Table (D.3.12) RRA), Table (D.4.12)¢nlyTT), Table (D.5.12)RRTT) and Table
(D.6.12) @liGiven)
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Appendix D

Numerical values of thea-posteriorPDFs

Tables in this appendix summarise #mposteriorPDF on all parameters when invertitigo-stream in all
canopy configurations and all observational setups. They have the same structure as Table (2.2.1).

D.1 Inversions usingonlyRR

Xpost | OXpou LAI wi(M)  di(M) rg(M) wi(Me)  di(N2)  re(A2)
LAI +0.919| +0.824| +0.6786 +0.0372 +0.0295 -0.0010 -0.0909 -0.2795 -0.0324

wi(A1) | +0.142| +0.085| +0.5310| +0.0072 -0.0085 -0.0038 -0.0002 -0.0008 -0.0068
di(A1) | +0.973| +0.707 || +0.0507 -0.1417| +0.4994 -0.0030 -0.0003 -0.0010 -0.0053
rqe(A1) | +0.065| +0.055| -0.0212 -0.8173 -0.0759 +0.0030 -0.0037 -0.0113 +0.0041
wi(A2) | +0.686| +0.159 || -0.6929 -0.0150 -0.0024 -0.4229+0.0254 +0.0065 -0.0066
di(N\g) | +1.956| +1.530| -0.2217 -0.0060 -0.0009 -0.1338 +0.026#2.3410 -0.0201
rq(A2) | +0.110| +0.114 || -0.3438 -0.6986 -0.0653 +0.6472 -0.3648 -0.114¥0.0131

Table D.1.1:A-posterioriPDF for the inversion againsparse green dark and usingonlyRR.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)
LAI +1.117| +1.257| +1.5805 +0.1396 +0.1558 -0.0123 -0.0706 -0.1549 -0.0569

wi(A) | +0.185| +0.126 | +0.8782| +0.0160 +0.0031 -0.0048 -0.0024 -0.0051 -0.0108
di(\) | +1.016| +0.696 || +0.1780 +0.0347 +0.4847 -0.0054 -0.0026 -0.0056 -0.0121
rg(A1) | +0.121| +0.068 || -0.1448 -0.5600 -0.114% +0.0046 -0.0042 -0.0092 +0.0074
wi(A2) | +0.722| +0.115|| -0.4906 -0.1628 -0.0324 -0.5353+0.0131 -0.0177 -0.0096
di(A2) | +2.048| +1.464 || -0.0842 -0.0275 -0.0055 -0.0927 -0.10%#2.1434 -0.0213
rqe(A2) | +0.225| +0.142|| -0.3197 -0.6017 -0.1227 +0.7723 -0.5929 -0.10290.0200

Table D.1.2:A-posterioriPDF for the inversion againsparse green medium and usingonlyRR.
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Xpost prost LAI wl(/\l) dl(/\l) ’I”g(Al) wl()\g) dl()\g) Tg()\g)
LAI +0.710| +0.404 || +0.1632 +0.0405 +0.0326 +0.0108 -0.0020 -0.0060 +0.0034
wi(A) | +0.171| +0.129 || +0.7779| +0.0166 +0.0019 -0.0009 +0.0043 +0.0058 -0.0034
d;(A1) | +1.001| +0.701 || +0.1153 +0.0208 +0.4911 -0.0008 +0.0035 +0.0047 -0.0027
rg(A1) | #0.200| +0.054 || +0.4907 -0.1322 -0.0197 +0.0030 -0.0031 -0.0049 +0.0028
wi(A2) | +0.803| +0.115|| -0.0440 +0.2892 +0.0429 -0.4992+0.0133 -0.0070 -0.0097
dy(\g) | +2.132| +1.437|| -0.0103 +0.0312 +0.0046 -0.0629 -0.0424-2.0660 -0.0147
rq(A2) | +0.415| +0.092 || +0.0902 -0.2826 -0.0419 +0.5653 -0.9132 -0.11160.0085

Table D.1.3:A-posterioriPDF for the inversion againsparse green bright and usingonlyRR.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)
LAI +2.646| +2.954 || +8.7247 +0.0895 +0.0624 -0.0093 -0.1051 -0.2186 -0.0377
wi(A1) | +0.136| +0.038 || +0.7976| +0.0014 -0.0132 -0.0010 -0.0009 -0.0018 -0.0021
d;(A1) | +0.968| +0.707 || +0.0299 -0.4906| +0.5001 -0.0007 -0.0006 -0.0013 -0.0014
rq(A1) | +0.101| +0.095|| -0.0333 -0.2820 -0.0102 +0.0090 -0.0019 -0.0040 +0.0165
wi(A2) | +0.736| +0.054 || -0.6583 -0.4244 -0.0160 -0.3719+0.0029 -0.0325 -0.0043
di(A2) | +2.063| +1.450|| -0.0510 -0.0329 -0.0012 -0.0288 -0.4145-2.1015 -0.0089
rg(A2) | +0.184 | +0.197 || -0.0647 -0.2768 -0.0100 +0.8828 -0.4027 -0.03120.0389

Table D.1.4:A-posterioriPDF for the inversion againstedium green dark and usingonlyRR.

Xpost | OXpost LAI wi(Adr) (M) rg(M)  wi(Re)  di(Ae)  rg(A2)
LAI +2.794 | +2.943| +8.6605 +0.0772 +0.0712 -0.0455 -0.0968 -0.2095 -0.1141
wi(A1) | +0.154 | +0.035|| +0.7411| +0.0013 -0.0140 -0.0012 -0.0007 -0.0015 -0.0024
di(A1) | +0.984| +0.697 || +0.0347 -0.5676| +0.4864 -0.0011 -0.0007 -0.0014 -0.0022
rg(A1) | +0.105| +0.096 || -0.1608 -0.3435 -0.0159 +0.0093 -0.0013 -0.0029 +0.0172
wi(A2) | +0.771| +0.050 || -0.6610 -0.4023 -0.0189 -0.2741+0.0025 -0.0284 -0.0030
di(A2) | +2.111| +1.433|| -0.0497 -0.0301 -0.0014 -0.0210 -0.3978-2.0524 -0.0066
rq(A2) | +0.193| +0.201|| -0.1926 -0.3398 -0.0158 +0.8869 -0.3006 -0.02380.0406

Table D.1.5:A-posterioriPDF for the inversion againstedium green medium and usingon-

yRR.
Xpost | OXpous LAI wi(A)  di(M)  rg(M) wi(Ae)  di(Ae)  rg(Ae)

LAI +3.123| +2.969 || +8.8130 +0.0529 +0.0670 -0.0787 -0.0913 -0.2076 -0.1826
wi(A1) | +0.187 | +0.031 || +0.5794| +0.0009 -0.0151 -0.0010 -0.0005 -0.0010 -0.0020
di(\) | +1.020| +0.678 || +0.0333 -0.7242 +0.4603 -0.0013 -0.0006 -0.0013 -0.0026
rg(A1) | #0.109 | +0.099 || -0.2674 -0.3217 -0.0186 +0.0098 -0.0007 -0.0017 +0.0184
wi(A2) | +0.825| +0.044 | -0.6941 -0.3422 -0.0196 -0.1482+0.0020 -0.0227 -0.0016
di(X2) | +2.161| +1.418 || -0.0493 -0.0240 -0.0014 -0.0120 -0.3614+2.0095 -0.0040
rg(A2) | +0.202| +0.208 || -0.2953 -0.3174 -0.0184 +0.8938 -0.1689 -0.013%0.0434

Table D.1.6:A-posterioriPDF for the inversion againstedium _green bright and usingonlyRR.
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Xpost UXposi LAI wl(/\l) dl(/\l) Tg(Al) wl()\g) dl()\g) Tg()\g)

LAI +3.107 | +2.850| +8.1221 +0.0522 +0.0306 -0.0341 -0.0771 -0.1748 -0.0892

+0.129| +0.028| +0.6599| +0.0008 -0.0134 -0.0007 -0.0004 -0.0009 -0.0015
+0.962| +0.711| +0.0151 -0.6789 +0.5051 -0.0004 -0.0002 -0.0006 -0.0009
+0.105| +0.096 || -0.1244 -0.2779 -0.0062 +0.0093 -0.0011 -0.0025 +0.0172

)
)
M)
A2) | +0.794| +0.043|| -0.6335 -0.3493 -0.0081 -0.2670+0.0018 -0.0264 -0.0025
Ao)
)

+2.134| +1.425| -0.0430 -0.0236 -0.0006 -0.0186 -0.43322.0317 -0.0058
+0.192| +0.201 || -0.1555 -0.2752 -0.0061 +0.8868 -0.2905 -0.02020.0405

Table D.1.7:A-posterioriPDF for the inversion againgense green dark and usingonlyRR.

Xpost O Xpost LAI wl()\l) dl()\l) ""g()\l) wl()\g) dl()\g) T‘g()\z)

Al +3.157| +2.846 || +8.1016 +0.0493 +0.0304 -0.0376 -0.0764 -0.1749 -0.0965
) | +0.131| +0.027 || +0.6359| +0.0007 -0.0136 -0.0007 -0.0004 -0.0009 -0.0015
) | +0.963| +0.710|| +0.0150 -0.7013| +0.5036 -0.0004 -0.0002 -0.0006 -0.0009

¢(A1) | +0.105| +0.096 || -0.1371 -0.2746 -0.0063 +0.0093 -0.0010 -0.0024 +0.0173
)
)
)

+0.802| +0.042| -0.6391 -0.3415 -0.0081 -0.2522+0.0018 -0.0255 -0.0023
+2.142| +1.423| -0.0432 -0.0230 -0.0006 -0.0176 -0.42652.0254 -0.0055
+0.193| +0.202| -0.1679 -0.2719 -0.0063 +0.8874 -0.2748 -0.01920.0408

Table D.1.8:A-posterioriPDF for the inversion againgense green medium and usingonlyRR.

Xpost | TXposi LAI wi(M)  di(M) rg(M) wi(Me) di(A2)  rg(Ae)

LAI +3.250| +2.841| +8.0720 +0.0441 +0.0297 -0.0429 -0.0754 -0.1754 -0.1072

+0.135| +0.026

) +0.5893| +0.0007 -0.0138 -0.0007 -0.0003 -0.0008 -0.0014
) | +0.966| +0.708 | +0.0147 -0.7409| +0.5007 -0.0004 -0.0002 -0.0005 -0.0009
A1) | +0.106 | +0.097|| -0.1560 -0.2638 -0.0065 +0.0094 -0.0009 -0.0022 +0.0174
Ag) | +0.816| +0.041| -0.6504 -0.3254 -0.0082 -0.2272+0.0017 -0.0240 -0.0021
A2) | +2.153| +1.420|| -0.0435 -0.0216 -0.0005 -0.0161 -0.4135-2.0161 -0.0051
)

+0.195| +0.203| -0.1861 -0.2610 -0.0064 +0.8884 -0.2482 -0.01760.0411

Table D.1.9:A-posterioriPDF for the inversion againgense green bright and usingonlyRR.

