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Abstract32

33
Effective measures to counter the rising levels of carbon dioxide in the Earth’s34

atmosphere require that we better understand the functioning of the global carbon35
cycle. Uncertainties about, in particular, the terrestrial carbon cycle’s response to36

climate change remain high. We use a well-known stochastic inversion technique37

originally developed in nuclear physics, the Metropolis algorithm, to determine the38
full probability density functions (PDF) of parameters of a terrestrial ecosystem39

model. By thus assimilating half-hourly eddy covariance measurements of CO2 and40
water fluxes, we can substantially reduce the uncertainty of approximately five model41

parameters, depending on prior uncertainties. Further analysis of the posterior PDF42

shows that almost all parameters are nearly Gaussian distributed, and reveals some43
distinct groups of parameters that are constrained together. We show that after44

assimilating only seven days of measurements, uncertainties for net carbon uptake45

over two years for the forest site can be substantially reduced, with the median46
estimate in excellent agreement with measurements.47
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Introduction48

49
Only about half of the increasing emissions of CO2 from human activities currently50

remain in the atmosphere (Prentice et al., 2001). The remainder is taken up by both51
the oceans and the terrestrial biosphere, to roughly equal amounts (