Xpost | TXpost LAI wi(M)  di(M) rg(M) wi(Ne)  di(N2)  re(Ne)

LAI +0.780| +0.754 || +0.5689 +0.0586 +0.0588 +0.0030 -0.0644 -0.1777 -0.0248

) | +0.168| +0.111 || +0.7019| +0.0122 -0.0023 -0.0033 -0.0017 -0.0048 -0.0067
(A1) | +0.998| +0.699 || +0.1114 -0.0298| +0.4886 -0.0033 -0.0017 -0.0049 -0.0067
(A1) | +0.093| +0.048| +0.0820 -0.6156 -0.0976 +0.0023 -0.0035 -0.0096 +0.0025
(A2) | +0.695| +0.147 || -0.5791 -0.1064 -0.0170 -0.4901+0.0217 -0.0028 -0.0071
1(A2) | +1.986| +1.505|| -0.1566 -0.0290 -0.0046 -0.1323 -0.0128-2.2637 -0.0197
(A2) | ¥0.165| +0.097 || -0.3380 -0.6197 -0.0983 +0.5366 -0.4991 -0.134%0.0094

Table D.1.10:A-posterioriPDF for the inversion againgense brown dark and usingonlyRR.
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Xpost prost LAI wl(/\l) dl(/\l) ’I”g(Al) wl()\g) dl()\g) Tg()\g)

LAI +0.799| +0.780| +0.6084 +0.0626 +0.0632 +0.0031 -0.0658 -0.1780 -0.0243
wi(A1) | +0.170| +0.112|| +0.7188| +0.0125 -0.0020 -0.0033 -0.0019 -0.0051 -0.0068
di(A1) | +1.000| +0.699 || +0.1160 -0.0255| +0.4882 -0.0033 -0.0019 -0.0052 -0.0068
rg(A1) | +0.096 | +0.049 || +0.0818 -0.5973 -0.0963 +0.0024 -0.0036 -0.0098 +0.0027
wi(A2) | +0.696| +0.146 || -0.5783 -0.1153 -0.0186 -0.5021+0.0213 -0.0039 -0.0075
di(Ag) | +1.989| +1.502|| -0.1519 -0.0304 -0.0049 -0.1317 -0.0176r2.2563 -0.0203
rq(A2) | +0.170| +0.099 || -0.3145 -0.6116 -0.0987 +0.5581 -0.5201 -0.13680.0099

Table D.1.11:A-posterioriPDF for the inversion againdense _brown medium and usingnlyRR.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)
LAl +0.832| +0.822 | +0.6763 +0.0698 +0.0714 +0.0034 -0.0670 -0.1750 -0.0237
wi(A1) | +0.172| +0.114 || +0.7466| +0.0129 -0.0013 -0.0033 -0.0021 -0.0054 -0.0070
di(A\) | +1.002| +0.698 || +0.1244 -0.0168 +0.4875 -0.0034 -0.0021 -0.0055 -0.0071
Tg(/\l) +0.100| +0.051 | +0.0805 -0.5660 -0.0944 +0.0026 -0.0038 -0.0100 +0.0031
wi(A2) | +0.698| +0.143|| -0.5716 -0.1269 -0.0211 -0.5218+0.0203 -0.0058 -0.0081
dl()\g) +1.996| +1.497 | -0.1422 -0.0316 -0.0053 -0.1297 -0.0273+2.2413 -0.0212
’I”g()\Q) +0.180| +0.103 | -0.2797 -0.5952 -0.0993 +0.5906 -0.5554 -0.13860.0106

Table D.1.12:A-posterioriPDF for the inversion againgense brown bright and usingonlyRR.

D.2 Inversions usingonlyA
Xpost | 0Xpowr || LAL — wi(M)  di(A)  rg(A1)  wi(A2)  di(A2)  rg(Ma)

LAI +0.708 | +0.300|| +0.0897 +0.0112 +0.0006 -0.0069 0 0 -0.0128
wi(A1) | +0.170| +0.120| +0.3106| +0.0144 +0.0000 +0.0000 0 0 +0.0000
d;(A\1) | +1.000| +0.700 || +0.0029 +0.0000 +0.4900 +0.0000 0 0 +0.0000
rg(A1) | +0.100| +0.096 || -0.2417 +0.0001 +0.0000 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 +0.0225 0 0
di(A\2) | +2.000| +1.500 0 0 0 0 +2.2500 0
rq(A2) | +0.180| +0.200 || -0.2142 +0.0000 +0.0000 +0.8862 0 0 | +0.0400

Table D.2.1:A-posterioriPDF for the inversion againsparse green dark and usingonlyA.

Xpost | TXpout LAI wi(A)  di(M)  rg(A) wi(Ae)  di(Ae)  rg(Ae)
LAl +0.752| +0.308|| +0.0950 +0.0118 +0.0007 -0.0072 0 0 -0.0134
wi(A1) | +0.170| +0.120| +0.3190| +0.0144 +0.0000 +0.0000 0 0 +0.0000
di(A\1) | +1.000| +0.700 || +0.0032 +0.0000 +0.4900 +0.0000 0 0 +0.0000
rg(A1) | +0.100| +0.096 || -0.2449 +0.0001 +0.0000 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 +0.0225 0 0
di(A2) | +2.000| +1.500 0 0 0 0 +2.2500 0
rq(A2) | +0.180| +0.200 || -0.2170 +0.0001 +0.0000 +0.8862 0 0 | +0.0400

Table D.2.2:A-posterioriPDF for the inversion againsparse _green medium and usingonlyA.

52



KXpost | OXpour LAl wiA)  di(A) g M) wi(N2)  di(A2)  Te(Ae)
LAl +0.836| +0.326 | +0.1060 +0.0130 +0.0009 -0.0078 0 0 -0.0144
) | +0.170| +0.120 || +0.3333| +0.0144 +0.0000 +0.0000 0 0 +0.0000
1) | +1.000| +0.700| +0.0039 +0.0000 +0.4900 +0.0000 0 0 +0.0000
A1) | +0.100| +0.096 || -0.2494 +0.0002 +0.0000 +0.0092 0 0 +0.0170
A2) | +0.700| +0.150 0 0 0 +0.0225 0 0
A2) | +2.000| +1.500 0 0 0 0 +2.2500 0
¢(A2) | #0.180| +0.200|| -0.2210 +0.0001 +0.0000 +0.8862 0 0 | +0.0400

Table D.2.3:A-posterioriPDF for the inversion againsparse green bright and usingonlyA.

Xpost O Xpost LAI wl()\l) dl()\l) ""g()\l) wl()\g) dl()\g) T‘g()\z)

Al +1.776| +0.558 || +0.3118 +0.0261 +0.0055 -0.0120 0 0 -0.0221
) | +0.170| +0.120|| +0.3902| +0.0144 -0.0000 +0.0000 0 0 +0.0000
) | +1.000| +0.700| +0.0140 -0.0001| +0.4900 +0.0000 0 0 +0.0000
¢(A1) | +0.100| +0.096 || -0.2236 +0.0012 +0.0000 +0.0092 0 0 +0.0170
) 0
)
)

+0.700| +0.150 0 0 0 +0.0225 0
+2.000| +1.500 0 0 0 0 +2.2500 0
+0.180| +0.200|| -0.1982 +0.0010 +0.0000 +0.8861 0 0 | +0.0400

Table D.2.4:A-posterioriPDF for the inversion againstedium _green dark and usingonlyA.

Xpost | Oxpoue || LAL  wi(M)  di(A1)  rg(A1)  wi(he)  di(Aa)  re(Ra)
LAI +1.851| +0.581|| +0.3375 +0.0272 +0.0061 -0.0122 0 0 -0.0225
) | +0.170| +0.120|| +0.3902| +0.0144 -0.0000 +0.0000 0 0 +0.0000
1) | +1.000| +0.700| +0.0149 -0.0002| +0.4900 +0.0000 0 0 +0.0000
A1) | +0.100| +0.096 || -0.2189 +0.0012 +0.0000 +0.0092 0 0 +0.0170
Ag) | +0.700| +0.150 0 0 0 +0.0225 0 0
A2) | +2.000| +1.500 0 0 0 0 +2.2500 0
¢(A2) | +0.180| +0.200|| -0.1940 +0.0011 +0.0000 +0.8861 0 0 | +0.0400

Table D.2.5:A-posterioriPDF for the inversion againstedium _green medium and usingnlyA.

Xpost | OXpout LAI wi(A)  di(M)  rg(M)  wi(Ae)  di(Ae)  rg(Ae)
LAI +2.000| +0.628 || +0.3949 +0.0293 +0.0074 -0.0126 0 0 -0.0233
) | +0.169| +0.120|| +0.3890| +0.0143 -0.0000 +0.0000 0 0 +0.0000
) | +1.000| +0.700| +0.0167 -0.0003| +0.4901 +0.0000 0 0 +0.0000
A1) | +0.100| +0.096|| -0.2090 +0.0014 +0.0001 +0.0092 0 0 +0.0170
A2) | +0.700| +0.150 0 0 0 +0.0225 0 0
1(A\2) | #2.000| +1.500 0 0 0 0 +2.2500 0
A2) | +0.180| +0.200|| -0.1852 +0.0013 +0.0000 +0.8861 0 0 | +0.0400

Table D.2.6:A-posterioriPDF for the inversion againstedium _green bright and usingonlyA.
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Xpost prost LAI wl(/\l) dl(/\l) ’I”g(Al) wl()\g) dl()\g) Tg()\g)
LAI +3.455| +1.291|| +1.6672 +0.0511 +0.0270 -0.0143 0 0 -0.0265
wi(A1) | +0.165| +0.119 || +0.3331| +0.0141 -0.0004 +0.0000 0 0 +0.0001
di(A1) | +0.997 | +0.701 || +0.0299 -0.0045 +0.4912 +0.0000 0 0 +0.0000
rg(A1) | #0.101| +0.096 || -0.1158 +0.0029 +0.0002 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 0 +0.0225 0 0
di(A\2) | +2.000| +1.500 0 0 0 0 +2.2500 0
rq(A2) | +0.182| +0.200|| -0.1026 +0.0026 +0.0002 +0.8862 0 0 | +0.0400

Table D.2.7:A-posterioriPDF for the inversion againgense green dark and usingonlyA.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)
LAI +3.533| +1.338 || +1.7894 +0.0522 +0.0282 -0.0143 0 0 -0.0265
wi(A1) | +0.165| +0.119|| +0.3286| +0.0141 -0.0004 +0.0000 0 0 +0.0001
di(A\1) | +0.997| +0.701 || +0.0301 -0.0050, +0.4913 +0.0000 0 0 +0.0000
Tg(/\l) +0.101| +0.096 | -0.1117 +0.0030 +0.0002 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 +0.0225 0 0
di(A2) | +2.000| +1.500 0 0 0 0 +2.2500 0
’I”g()\Q) +0.182| +0.200( -0.0990 +0.0027 +0.0002 +0.8862 0 0 | +0.0400

Table D.2.8:A-posterioriPDF for the inversion againgense green medium and usingonlyA.

Xpost | 0Xpowr || LAL  wi(M)  di(M)  rg(A1)  wi(A2)  di(A2)  rg(Ma)
LAI +3.688| +1.431|| +2.0482 +0.0542 +0.0305 -0.0143 0 0 -0.0264
wi(A1) | +0.164 | +0.118 || +0.3196| +0.0140 -0.0005 +0.0000 0 0 +0.0001
di(A\1) | +0.996| +0.701 || +0.0304 -0.0060 +0.4916 +0.0000 0 0 +0.0000
rg(A1) | +0.101| +0.096 || -0.1042 +0.0031 +0.0002 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 0 +0.0225 0 0
di(N\) | +2.000| +1.500 0 0 0 0 +2.2500 0
rq(A2) | +0.183| +0.200|| -0.0923 +0.0028 +0.0002 +0.8862 0 +0.0400

Table D.2.9:A-posterioriPDF for the inversion againgense green bright and usingonlyA.

Xpost | OXpous LAI wi(A)  di(M)  rg(A)  wi(Ae)  di(Ae)  rg(Ae)
LAI +3.129| +1.109|| +1.2305 +0.0463 +0.0219 -0.0143 0 0 -0.0263
wi(A1) | +0.167 | +0.119|| +0.3502| +0.0142 -0.0002 +0.0000 0 0 +0.0001
di(A\) | +0.998| +0.701 || +0.0282 -0.0028 +0.4908 +0.0000 0 0 +0.0000
rg(A1) | +0.101| +0.096 || -0.1340 +0.0026 +0.0001 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 0 +0.0225 0 0
di(A\2) | +2.000| +1.500 0 0 0 0 +2.2500 0
rg(A2) | +0.182| +0.200 || -0.1187 +0.0023 +0.0001 +0.8862 0 0 | +0.0400

Table D.2.10:A-posterioriPDF for the inversion againgense brown dark and usingonlyA.
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KXpost | OXpour LAl wiA)  di(A) g M) wi(N2)  di(A2)  Te(Ae)
LAl +3.200| +1.147| +1.3161 +0.0473 +0.0230 -0.0143 0 0 -0.0264
wi(A1) | +0.166 | +0.119 || +0.3466| +0.0142 -0.0003 +0.0000 0 0 +0.0001
di(A1) | +0.998| +0.701|| +0.0286 -0.0031 +0.4908 +0.0000 0 0 +0.0000
rg(A1) | +0.101| +0.096 || -0.1298 +0.0027 +0.0002 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 0 +0.0225 0 0
di(A\2) | +2.000| +1.500 0 0 0 0 +2.2500 0
rq(A2) | +0.182| +0.200|| -0.1150 +0.0024 +0.0001 +0.8862 0 0 | +0.0400

Table D.2.11:A-posterioriPDF for the inversion againgense brown medium and usingonlyA.

Xpost | OXpou LAI wi(A)  di(A) g M) wi(N2)  di(A2)  Te(Aa)
LAI +3.339| +1.225| +1.5002 +0.0494 +0.0252 -0.0143 0 0 -0.0265
wi(A1) | +0.166 | +0.119|| +0.3394| +0.0141 -0.0003 +0.0000 0 0 +0.0001
di(A\1) | +0.998| +0.701 || +0.0294 -0.0038 +0.4910 +0.0000 0 0 +0.0000
Tg()\l) +0.101| +0.096 | -0.1219 +0.0028 +0.0002 +0.0092 0 0 +0.0170
wi(A2) | +0.700| +0.150 0 0 0 +0.0225 0 0
di(A2) | +2.000| +1.500 0 0 0 0 +2.2500 0
Tg()\g) +0.182| +0.200( -0.1081 +0.0025 +0.0002 +0.8862 0 0 | +0.0400

Table D.2.12:A-posterioriPDF for the inversion againgense brown bright and usingonlyA.

D.3 Inversions usingRRA

Xpost | Oxpost || LAL  wi(A1)  di(M)  rg(M)  wi(X2)  di(A2)  rg(Ae)

LAI +0.736| +0.262|| +0.0687 +0.0118 -0.0012 -0.0033 -0.0047 -0.0139 -0.0099
wi(A1) | +0.133| +0.090|| +0.4994| +0.0081 -0.0090 -0.0037 +0.0035 +0.0108 -0.0050
di(A1) | +0.962| +0.712|| -0.0066 -0.1404| +0.5070 -0.0025 +0.0036 +0.0109 -0.0025
rq(A1) | +0.063| +0.044 || -0.2909 -0.9400 -0.0796 +0.0019 -0.0022 -0.0067 +0.0023
wi(A2) | +0.714| +0.122 || -0.1456 +0.3195 +0.0412 -0.4094+0.0149 -0.0212 -0.0083
di(N\) | +2.042| +1.457|| -0.0363 +0.0819 +0.0105 -0.1047 -0.11942.1240 -0.0253
rq(A2) | +0.120| +0.091|| -0.4151 -0.6088 -0.0384 +0.5832 -0.7481 -0.19120.0082

Table D.3.1:A-posterioriPDF for the inversion againsparse green dark and usingRRA.

Xpost | TXpout LAI wi(A)  di(M)  rg(M) wi(Ae)  di(Ae)  rg(Ae)

LAl +0.770| +0.275|| +0.0759 +0.0169 +0.0036 -0.0022 -0.0007 -0.0014 -0.0078
wi(A1) | +0.151| +0.097 | +0.6365| +0.0093 -0.0074 -0.0037 +0.0041 +0.0096 -0.0054
di(\) | +0.976| +0.705|| +0.0184 -0.1081 +0.4976 -0.0031 +0.0040 +0.0092 -0.0038
rqg(A1) | +0.115| +0.046 || -0.1736 -0.8295 -0.0955 +0.0021 -0.0027 -0.0063 +0.0026
wi(A2) | +0.749| +0.115|| -0.0226 +0.3724 +0.0492 -0.5179+0.0133 -0.0160 -0.0094
di(A2) | +2.107 | +1.438|| -0.0036 +0.0688 +0.0091 -0.0954 -0.0964-2.0676 -0.0217
rq(A2) | +0.232| +0.095|| -0.2974 -0.5943 -0.0574 +0.5979 -0.8640 -0.159%0.0090

Table D.3.2:A-posterioriPDF for the inversion againsparse _green medium and usingRRA.
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Xpost | OXpou LAI wi(M)  di(M) rg(M) wi(Me)  di(N2)  re(Ae)

LAI +0.741| +0.265|| +0.0702 +0.0232 +0.0131 +0.0004 +0.0043 +0.0052 -0.0033
) | +0.177| +0.114 || +0.7646| +0.0131 -0.0018 -0.0030 +0.0056 +0.0080 -0.0049
) | +1.008| +0.695|| +0.0714 -0.0221) +0.4827 -0.0032 +0.0051 +0.0075 -0.0046
A1) | +0.203 | +0.046 || +0.0292 -0.5755 -0.100% +0.0021 -0.0028 -0.0042 +0.0026
A2) | +0.802| +0.112| +0.1429 +0.4323 +0.0657 -0.5358+0.0126 -0.0080 -0.0097
A2)
)

+2.129| +1.438| +0.0138 +0.0485 +0.0075 -0.0631 -0.0496-2.0681 -0.0145
+0.417| +0.094 || -0.1304 -0.4543 -0.0702 +0.5888 -0.9142 -0.10740.0089

Table D.3.3:A-posterioriPDF for the inversion againsparse green bright and usingRRA.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)

LAI +1.757| +0.526 | +0.2768 +0.0140 -0.0115 -0.0132 -0.0042 -0.0083 -0.0272
wi(A1) | +0.120| +0.043 || +0.6218| +0.0018 -0.0125 -0.0030 +0.0010 +0.0024 -0.0055
di(\) | +0.953| +0.716 || -0.0305 -0.4100K +0.5132 -0.0013 +0.0012 +0.0026 -0.0021
Tg(/\l) +0.099| +0.087 | -0.2882 -0.7974 -0.0206 +0.0076 -0.0036 -0.0080 +0.0136
wi(A2) | +0.758 | +0.065| -0.1231 +0.3770 +0.0253 -0.6372+0.0042 -0.0310 -0.0089
di(A2) | +2.110| +1.428|| -0.0111 +0.0389 +0.0025 -0.0647 -0.3346-2.0397 -0.0198
’I”g()\Q) +0.186| +0.181 | -0.2848 -0.7046 -0.0164 +0.8644 -0.7550 -0.07660.0328

Table D.3.4:A-posterioriPDF for the inversion againstedium green dark and usingRRA.

Xpost | OXpost LAI wiA1)  di(A) rg(A) wi(Me) di(Ma)  rg(N2)

LAI +1.852| +0.570|| +0.3244 +0.0156 -0.0102 -0.0172 -0.0035 -0.0060 -0.0357

wi(A1) | +0.138| +0.042 || +0.6502| +0.0018 -0.0134 -0.0029 +0.0009 +0.0020 -0.0054
di(A\1) | +0.965| +0.708 || -0.0253 -0.4512| +0.5017 -0.0017 +0.0013 +0.0027 -0.0030
rg(A1) | +0.110| +0.090 || -0.3343 -0.7623 -0.0273 +0.0081 -0.0034 -0.0076 +0.0148
wi(A2) | +0.790| +0.060 || -0.1014 +0.3430 +0.0294 -0.6328+0.0036 -0.0273 -0.0084
di(N\g) | +2.152| +1.415|| -0.0074 +0.0335 +0.0027 -0.0599 -0.321%2.0017 -0.0187
rq(A2) | +0.209| +0.188|| -0.3332 -0.6842 -0.0222 +0.8734 -0.7439 -0.07080.0353

Table D.3.5:A-posterioriPDF for the inversion againstedium green medium and usingRRA.

Xpost | OXpost LAI wiM)  di(M) rg(M) wi(Me)  di(N2) (M)

LAI +2.061| +0.664 || +0.4406 +0.0169 -0.0087 -0.0252 -0.0041 -0.0055 -0.0528

wi(A1) | +0.173| +0.039 || +0.6492| +0.0015 -0.0147 -0.0026 +0.0005 +0.0013 -0.0050
di(A1) | +0.996 | +0.690 || -0.0189 -0.5425| +0.4756 -0.0022 +0.0012 +0.0026 -0.0038
rg(A1) | +0.123| +0.096 || -0.3969 -0.6907 -0.0330 +0.0092 -0.0030 -0.0069 +0.0170
wi(A2) | +0.843| +0.052 || -0.1189 +0.2549 +0.0333 -0.5989+0.0027 -0.0226 -0.0073
di(A2) | +2.199| +1.402|| -0.0059 +0.0239 +0.0027 -0.0516 -0.30841.9656 -0.0168
rq(A2) | +0.236| +0.200 (| -0.3980 -0.6333 -0.0276 +0.8874 -0.6981 -0.05990.0400

Table D.3.6:A-posterioriPDF for the inversion againstedium _green bright and usingRRA.
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KXpost | OXpour LAl wiA)  di(A) g M) wi(N2)  di(A2)  Te(Ae)
LAl +3.383| +1.316| +1.7308 +0.0092 -0.0205 -0.0188 -0.0105 -0.0248 -0.0389
wi(A1) | +0.130| +0.022 || +0.3215| +0.0005 -0.0138 -0.0005 -0.0000 -0.0000 -0.0009
di(A1) | +0.964 | +0.709 || -0.0220 -0.8923| +0.5031 -0.0002 +0.0002 +0.0004 -0.0004
rg(A1) | +0.104| +0.096 || -0.1489 -0.2195 -0.0034 +0.0092 -0.0010 -0.0023 +0.0171
wi(A2) | +0.791| +0.032|| -0.2508 -0.0177 +0.0080 -0.3213+0.0010 -0.0278 -0.0024
di(N\) | +2.129| +1.427|| -0.0132 -0.0009 +0.0004 -0.0168 -0.61132.0355 -0.0055
rq(A2) | +0.190| +0.201|| -0.1473 -0.1992 -0.0026 +0.8870 -0.3687 -0.01/980.0403

Table D.3.7:A-posterioriPDF for the inversion againgense green dark and usingRRA.

Xpost | OXpou LAI wi(A)  di(A) g M) wi(N2)  di(A2)  Te(Aa)
LAI +3.462 | +1.367| +1.8682 +0.0091 -0.0206 -0.0196 -0.0112 -0.0269 -0.0406
wi(A1) | +0.132| +0.022 || +0.3032| +0.0005 -0.0139 -0.0004 -0.0000 -0.0000 -0.0008
di(A\) | +0.965| +0.708 || -0.0213 +0.5015 -0.0002 +0.0002 +0.0004 -0.0003
Tg()\l) +0.105| +0.096 | -0.1488 -0.0031 +0.0093 -0.0009 -0.0022 +0.0172
wi(A2) | +0.799| +0.031|| -0.2635 -0.0248 +0.0078 -0.3082+0.0010 -0.0269 -0.0022
di(A2) | +2.136| +1.425|| -0.0138 -0.0013 +0.0004 -0.0161 -0.60592.0299 -0.0053
Tg()\g) +0.191| +0.201 | -0.1479 -0.1822 -0.0024 +0.8872 -0.3538 -0.01j8%0.0404

Table D.3.8:A-posterioriPDF for the inversion againgense green medium and usingRRA.

Xpost | Oxpou || LAL  wi(M)  di(A1)  rg(A1)  wi(Ae)  di(Aa)  re(Ra)
LAI +3.618| +1.470|| +2.1595 +0.0087 -0.0206 -0.0209 -0.0126 -0.0311 -0.0436
wi(A1) | +0.136| +0.022 || +0.2692| +0.0005 -0.0141 -0.0004 -0.0000 -0.0001 -0.0007
di(A\1) | +0.969| +0.706 || -0.0199 +0.4983 -0.0002 +0.0002 +0.0004 -0.0003
rq(A1) | +0.105| +0.096 || -0.1472 -0.0027 +0.0093 -0.0008 -0.0020 +0.0172
wi(A2) | +0.813| +0.030|| -0.2871 -0.0349 +0.0076 -0.2835+0.0009 -0.0253 -0.0020
di(N\) | +2.146| +1.422|| -0.0149 -0.0018 +0.0004 -0.0148 -0.5956r2.0220 -0.0049
rq(A2) | +0.192| +0.201|| -0.1475 -0.1524 -0.0020 +0.8876 -0.3257 -0.01j760.0405

Table D.3.9:A-posterioriPDF for the inversion againgense green bright and usingRRA.

Xpost | OXpout LAI wi(A)  di(M)  rg(M)  wi(Ae)  di(Ae)  rg(Ae)

LAl +3.300| +1.240|| +1.5377 +0.0077 -0.0292 -0.0121 +0.0004 +0.0050 -0.0191
wi(A1) | +0.225| +0.027 || +0.2322| +0.0007 -0.0157 -0.0004 +0.0000 +0.0001 -0.0008
di(\) | +1.073| +0.656 || -0.0360 -0.8915/ +0.4301 -0.0008 +0.0001 +0.0000 -0.0016
rg(A1) | +0.099| +0.095| -0.1023 -0.1728 -0.0133 +0.0091 -0.0010 -0.0012 +0.0167
wi(A2) | +0.614 | +0.044 | +0.0077 +0.0364 +0.0037 -0.2303+0.0019 -0.0598 -0.0023
di(A2) | +1.792| +1.585|| +0.0025 +0.0018 +0.0000 -0.0081 -0.856#2.5134 -0.0029
rq(A2) | +0.176| +0.199|| -0.0778 -0.1501 -0.0123 +0.8845 -0.2609 -0.00910.0394

Table D.3.10:A-posterioriPDF for the inversion againgense brown dark and usingRRA.
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Xpost prost LAI wl(/\l) dl(/\l) ’I”g(Al) wl()\g) dl()\g) Tg()\g)
LAI +3.374 | +1.286| +1.6538 +0.0077 -0.0295 -0.0125 +0.0004 +0.0047 -0.0202
wi(Ay) | +0.227| +0.027 | +0.2236| +0.0007 -0.0157 -0.0004 +0.0000 +0.0001 -0.0007
di(A1) | +1.076| +0.655|| -0.0351 -0.8944| +0.4286 -0.0008 +0.0001 +0.0000 -0.0015
rg(A1) | #0.100| +0.095| -0.1021 -0.1593 -0.0123 +0.0091 -0.0009 -0.0012 +0.0168
wi(A2) | +0.620| +0.043 || +0.0070 +0.0319 +0.0033 -0.2205+0.0018 -0.0577 -0.0021
di(N\2) | +1.811| +1.574|| +0.0023 +0.0016 +0.0000 -0.0078 -0.854%2.4762 -0.0027
rq(A2) | +0.178| +0.199|| -0.0790 -0.1385 -0.0113 +0.8847 -0.2497 -0.00880.0395

Table D.3.11:A-posterioriPDF for the inversion againgense brown medium and usingRRA.

Xpost | OXpost LAI wi(Adr)  di(\)  rg(M)  wi(A2)  di(A2)  rg(A2)
LAI +3.519| +1.379| +1.9019 +0.0076 -0.0300 -0.0133 +0.0003 +0.0041 -0.0220
wi(A) | +0.231| +0.027 | +0.2066| +0.0007 -0.0157 -0.0003 +0.0000 +0.0000 -0.0006
d;(A1) | +1.082| +0.653 || -0.0334 -0.8991| +0.4258 -0.0007 +0.0001 +0.0000 -0.0012
rq(A1) | +0.100| +0.096 || -0.1006 -0.1352 -0.0104 +0.0091 -0.0008 -0.0011 +0.0168
wi(Ag) | +0.631| +0.041 || +0.0056 +0.0243 +0.0026 -0.2007+0.0017 -0.0543 -0.0019
di(A2) | +1.841| +1.555|| +0.0019 +0.0012 +0.0000 -0.0071 -0.84982.4186 -0.0025
rg(A2) | #0.179| +0.199 | -0.0800 -0.1179 -0.0096 +0.8852 -0.2272 -0.008860.0396

Table D.3.12:A-posterioriPDF for the inversion againgense brown _bright and usingRRA.

D.4 Inversions usingonly TT

Xpost | OXpout LAI wiM)  di(A) g M) wi(N2)  di(A2) Te(Ae)
LAI +0.708 | +0.078| +0.0060 +0.0047 -0.0045 +0.0013 +0.0033 -0.0150 +0.0029
wi(A1) | +0.159| +0.116 || +0.5155| +0.0135 +0.0017 +0.0007 +0.0026 -0.0121 +0.0018
di(A1) | +1.011| +0.696 || -0.0824 +0.0213 +0.4840 -0.0008 -0.0025 +0.0114 -0.0019
rg(A1) | +0.111| +0.092 || +0.1797 +0.0687 -0.0127 +0.0084 -0.0021 +0.0142 +0.0152
wi(A2) | +0.734| +0.123 || +0.3450 +0.1839 -0.0290 -0.1829+0.0150 +0.0339 -0.0049
di(N\2) | +1.853| +1.529|| -0.1263 -0.0682 +0.0107 +0.1007 +0.18[1%2.3365 +0.0336
rq(A2) | +0.205| +0.189 || +0.1971 +0.0809 -0.0144 +0.8753 -0.2122 +0.11680.0357

Table D.4.1:A-posterioriPDF for the inversion againsparse green dark and usingonly TT.

Xpost | TXpout LAI wi(A)  di(M)  rg(A) wi(Ae)  di(Ae)  rg(Ae)

LAl +0.699| +0.078|| +0.0061 +0.0047 -0.0041 +0.0012 +0.0032 -0.0166 +0.0028
wi(A1) | +0.154 | +0.117 || +0.5168| +0.0136 +0.0021 +0.0007 +0.0026 -0.0135 +0.0017
di(\) | +1.016| +0.694 || -0.0761 +0.0255 +0.4819 -0.0008 -0.0022 +0.0114 -0.0018
rqg(A1) | +0.117 | 40.092 || +0.1720 +0.0641 -0.0120 +0.0084 -0.0019 +0.0187 +0.0152
wi(A2) | +0.755| +0.123 | +0.3394 +0.1813 -0.0261 -0.1706+0.0150 +0.0381 -0.0046
di(A2) | +1.747 | +1.591 || -0.1333 -0.0728 +0.0103 +0.1278 +0.19522.5302 +0.0443
rg(A2) | +0.221| +0.189 | +0.1888 +0.0760 -0.0134 +0.8751 -0.1979 +0.1474.0357

Table D.4.2:A-posterioriPDF for the inversion againsparse _green _medium and usingnlyTT.
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KXpost | OXpour LAl wiA)  di(A) g M) wi(N2)  di(A2)  Te(Ae)

LAl +0.687 | +0.079 | +0.0062 +0.0048 -0.0037 +0.0011 +0.0031 -0.0220 +0.0025
wi(A1) | +0.146| +0.117 || +0.5212| +0.0137 +0.0025 +0.0006 +0.0025 -0.0182 +0.0014
di(A1) | +1.022| +0.692 || -0.0679 +0.0306 +0.4795 -0.0007 -0.0019 +0.0131 -0.0015
rg(A1) | +0.128 | +0.092 || +0.1493 +0.0515 -0.0102 +0.0085 -0.0015 +0.0327 +0.0154
wi(A2) | +0.790| +0.123 || +0.3206 +0.1721 -0.0217 -0.1360+0.0152 +0.0533 -0.0037
di(N\) | +1.522| +1.776|| -0.1568 -0.0877 +0.0106 +0.1990 +0.24483.1558 +0.0773
rq(A2) | +0.247| +0.191|| +0.1633 +0.0621 -0.0112 +0.8769 -0.1575 +0.2288).0363

Table D.4.3:A-posterioriPDF for the inversion againsparse green bright and usingonlyTT.

Xpost | OXpou LAI wi(A)  di(A) g M) wi(N2)  di(A2)  Te(Aa)

LAI +1.778| +0.136 | +0.0185 +0.0129 -0.0114 +0.0013 +0.0049 -0.0161 +0.0028
wi(A1) | +0.154 | +0.117 || +0.8155| +0.0136 +0.0020 +0.0006 +0.0036 -0.0119 +0.0014
di(\) | +1.016| +0.694 || -0.1205 +0.0243 +0.4819 -0.0006 -0.0031 +0.0102 -0.0014
Tg()\l) +0.114 | +0.093 | +0.1014 +0.0530 -0.0094 +0.0086 -0.0028 +0.0156 +0.0156
wi(A2) | +0.775| +0.083 | +0.4345 +0.3663 -0.0534 -0.3572+0.0069 +0.0607 -0.0065
di(A2) | +1.757 | +1.587 || -0.0745 -0.0641 +0.0093 +0.1061 +0.45992.5180 +0.0369
Tg()\g) +0.213| +0.191 | +0.1080 +0.0621 -0.0106 +0.8775 -0.4107 +0.1218.0366

Table D.4.4:A-posterioriPDF for the inversion againstedium green dark and usingonlyTT.

Xpost | Oxpou || LAL  wi(M)  di(Ad1)  rg(A1)  wi(Ae)  di(Aa)  re(Ra)

LAI +1.772| +0.136|| +0.0186 +0.0130 -0.0109 +0.0012 +0.0045 -0.0154 +0.0026
wi(A1) | +0.150| +0.117 || +0.8170| +0.0137 +0.0021 +0.0005 +0.0033 -0.0116 +0.0012
di(A\) | +1.019| +0.693 || -0.1153 +0.0257 +0.4808 -0.0005 -0.0027 +0.0094 -0.0012
rq(A1) | +0.119| +0.093 || +0.0931 +0.0468 -0.008% +0.0086 -0.0027 +0.0196 +0.0155
wi(A2) | +0.799| +0.083 || +0.3998 +0.3381 -0.0470 -0.3526+0.0070 +0.0695 -0.0065
di(N\y) | +1.666| +1.657 || -0.0684 -0.0598 +0.0082 +0.1280 +0.50262.7455 +0.0464
rq(A2) | +0.225| +0.191 || +0.0988 +0.0551 -0.0094 +0.8772 -0.4052 +0.146860.0364

Table D.4.5:A-posterioriPDF for the inversion againstedium green medium and usingon-

lyTT.
Xpost | OXpout LAI wi(A)  di(M)  rg(M)  wi(Ae)  di(Ae)  rg(Ae)

LAI +1.762| +0.137|| +0.0187 +0.0132 -0.0104 +0.0010 +0.0039 -0.0145 +0.0021
wi(A1) | +0.146 | +0.118 || +0.8194| +0.0139 +0.0022 +0.0004 +0.0029 -0.0114 +0.0009
di(N\) | +1.022| +0.693 || -0.1095 +0.0270 +0.4797 -0.0004 -0.0022 +0.0084 -0.0010
rqe(A1) | +0.127| +0.093 || +0.0781 +0.0351 -0.0069 +0.0086 -0.0025 +0.0309 +0.0156
wi(A2) | +0.839| +0.086 | +0.3317 +0.2815 -0.0369 -0.3102+0.0075 +0.0955 -0.0059
di(A\g) | +1.489| +1.850(| -0.0573 -0.0523 +0.0066 +0.1802 +0.59723.4209 +0.0729
rq(A2) | +0.245| +0.191 || +0.0819 +0.0418 -0.0075 +0.8777 -0.3560 +0.20580.0366

Table D.4.6:A-posterioriPDF for the inversion againstedium green bright and usingonlyTT.
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Xpost | OXpou LAI wi(M)  di(M) rg(M) wi(Me)  di(N2)  re(Ae)

LAI +3.550| +0.203| +0.0413 +0.0216 -0.0187 +0.0010 +0.0059 -0.0112 +0.0021
) | +0.153| +0.117 || +0.9049| +0.0138 +0.0018 +0.0003 +0.0031 -0.0061 +0.0006
) | +1.017| +0.694 || -0.1326 +0.0217 +0.4819 -0.0003 -0.0027 +0.0052 -0.0007
A1) | +0.110| +0.095|| +0.0520 +0.0227 -0.0045 +0.0090 -0.0020 +0.0076 +0.0165
A2) | +0.796 | +0.056| +0.5135 +0.4745 -0.0691 -0.3768+0.0032 +0.0530 -0.0048
A2)
)

+1.783| +1.604| -0.0343 -0.0323 +0.0047 +0.0503 +0.586#2.5726 +0.0180

+0.204| +0.197 || +0.0533 +0.0267 -0.0049 +0.8831 -0.4298 +0.0570.0387

Table D.4.7:A-posterioriPDF for the inversion againgense green dark and usingonly TT.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)

LAl +3.545| +0.203 || +0.0413 +0.0217 -0.0184 +0.0009 +0.0055 -0.0095 +0.0020
wi(A1) | +0.152| +0.118 || +0.9053| +0.0139 +0.0018 +0.0002 +0.0030 -0.0052 +0.0006
di(A\) | +1.018| +0.694 || -0.1306 +0.0221 +0.4815 -0.0003 -0.0025 +0.0044 -0.0006
Tg(/\l) +0.112 | +0.095|| +0.0490 +0.0201 -0.0042 +0.0090 -0.0020 +0.0083 +0.0164
wi(A2) | +0.812| +0.055| +0.4884 +0.4522 -0.0647 -0.3879+0.0031 +0.0548 -0.0048
di(A2) | +1.748| +1.634|| -0.0287 -0.0273 +0.0039 +0.0536 +0.60452.6697 +0.0196
’I”g()\Q) +0.208 | +0.197 | +0.0499 +0.0238 -0.0045 +0.8830 -0.4422 +0.060€0.0387

Table D.4.8:A-posterioriPDF for the inversion againgense green medium and usingnly T T.

Xpost | OXpost LAI wiA1)  di(A) rg(A) wi(Me) di(Ma)  rg(N2)

LAl +3.538 | +0.204 || +0.0415 +0.0218 -0.0181 +0.0008 +0.0049 -0.0064 +0.0018
) | +0.150| +0.118 || +0.9059| +0.0139 +0.0018 +0.0002 +0.0027 -0.0037 +0.0004
) | +1.019| +0.694 || -0.1283 +0.0224 +0.4810 -0.0002 -0.0022 +0.0030 -0.0005
A1) | +0.115] +0.095|| +0.0439 +0.0158 -0.0036 +0.0089 -0.0021 +0.0094 +0.0164
A2) | +0.840| +0.054 | +0.4459 +0.4142 -0.0581 -0.4072+0.0029 +0.0577 -0.0049
Ao)
)

+1.694| +1.689| -0.0188 -0.0184 +0.0025 +0.0586 +0.63032.8512 +0.0221
+0.0668).0386

+0.216| +0.196| +0.0442 +0.0189 -0.0039 +0.8828 -0.4638

Table D.4.9:A-posterioriPDF for the inversion againgtnse green bright and usingonly T T.

Xpost | OXpost LAI wiM)  di(M) rg(M) wi(Me)  di(N2) (M)

LAI +3.482| +0.203 || +0.0413 +0.0205 -0.0279 +0.0017 +0.0106 -0.0232 +0.0037

wi(A1) | +0.193| +0.113 || +0.8939| +0.0127 +0.0007 +0.0005 +0.0053 -0.0116 +0.0013
di(A1) | +0.972| +0.708 || -0.1936 +0.0082 +0.5010 -0.0006 -0.0073 +0.0158 -0.0015
rg(A1) | +0.093| +0.095|| +0.0882 +0.0497 -0.0088 +0.0091 -0.0016 +0.0017 +0.0167
wi(A2) | +0.620| +0.071 || +0.7363 +0.6672 -0.1452 -0.2422+0.0050 +0.0347 -0.0039
di(A\2) | +2.178| +1.397 || -0.0816 -0.0736 +0.0160 +0.0127 +0.35151.9509 +0.0042
rg(A2) | +0.162| +0.198 || +0.0920 +0.0565 -0.0104 +0.8846 -0.2798 +0.015€0.0393

Table D.4.10:A-posterioriPDF for the inversion againgtnse brown dark and usingonlyTT.
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KXpost | OXpour LAl wiA)  di(A) g M) wi(N2)  di(A2)  Te(Ae)

LAl +3.469 | +0.202 | +0.0410 +0.0205 -0.0267 +0.0017 +0.0102 -0.0226 +0.0036
wi(A1) | +0.189| +0.113 || +0.8947| +0.0128 +0.0007 +0.0005 +0.0052 -0.0114 +0.0012
di(A1) | +0.978| +0.706 || -0.1872 +0.0092 +0.4984 -0.0006 -0.0068 +0.0149 -0.0014
rg(A1) | +0.094 | +0.095|| +0.0864 +0.0485 -0.0086 +0.0091 -0.0017 +0.0020 +0.0167
wi(A2) | +0.631| +0.070 || +0.7243 +0.6572 -0.1380 -0.2523+0.0048 +0.0358 -0.0040
di(N\y) | +2.154| +1.405|| -0.0796 -0.0718 +0.0151 +0.0153 +0.36591.9739 +0.0050
rq(A2) | +0.165| +0.198 || +0.0901 +0.0552 -0.0101 +0.8844 -0.2910 +0.0170.0392

Table D.4.11:A-posterioriPDF for the inversion againgénse brown medium and usingnly TT.

Xpost | OXpou LAI wi(A)  di(A) g M) wi(N2)  di(A2)  Te(Aa)

LAl +3.446| +0.201 | +0.0405 +0.0205 -0.0251 +0.0016 +0.0096 -0.0217 +0.0035
wi(A1) | +0.182| +0.114 || +0.8958| +0.0130 +0.0009 +0.0005 +0.0049 -0.0111 +0.0012
di(\) | +0.986| +0.703 || -0.1772 +0.0109 +0.4947 -0.0005 -0.0060 +0.0136 -0.0013
Tg()\l) +0.095| +0.095|| +0.0831 +0.0464 -0.0082 +0.0091 -0.0017 +0.0027 +0.0166
wi(A2) | +0.651| +0.068| +0.7031 +0.6391 -0.1267 -0.2691+0.0046 +0.0376 -0.0042
di(A2) | +2.111| +1.420|| -0.0758 -0.0687 +0.0136 +0.0197 +0.39062.0165 +0.0064
Tg()\g) +0.169| +0.198 | +0.0867 +0.0529 -0.0096 +0.8842 -0.3097 +0.02280.0391

Table D.4.12:A-posterioriPDF for the inversion againgense brown bright and usingonly TT.

D.5 Inversions usingRRTT

Xpost | Oxpost || LAL  wi(A1)  di(M)  rg(M)  wi(X2)  di(A2)  rg(Ae)

LAI +0.692| +0.068| +0.0047 +0.0027 -0.0051 -0.0010 +0.0027 -0.0267 -0.0019
wi(A1) | +0.124 | +0.087 || +0.4600| +0.0076 -0.0068 -0.0035 +0.0049 +0.0074 -0.0038
di(A1) | +0.983| +0.701 || -0.1070 -0.1116| +0.4910 -0.0027 +0.0016 +0.0606 -0.0015
rq(A1) | +0.066| +0.041|| -0.3685 -0.9656 -0.0946 +0.0017 -0.0023 -0.0059 +0.0018
wi(A2) | +0.736| +0.114 || +0.3412 +0.4950 +0.0204 -0.4928+0.0130 +0.0018 -0.0081
di(N) | +1.775| +1.396 || -0.2802 +0.0611 +0.0620 -0.1030 +0.01121.9492 -0.0378
rq(A2) | +0.121| +0.080|| -0.3449 -0.5425 -0.0277 +0.5439 -0.8936 -0.33940.0063

Table D.5.1:A-posterioriPDF for the inversion againsparse green dark and usingRRTT.

Xpost | TXpout LAI wi(A)  di(M)  rg(M) wi(Ae)  di(Ae)  rg(Ae)

LAI +0.699| +0.072|| +0.0051 +0.0033 -0.0052 -0.0011 +0.0029 -0.0216 -0.0021
wi(A1) | +0.137 | +0.088 | +0.5238| +0.0078 -0.0068 -0.0036 +0.0051 +0.0053 -0.0041
di(\) | +0.988| +0.698 || -0.1041 -0.1108| +0.4868 -0.0030 +0.0017 +0.0493 -0.0018
rqg(A1) | +0.115| +0.043 || -0.3492 -0.9438 -0.1002 +0.0018 -0.0024 -0.0063 +0.0020
wi(A2) | +0.769| +0.110| +0.3654 +0.5295 +0.0226 -0.5177+0.0122 +0.0066 -0.0083
di(A2) | +1.896| +1.394 || -0.2162 +0.0435 +0.0506 -0.1054 +0.04291.9444 -0.0328
rq(A2) | +0.230| +0.082|| -0.3549 -0.5645 -0.0310 +0.5608 -0.9101 -0.28520.0068

Table D.5.2:A-posterioriPDF for the inversion againsparse _green medium and usingRRTT.
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Xpost prost LAI wl(/\l) dl(/\l) ’I”g(Al) wl()\g) dl()\g) Tg()\g)
LAI +0.714| +0.080 || +0.0063 +0.0045 -0.0053 -0.0012 +0.0034 -0.0144 -0.0025
wi(A) | +0.172| +0.091 || +0.6213| +0.0083 -0.0061 -0.0037 +0.0055 +0.0039 -0.0047
di(A1) | +1.017 | +0.685|| -0.0968 -0.0974| +0.4687 -0.0038 +0.0023 +0.0358 -0.0029
rg(A1) | #0.200| +0.046 || -0.3292 -0.8898 -0.1212 +0.0021 -0.0026 -0.0065 +0.0024
wi(A2) | +0.814| +0.105|| +0.4088 +0.5751 +0.0322 -0.5524+0.0109 +0.0122 -0.0084
di(\g) | +2.020| +1.399|| -0.1295 +0.0309 +0.0374 -0.1023 +0.08351.9562 -0.0272
rq(A2) | +0.410| +0.088 || -0.3508 -0.5851 -0.0481 +0.5932 -0.9103 -0.22060.0077

Table D.5.3:A-posterioriPDF for the inversion againsparse green bright and usingRRTT.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)
LAI +1.744| +0.083 || +0.0069 +0.0014 -0.0191 -0.0019 +0.0018 -0.0341 -0.0035
wi(A1) | +0.117| +0.035|| +0.4762| +0.0012 -0.0112 -0.0026 +0.0015 -0.0024 -0.0045
d;(A1) | +0.983| +0.697 || -0.3294 -0.4585| +0.4861 -0.0020 -0.0011 +0.1091 -0.0031
rq(A1) | +0.104| +0.086 || -0.2697 -0.8455 -0.0326 +0.0074 -0.0042 -0.0046 +0.0131
wi(A2) | +0.766| +0.062 || +0.3541 +0.7078 -0.0253 -0.7928+0.0038 -0.0067 -0.0100
di(A2) | +1.720| +0.923 || -0.4439 -0.0737 +0.1695 -0.0582 -0.1169-0.8517 -0.0172
rg(A2) | #0.194 | +0.177 || -0.2391 -0.7288 -0.0255 +0.8597 -0.9114 -0.10490.0314

Table D.5.4:A-posterioriPDF for the inversion againstedium green dark and usingRRTT.

Xpost | OXpost LAI wi(Ad1)  di(A)  rg(AM) wi(Ae)  di(X2) (M)
LAI +1.756| +0.085|| +0.0073 +0.0015 -0.0209 -0.0020 +0.0017 -0.0342 -0.0036
wi(A1) | +0.132| +0.035|| +0.4989| +0.0013 -0.0119 -0.0025 +0.0015 -0.0031 -0.0045
di(A1) | +0.994 | +0.690| -0.3553 -0.4881| +0.4757 -0.0022 -0.0008 +0.1133 -0.0034
rg(A1) | +0.116| +0.086 || -0.2661 -0.8203 -0.0365 +0.0075 -0.0042 -0.0040 +0.0132
wi(A2) | +0.800| +0.061 || +0.3344 +0.6917 -0.0188 -0.7983+0.0037 -0.0053 -0.0100
di(N2) | +1.775| +0.945|| -0.4250 -0.0919 +0.1739 -0.0493 -0.0915-0.8923 -0.0153
rq(A2) | ¥0.220| +0.178|| -0.2379 -0.7085 -0.0279 +0.8604 -0.9191 -0.09110.0316

Table D.5.5:A-posteriori PDF for

the inversion againshedium green medium and using

RRTT.
Xpost | OXpou LAI wiM)  di(M) rg(M) wi(Ne) di(N2) (M)

LAI +1.780| +0.089| +0.0078 +0.0017 -0.0239 -0.0020 +0.0016 -0.0340 -0.0037
wi(A1) | +0.160| +0.036 || +0.5344| +0.0013 -0.0131 -0.0024 +0.0014 -0.0041 -0.0043
di(N\) | +1.015| +0.676 || -0.3986 -0.5345 +0.4568 -0.0023 -0.0003 +0.1172 -0.0035
rqg(A1) | +0.135| +0.087 || -0.2580 -0.7765 -0.0399 +0.0076 -0.0042 -0.0030 +0.0134
wi(A2) | +0.855| +0.060| +0.2996 +0.6590 -0.0079 -0.8065+0.0036 -0.0031 -0.0100
di(A\2) | +1.873| +0.988|| -0.3886 -0.1148 +0.1757 -0.0354 -0.0515+0.9752 -0.0122
rg(A2) | +0.263| +0.179| -0.2342 -0.6735 -0.0293 +0.8619 -0.9300 -0.06960.0319

Table D.5.6:A-posterioriPDF for the inversion againstedium green bright and usingRRTT.
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Xpost UXposi LAI wl(/\l) dl(/\l) Tg(Al) wl()\g) dl()\g) Tg()\g)
LAI +3.517| +0.096 || +0.0092 +0.0010 -0.0367 +0.0005 +0.0005 -0.0313 +0.0011
wi(A1) | +0.130| +0.020|| +0.5553| +0.0004 -0.0127 -0.0002 +0.0001 -0.0045 -0.0004
di(A1) | +0.986| +0.692 || -0.5535 -0.9353| +0.4786 -0.0022 -0.0020 +0.1240 -0.0051
rg(A1) | +0.108 | +0.093 || +0.0516 -0.1297 -0.0345 +0.0087 -0.0015 +0.0268 +0.0158
wi(A2) | +0.794| +0.024 || +0.2184 +0.2309 -0.1167 -0.6795+0.0006 -0.0078 -0.0036
di(\g) | +1.891| +0.828|| -0.3951 -0.2778 +0.2165 +0.3479 -0.3873-0.6854 +0.0631
rq(A2) | +0.199| +0.193 || +0.0596 -0.1060 -0.0382 +0.8789 -0.7729 +0.39540.0371

Table D.5.7:A-posterioriPDF for the inversion againgense green dark and usingRRTT.

Xpost | OXpou LAI wi(A)  di(A) g M) wi(N2)  di(A2)  Te(Aa)
LAI +3.514| +0.096 || +0.0093 +0.0010 -0.0365 +0.0003 +0.0005 -0.0294 +0.0007
wi(A1) | +0.131| +0.020|| +0.5565| +0.0004 -0.0125 -0.0003 +0.0001 -0.0042 -0.0005
d;(A1) | +0.999| +0.688 || -0.5521 -0.9325| +0.4730 -0.0015 -0.0020 +0.1146 -0.0035
rg(A1) | ¥0.112| +0.094 || +0.0322 -0.1437 -0.0238 +0.0088 -0.0016 +0.0259 +0.0161
wi(A2) | +0.806 | +0.025| +0.2170 +0.2347 -0.1155 -0.6976+0.0006 -0.0074 -0.0038
di(A2) | +1.696 | +0.756 || -0.4034 -0.2856 +0.2205 +0.3644 -0.39850.5713 +0.0608
rg(A2) | +0.208 | +0.195|| +0.0372 -0.1216 -0.0259 +0.8811 -0.7916 +0.41380.0379

Table D.5.8:A-posterioriPDF for the inversion againgense green _medium and usingRRTT.

Xpost | Oxpour || LAL  wi(A)  di(Ad1)  rg(A1)  wi(Ae)  di(Aa)  re(Ra)

LAI +3.512| +0.097| +0.0095 +0.0011 -0.0370 +0.0001 +0.0005 -0.0249 +0.0002
wi(A1) | +0.134| +0.020|| +0.5635| +0.0004 -0.0125 -0.0003 +0.0001 -0.0036 -0.0005
di(A\) | +1.012| +0.684 || -0.5561 -0.9298 +0.4679 -0.0007 -0.0019 +0.0963 -0.0015
rq(A1) | +0.116| +0.095|| +0.0094 -0.1582 -0.0111 +0.0090 -0.0017 +0.0223 +0.0166
wi(A2) | +0.828| +0.025|| +0.2069 +0.2354 -0.1108 -0.7243+0.0006 -0.0063 -0.0040
di(N\) | +1.390| +0.623 || -0.4102 -0.2935 +0.2259 +0.3772 -0.4086-0.3885 +0.0525
rq(A2) | +0.218| +0.197 || +0.0111 -0.1382 -0.0113 +0.8837 -0.8196 +0.426#0.0390

Table D.5.9:A-posterioriPDF for the inversion againgense green bright and usingRRTT.

Xpost | OXpout LAI wi(A)  di(M)  rg(M)  wi(Ae)  di(Ae)  rg(Ae)

LAl +3.523| +0.111|| +0.0123 +0.0019 -0.0477 +0.0008 +0.0014 -0.0542 +0.0018
wi(A1) | +0.225| +0.025| +0.6710| +0.0006 -0.0146 -0.0002 +0.0003 -0.0091 -0.0004
di(N\) | +1.081| +0.636 || -0.6750 -0.9089 +0.4039 -0.0025 -0.0055 +0.2110 -0.0057
rg(A1) | +0.099 | +0.095|| +0.0783 -0.0939 -0.0413 +0.0090 -0.0013 +0.0168 +0.0165
wi(A2) | +0.616 | +0.026 || +0.4774 +0.3997 -0.3285 -0.5016+0.0007 -0.0127 -0.0030
di(A2) | +1.745| +0.804 || -0.6073 -0.4469 +0.4130 +0.2201 -0.603%#0.6462 +0.0401
rq(A2) | +0.176| +0.197 || +0.0825 -0.0738 -0.0455 +0.8835 -0.5710 +0.252€0.0389

Table D.5.10:A-posterioriPDF for the inversion againgense brown dark and usingRRTT.
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Xpost prost LAI wl(/\l) dl(/\l) ’I”g(Al) wl()\g) dl()\g) Tg()\g)

LAI +3.518| +0.112 || +0.0125 +0.0019 -0.0478 +0.0007 +0.0014 -0.0509 +0.0015
wi(A1) | +0.227 | +0.025| +0.6703| +0.0006 -0.0144 -0.0002 +0.0003 -0.0084 -0.0004
di(A1) | +1.097 | +0.636 || -0.6735 -0.9058| +0.4039 -0.0020 -0.0055 +0.1964 -0.0045
rg(A1) | #0.100 | +0.095|| +0.0658 -0.1047 -0.0327 +0.0090 -0.0013 +0.0162 +0.0166
wi(A2) | +0.625| +0.026 | +0.4777 +0.4021 -0.3281 -0.5165+0.0007 -0.0119 -0.0031
di(N\) | +1.621| +0.744 | -0.6118 -0.4503 +0.4152 +0.2290 -0.608390.5538 +0.0387
rq(A2) | +0.179| +0.198 || +0.0681 -0.0858 -0.0356 +0.8840 -0.5877 +0.26340.0391

Table D.5.11:A-posterioriPDF for the inversion againdense brown medium and usingRRTT.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)

LAl +3.510| +0.113 || +0.0127 +0.0019 -0.0482 +0.0005 +0.0014 -0.0447 +0.0011
wi(A1) | +0.230| +0.025| +0.6712| +0.0006 -0.0142 -0.0003 +0.0003 -0.0073 -0.0005
di(N\) | +1.117| +0.635|| -0.6733 -0.9016 +0.4036 -0.0013 -0.0055 +0.1710 -0.0030
Tg(/\l) +0.102 | +0.095|| +0.0508 -0.1177 -0.0222 +0.0091 -0.0014 +0.0146 +0.0167
wi(A2) | +0.642| +0.027 || +0.4727 +0.4030 -0.3250 -0.5396+0.0007 -0.0103 -0.0032
di(A2) | +1.427 | +0.645|| -0.6152 -0.4539 +0.4174 +0.2380 -0.59820.4161 +0.0350
’I”g()\Q) +0.184| +0.198 | +0.0506 -0.1003 -0.0235 +0.8846 -0.6134 +0.27380.0393

Table D.5.12:A-posterioriPDF for the inversion againgense brown bright and usingRRTT.

D.6 Inversions usingallGiven

Xpost | 0Xpowr || LAL  wi(M)  di(A)  rg(A1)  wi(Ae)  di(A2)  rg(Ma)
LAI +0.694 | +0.068|| +0.0046 +0.0028 -0.0052 -0.0011 +0.0024 -0.0262 -0.0018
wi(A1) | +0.130| +0.083| +0.5001| +0.0069 -0.0072 -0.0031 +0.0037 +0.0028 -0.0030
di(A\1) | +0.988| +0.698 || -0.1097 -0.1240 +0.4867 -0.0027 +0.0009 +0.0599 -0.0010
rg(A1) | +0.063| +0.039 || -0.4152 -0.9616 -0.0989 +0.0016 -0.0017 -0.0035 +0.0014
wi(A2) | +0.754| +0.098 || +0.3593 +0.4523 +0.0128 -0.4484+0.0097 -0.0043 -0.0060
di(N) | +1.799| +1.368 || -0.2821 +0.0249 +0.0627 -0.0651 -0.0319-1.8704 -0.0326
rq(A2) | +0.109| +0.071|| -0.3789 -0.5106 -0.0200 +0.5099 -0.8631 -0.335¥0.0050

Table D.6.1:A-posterioriPDF for the inversion againsparse green dark and usingallGiven.

Xpost | TXpout LAI wi(A)  di(M)  rg(A) wi(Ae)  di(Ae)  rg(Ae)

LAI +0.701| +0.071|| +0.0051 +0.0033 -0.0053 -0.0011 +0.0025 -0.0216 -0.0019
wi(A1) | +0.140| +0.084 || +0.5569| +0.0070 -0.0073 -0.0032 +0.0038 +0.0011 -0.0032
di(A\) | +0.991| +0.696 || -0.1071 -0.1253| +0.4843 -0.0028 +0.0008 +0.0476 -0.0011
rqg(A1) | +0.113| +0.040|| -0.3838 -0.9383 -0.1007 +0.0016 -0.0018 -0.0040 +0.0015
wi(A2) | +0.779| +0.094 || +0.3776 +0.4813 +0.0126 -0.4639+0.0088 +0.0001 -0.0059
di(A2) | +1.908| +1.377 || -0.2209 +0.0099 +0.0497 -0.0717 +0.001681.8970 -0.0277
rqg(A2) | +0.223| +0.072| -0.3744 -0.5239 -0.0216 +0.5149 -0.8803 -0.27980.0052

Table D.6.2:A-posterioriPDF for the inversion againsparse green medium and usingall-

Given.
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KXpost | OXpour LAl wiA)  di(A) g M) wi(N2)  di(A2)  Te(Ae)
LAI +0.714| +0.078 || +0.0061 +0.0043 -0.0054 -0.0011 +0.0028 -0.0154 -0.0020
wi(A) | +0.169| +0.086 | +0.6438| +0.0074 -0.0068 -0.0031 +0.0038 -0.0004 -0.0033
di(A1) | +1.015| +0.685|| -0.1001 -0.1149| +0.4697 -0.0033 +0.0010 +0.0325 -0.0018
rqg(A1) | +0.202| +0.042|| -0.3353 -0.8744 -0.1154 +0.0018 -0.0017 -0.0042 +0.0016
wi(A2) | +0.811| +0.086 || +0.4110 +0.5190 +0.0164 -0.4807+0.0075 +0.0049 -0.0056
di(A\2) | +2.004| +1.397|| -0.1410 -0.0030 +0.0340 -0.0711 +0.04061.9528 -0.0215
rq(A2) | +0.413| +0.074 || -0.3357 -0.5234 -0.0359 +0.5267 -0.8727 -0.20620.0055
Table D.6.3:A-posterioriPDF for the inversion againsparse green bright and usingallGiven.
Xpost | 0Xpout LAI wi(Adr)  di(\)  rg(M)  wi(A2)  di(A2)  rg(A2)
LAI +1.749| +0.083|| +0.0068 +0.0012 -0.0202 -0.0015 +0.0013 -0.0343 -0.0024
wi(A) | +0.124| +0.031 || +0.4731| +0.0010 -0.0118 -0.0018 +0.0009 -0.0031 -0.0027
d;(A1) | +0.989| +0.693 || -0.3524 -0.5455| +0.4804 -0.0015 -0.0015 +0.1136 -0.0018
rq(A1) | +0.084| +0.072|| -0.2490 -0.7869 -0.0292 +0.0051 -0.0024 -0.0025 +0.0078
wi(A2) | +0.783| +0.048 || +0.3396 +0.5948 -0.0438 -0.6932+0.0023 -0.0076 -0.0057
di(A2) | +1.724| +0.894 || -0.4657 -0.1097 +0.1834 -0.0391 -0.177#0.7986 -0.0127
rqe(A2) | +0.146 | +0.138|| -0.2082 -0.6271 -0.0191 +0.7929 -0.8564 -0.10320.0190
Table D.6.4:A-posterioriPDF for the inversion againstedium green dark and usingallGiven.
Xpost | X post LAI wi(Adr)  di(\)  rg(A)  wi(A2)  di(A2)  rg(A2)
LAI +1.757| +0.084 || +0.0071 +0.0013 -0.0211 -0.0015 +0.0013 -0.0341 -0.0024
wi(A1) | +0.133| +0.031 | +0.5056| +0.0010 -0.0122 -0.0017 +0.0009 -0.0035 -0.0026
di(A1) | +0.995| +0.689 || -0.3642 -0.5633| +0.4748 -0.0015 -0.0014 +0.1136 -0.0018
rq(A1) | ¥0.113| +0.071|| -0.2446 -0.7631 -0.0302 +0.0051 -0.0023 -0.0026 +0.0077
wi(A2) | +0.803| +0.046 || +0.3302 +0.5841 -0.0424 -0.6942+0.0022 -0.0061 -0.0055
di(N\2) | +1.774| +0.939|| -0.4318 -0.1200 +0.1756 -0.0389 -0.1395-0.8817 -0.0126
rq(A2) | +0.214| +0.136|| -0.2061 -0.6071 -0.0187 +0.7899 -0.8623 -0.09810.0186
Table D.6.5:A-posterioriPDF for the inversion againstedium green medium and usingall-
Given.
Xpost | OXpout LAI wi(M)  dil(M) rg(M) wi(Ne) di(N2)  re(Ne)
LAI +1.774| +0.088 || +0.0077 +0.0016 -0.0230 -0.0015 +0.0012 -0.0329 -0.0023
wi(A) | +0.150| +0.032 || +0.5582| +0.0010 -0.0129 -0.0016 +0.0008 -0.0042 -0.0024
di(N\) | +1.007| +0.681 | -0.3853 -0.5909 +0.4638 -0.0015 -0.0013 +0.1099 -0.0016
rq¢(A1) | +0.166| +0.070|| -0.2354 -0.7184 -0.031% +0.0050 -0.0021 -0.0027 +0.0074
wi(A2) | +0.831| +0.044 || +0.3178 +0.5617 -0.0424 -0.6933+0.0019 -0.0035 -0.0051
di(N\2) | +1.850| +1.022|| -0.3679 -0.1278 +0.1579 -0.0382 -0.0775-1.0438 -0.0121
rq(A2) | +0.334| +0.134|| -0.2004 -0.5698 -0.0181 +0.7841 -0.8693 -0.08880.0179

Table D.6.6:A-posterioriPDF for the inversion againstedium __green bright and usingliGiven.
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Xpost prost LAI wl(/\l) dl(/\l) ’I”g(Al) wl()\g) dl()\g) Tg()\g)

LAI +3.516 | +0.096 || +0.0092 +0.0010 -0.0366 +0.0003 +0.0005 -0.0313 +0.0008
wi(A1) | +0.130| +0.020|| +0.5567| +0.0004 -0.0127 -0.0002 +0.0001 -0.0044 -0.0003
di(A1) | +0.988| +0.691 || -0.5536 -0.9369| +0.4774 -0.0018 -0.0020 +0.1240 -0.0041
rg(A1) | #0.099 | +0.087 || +0.0421 -0.1227 -0.0302 +0.0075 -0.0012 +0.0230 +0.0130
wi(A2) | +0.797 | +0.022 || +0.2496 +0.2319 -0.1338 -0.624/6+0.0005 -0.0067 -0.0028
di(N\) | +1.862| +0.806 || -0.4066 -0.2771 +0.2227 +0.3294 -0.378390.6492 +0.0541
rq(A2) | +0.178| +0.175|| +0.0507 -0.0972 -0.0340 +0.8585 -0.7271 +0.383€0.0307

Table D.6.7:A-posterioriPDF for the inversion againgense green dark and usingllGiven.

Xpost | OXpou LAI wi(A)  di(A) rg(A) wi(N2)  di(A2)  Te(Ae)

LAl +3.514 | +0.096 || +0.0093 +0.0010 -0.0365 +0.0002 +0.0005 -0.0295 +0.0006
wi(A1) | +0.131| +0.019| +0.5590| +0.0004 -0.0125 -0.0002 +0.0001 -0.0041 -0.0004
di(A\) | +0.999| +0.688 || -0.5523 -0.9345 +0.4729 -0.0013 -0.0020 +0.1153 -0.0029
Tg(/\l) +0.112| +0.087 | +0.0268 -0.1325 -0.0218 +0.0075 -0.0012 +0.0219 +0.0130
wi(A2) | +0.806 | +0.022 || +0.2501 +0.2349 -0.1336 -0.6376+0.0005 -0.0062 -0.0029
di(A2) | +1.696 | +0.748|| -0.4106 -0.2809 +0.2243 +0.3375 -0.376%#0.5590 +0.0514
’I”g()\Q) +0.208 | +0.175| +0.0327 -0.1083 -0.0241 +0.8586 -0.7422 +0.39260.0307

Table D.6.8:A-posterioriPDF for the inversion againgense green medium and usingliGiven.

Xpost | 0Xpowr || LAL  wi(M)  di(A)  rg(M1)  wi(Ae)  di(A2)  rg(Aa)

LAI +3.512| +0.097| +0.0094 +0.0011 -0.0369 +0.0001 +0.0005 -0.0259 +0.0002
wi(A1) | +0.134| +0.020| +0.5667| +0.0004 -0.0125 -0.0002 +0.0001 -0.0036 -0.0004
di(A\) | +1.011| +0.684 || -0.5544 -0.9319 +0.4685 -0.0007 -0.0020 +0.0999 -0.0015
rqg(A1) | +0.135| +0.086 || +0.0085 -0.1422 -0.0117 +0.0075 -0.0012 +0.0190 +0.0129
wi(A2) | +0.822| +0.022 || +0.2463 +0.2363 -0.1319 -0.6558+0.0005 -0.0052 -0.0029
di(N\g) | +1.440| +0.648 || -0.4103 -0.2831 +0.2251 +0.3400 -0.36790.4202 +0.0448
rq(A2) | +0.263| +0.174 || +0.0113 -0.1197 -0.0123 +0.8576 -0.7643 +0.39580.0305

Table D.6.9:A-posterioriPDF for the inversion againgtnse green bright and usingallGiven.

Xpost | OXpous LAI wi(A)  di(M)  rg(A)  wi(Ae)  di(Ae)  rg(Ae)

LAl +3.523| +0.111|| +0.0123 +0.0019 -0.0476 +0.0007 +0.0014 -0.0542 +0.0016
wi(A1) | +0.226| +0.025| +0.6727| +0.0006 -0.0146 -0.0002 +0.0003 -0.0090 -0.0003
di(N\) | +1.082| +0.635|| -0.6753 -0.9096 +0.4038 -0.0022 -0.0055 +0.2106 -0.0051
rg(A1) | +0.095| +0.091 || +0.0707 -0.0906 -0.0383 +0.0083 -0.0011 +0.0153 +0.0148
wi(A2) | +0.617 | +0.025| +0.4999 +0.4060 -0.3423 -0.4671+0.0006 -0.0123 -0.0026
di(N\g) | +1.737| +0.797 || -0.6125 -0.4473 +0.4160 +0.2107 -0.606%0.6347 +0.0365
rg(A2) | +0.167 | +0.187 || +0.0752 -0.0699 -0.0425 +0.8728 -0.5384 +0.245#0.0350

Table D.6.10:A-posterioriPDF for the inversion againgtnse brown dark and usingallGiven.
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Xpost | OXpout LAI wiA)  di(A) g M) wi(N2)  di(A2)  Te(Ae)
LAI +3.518| +0.112| +0.0125 +0.0019 -0.0478 +0.0006 +0.0014 -0.0511 +0.0013
wi(A1) | +0.227| +0.025| +0.6726| +0.0006 -0.0144 -0.0002 +0.0003 -0.0084 -0.0004
di(A1) | +1.096 | +0.636 || -0.6737 -0.9067| +0.4039 -0.0018 -0.0056 +0.1972 -0.0040
rg(A1) | +0.102| +0.091 || +0.0596 -0.0997 -0.0308 +0.0083 -0.0011 +0.0146 +0.0148
wi(A2) | +0.625| +0.026 || +0.5020 +0.4090 -0.3430 -0.4786+0.0007 -0.0115 -0.0026
di(\g) | +1.624| +0.744 || -0.6156 -0.4496 +0.4171 +0.2165 -0.605%#0.5536 +0.0351
rq(A2) | +0.183| +0.187 || +0.0623 -0.0800 -0.0338 +0.8727 -0.5517 +0.25260.0350

Table D.6.11:A-posteriori PDF for the inversion againstense brown medium and usingall-
Given.

Xpost JXpost LAI wl()\l) dl()\l) ’I“g()\l) wl()\g) dl()\z) T‘g()\g)
LAI +3.511| +0.113|| +0.0127 +0.0019 -0.0482 +0.0005 +0.0014 -0.0457 +0.0010
wi(A) | +0.229| +0.025 || +0.6744| +0.0006 -0.0142 -0.0002 +0.0003 -0.0074 -0.0004
d;(A\1) | +1.114| +0.635|| -0.6730 -0.9028| +0.4037 -0.0012 -0.0056 +0.1746 -0.0027
rg(A1) | +0.114| +0.091 || +0.0459 -0.1105 -0.021¢ +0.0082 -0.0011 +0.0132 +0.0148
wi(A2) | +0.639| +0.026 || +0.5019 +0.4120 -0.3426 -0.4957+0.0007 -0.0101 -0.0027
di(A2) | +1.449| +0.658|| -0.6170 -0.4515 +0.4176 +0.2210 -0.5984-0.4328 +0.0316
rg(A2) | +0.212| +0.187 || +0.0463 -0.0921 -0.0230 +0.8723 -0.5716 +0.25780.0349

Table D.6.12:A-posterioriPDF for the inversion againgtnse brown bright and usingllGiven.
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Appendix E

Multidimensional Gaussian statistics
Dall(Xtrue>; le(Xtrue) and D?“g(Xt’rue)
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Appendix F

Features added tadist-4 for conducting this
study

In order to take full advantage of the capabilities of the software delivered by FastOpt, some functions were
added or modified with respect to the origidalt-4 package. These changes are, in no specific order:

Optimisation routines. dist-4 uses Numerical Recipes in Fortran (Press et al. 2001) though the main rou-
tines (model, derivatives, i/0) are in C. The C implementations of the optimisation routiipesi,
Insrch andjacobi) were hence adapted to the inversion package (Press et al. 1986). The routines at
hand were quite old and had to be updated to vergidfl , before being forced to use double preci-
sion floats. Information on how to update the routines can be fouhtdt/www.nr.com/

A-priori covariance matrix. Only the a-priorimean and standard deviation can be specifiedist+4,
preventing the use of correlatedprioriknowledge. This possibility was added by reading the full
7 x 7 covariance matrix from filexpr.dat (in initmod). If file cxpr.dat is not available, thelist-4
behaviour is initiated (reading standard deviations fespr.dat and building a diagonal covariance
matrix).

Solving in one execution.The original package comes with two main programsti and post, which
respectively find the best estimate and compa{gosterioriuncertainties. For easier scripting, a
unique main prograrsolve nrc was designed to compute the same steps, but in one run.

Uncertainty on the observations. An extension to the input grammar was implemented so that uncertainty
level for each observation can be entered in the form of the standard deviat®oth relativeand
absolutaincertainties can be used.

Diagnostic mode. From thea-posteriorknowledge on model parameters, the-stream forward model
can be applied to predict the value and associated uncertainties in the observation space. This di-
agnostic step was added to the original package for each observation used as input of the inversion.
When an observation is inserted in the input file with an artificially high uncertainty level, it enters
the cost function with such a low weight that it cannot influence the inversion. The inversion package
will, however, produce an estimate of thgposteriorknowledge obtained on this observation. This
capability is used by Pinty et al. (2007) to predict radiative fluxes that are not measugedhe
absorbed flux in the NIR domain).

Random sampler. The programrandomPrior is designed to generate random samples fromatipeiori
PDF. It is a separate piece of software but uses several routineslisbeh It can be used to provide
statistically meaningful starting points for the inversions.
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Appendix G

Multivariate Gaussian Probability Analysis

G.1 The Multivariate Gaussian Probability Density Function

X = [X1,X9,..., X1, X,,] is arandom vector dR™ andC an x n symmetric positive definite matrix.
Let X follow a n-dimensional centred Gaussian law. Then, the Probability Density Function (PDEjsof
given by Equation (G.1).

_ 1 1 TH—1

where|C]| is the determinant of matri& and the!’ and—! superscripts are the transpose and matrix inversion
operators, respectivelf is the covariancematrix of the components &.

G.2 Structure of the covariance matrix

Diagonal elements of® are the squared standard deviatiré:ar%)i:1 ,, of the marginal univariate Gaussian
distributions of each of the componentXf Off-diagonal elements are covarian€&s:(X;, X;); j—1 n:i-;
between any two components Xf. Note thatCov(X;, X;) = o2 andCov(X;, X;) = Cov(X;, X;). For
each pair of random variables; and X ;, the correlatiorp;; is calculated as:

- COV(XZ‘, Xj)

Pij =
0i0;

By definition,—1 < p;; < 1 andp;; = pj;. X; andX; areuncorrelatedf p;; = 0.

G.2.1 Univariate Gaussian distribution

1
2 —1 2
C =0} C = IC|Y/2 = oy
G.2.2 Bivariate Gaussian distribution
C— o? P120102 ] o 1 [ 1/0% —p120102
P120102 o3 (1—p12)? | —p120102 1/03
CI"? = o1094/1 = p3,
G.3 Gaussian hyper-ellipsoids surfaces iR"
For any givery all pointsX satisfying
XTCc™1X = ¢2 (G.2)

have equal probability. The locus of poirs satisfying Equation (G.2) draws an hyper-ellipséifl in
R™ (which is an ellipsoid inR? and an ellipse iR?). In the case where all pairs of random variables
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(X;, X;) are uncorrelated, the principal axes are along the cardinal ax&$.alh the opposite case, non
zero angles are observed between the principal and cartesian axes. When all&xaseaéf equal length,
the hyper-ellipsoid is truly a hyper-sphere and the notattjnis used. The latter case arises when the
matrix C exhibits some patrticular configurations, for example, whewralire equal and all variableks;

are uncorrelated.

&% is enclosed by (and tangent to) a hyper-parallelepiped box, aligned with the cartesian axes and whose
dimensions aré/o; along ther; axis. & is called the/o hyper-ellipsoid of the multivariate Gaussian PDF.
Figure (G.1) proposes a graphical representation of the bivariate case for which the enclosing box is a
rectangle. In the univariate case, it collapses to two points, namety +/o;.

Ellipses of a Bivariate Gaussian

Figure G.1: Graph of}, &2 and&; for a bivariate Gaussian distribution with = 2.235, oo =
3.287 andp1» = —0.624. Dashed rectangles enclose the 3 ellipses. Half their side
lengths along the; (horizontal) axis are, 201 and3c7 while half their side lengths
along thex, (vertical) axis arery, 205 and3os.

G.4 Probability associated to the interior of &

The probability2?! thatX lies inside the hyper-volume of envelogg is given by the integral:

1 1
L — ¢ P(X)d :74 —-xXTc'x\ta G.3
P! }[igz{ (X) dv CaRECRE é%exp 5 v (G.3)

wheredv is the differential volume element in the coordinates system at use. The analytical solution depends
on bothZ andn and is given by (e.g. Gura and Gersten (1970)):

(n—1)/2

_ 2 2i—1
Wﬁzerf(ﬁ/\/i)—\/Q/ﬂxe_Té X Z [( 0 n=13,5,... (G.4)
] —
, 2 (n—2)/2 2
P,=1—e 2 xq1+ ; . n=246,... (G.5)
; Hj:l 2j

74



Figure (G.1) plots#’ against/ for n = 1,...,10. Values of special interests for this repont & 1,

n = 2 andn = 7) are coloured in red, green and blue, respectively. Horizontal dashed lines locate the well-
known univariate Gaussian probability threshold8.&8, 0.95 and0.99. Indeed, For a univariate Gaussian
distribution, these approximatively correspond to the2¢ and3o ranges.

0.8F

0.6

/

0.4

0.2

0.0

Figure G.1:.22! (y-axis) against (x-axis) forn = 1,...,10 (from left to right). Graphs for
n = 1,n = 2 andn = 7 are emphasised with colours. Horizontal dashed lines locate
the probability thresholds @f.68, 0.95 and0.99.

From Figure (G.1) it is clear that a given probability threshold is associated to adgiverper-ellipsoid
and that its extent depends on the space dimensianSticking to the classical probability thresholds one
can define, for each, the values that should be given. Table (G.4) reports valuegébrn =1,...,7.
They are the results from an inversion@t, against#} for k = 1,2, 3 but were rounded to be somewhat
easy to remember and are good enough for all practical purposes.

0.68 | 0.95 | 0.99
1.00 | 2.00 | 3.00
1.50 | 2.50 | 3.50
1.80 | 2.80 | 3.80
2.15 | 3.15 | 4.15
2.42 | 3.42 | 4.42
2.64 | 3.64 | 4.64
2.85 | 3.85 | 4.85

N O U W N

Table G.1: Values of to be used for”?! to be associated with the univariate probability thresholds
0.68, 0.95 and0.99

75



Bibliography

Giering, R. and T. Kaminski (1998). Recipes for adjoint code construcA@M Transactions on Mathe-
matical Software 24437-474.

Gobron, N., B. Pinty, O. Aussedat, J. M. Chen, W. B. Cohen, R. Fensholt, V. Gond, K. F. Huemmrich,
T. Lavergne, F. Mlin, J. L. Privette, I. Sandholt, M. Taberner, D. P. Turner, M. Verstraete, and J.-L.
Widlowski (2006). Evaluation of fraction of absorbed photosynthetically active radiation products for
different canopy radiation transfer regimes: Methodology and results using Joint Research Centre products
derived from SeaWiFS against ground-based estimatidmsnal of Geophysical Research

Gura, I. A. and R. H. Gersten (1970, jun). On analysis of n-dimensional normal probabilities. Technical
Report TR-0066(5129-01)-2, The Aerospace Corporation, El Segundo, CA, USA.

Hosgood, B., S. Jacquemoud, G. A@dli, J. Verdebout, G. Pedrini, and G. Schmuck (1995). Leaf Optical
Properties Experiment (LOPEX’ 93). Technical Report EUR 16095 EN, EC — DG Joint Research Centre.

Jacquemoud, S. and F. Baret (1990). PROSPECT: A model of leaf optical properties sjpetrate
Sensing of Environment 325-91.

Lavergne, T., T. Kaminski, B. Pinty, M. Taberner, N. Gobron, M. M. Verstraete, M. Vossbeck, J.-L. Wid-
lowski, and G. R. (2006). Application to MISR land products of an RPV model inversion package using
adjoint and hessian codeRemote Sensing of the Environment in print

Meador, W. E. and W. R. Weaver (1980). Two-stream approximations to radiative transfer in planetary at-
mospheres: A unified description of existing methods and new improvemkntsial of the Atmospheric
Sciences 37/630—-643.

Pinty, B., N. Gobron, J.-L. Widlowski, T. Lavergne, and M. M. Verstraete (2004). Synergy between 1-
D and 3-D radiation transfer models to retrieve vegetation canopy properties from remote sensing data.
Journal of Geophysical Research 109

Pinty, B., T. Lavergne, R. E. Dickinson, J.-L. Widlowski, N. Gobron, and M. M. Verstraete (2006). Simpli-
fying the interaction of land surfaces with radiation for relating remote sensing products to climate models.
Journal of Geophysical Research {D02116), D02116, doi:10.1029/2005JD005952.

Pinty, B., T. Lavergne, M. Vo

ssbeck, T. Kaminski, O. Aussedat, R. Giering, N. Gobron, M. Taberner, M. Verstraete, and J.-L. Widlowski
(2007). Retrieving surface parameters for climate models from MODIS-MISR albedo prodagteal of
Geophysical Research

Press, W. H., B. P. Flannery, S. A. Teulkosky, and W. T. Vetterling (1988)merical Recipes in C, 1st
edition Cambridge, USA: Cambridge University Press.

Press, W. H., S. A. Teulkosky, W. T. Vetterling, and B. P. Flannery (208lLymerical Recipes in Fortran
77, 2nd edition Cambridge, USA: Cambridge University Press.

Smolander, S. and P. Stenberg (2003). A method to account for shoot scale clumping in coniferous canopy
reflectance modeldRemote Sensing of Environment,&%3-373.

76



Tarantola, A. (1987)Inverse Problem Theory, Methods for Data Fitting and Model Parameter Estimation
New-York: Elsevier Science.

Tarantola, A. (2005)Inverse Problem Theory and Methods for Model Parameter Estim&tiuladelphia:
SIAM.

Vermote, E., D. Tar&, J. L. Deu, M. Herman, and J. J. Morcrette (1997). Second simulation of the
satellite signal in the solar spectrum: An overvi2EE Trans. Geoscience Remote Sensing 35¢3—
686.

VolRbeck, M., R. Giering, and T. Kaminski (2005, April). Automatically generated tangent and adjoint C
codes. Electronic Presentation.

77



European Commission

EUR 22467 EN - DG Joint Research Centre, Institute for Environment and Sustainability

Title: Evaluation of the Two-Stream Model Inversion Package

Authors: Lavergne Thomas, VoRRbeck Michael, Pinty Bernard, Kaminski Thomas and Giering Ralf
Luxembourg: Office for Official Publications of the European Communities

2006 - 82 pp. 21,0cm x 29,7 cm

EUR - Scientific and Technical Research series; ISSN 1018-5593

Abstract

The behaviour of the two—stream inversion package is documented. Its capability to provide fast and ac-
curate estimates of key vegetation parameters (the Leaf Area Index, among others) from various synthetic
observational setups is investigated on a large set of scenarios. The study concludes on the possibility to use
this inversion package for the operational retrieval of land surface biophysical parameters from available
remote sensing flux products.



EUROPEAN COMMISSION

DIRECTORATE-GENERAL

Joint Research Centre

The mission of the JRC is to provide customer-driven scientific and technical support for the conception,
development, implementation and monitoring of EU policies. As a service of the European Commission,
the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making
process, it serves the common interest of the Member States, while being independent of special interests,

whether private or national.

Publications Office

Publications.eu.int




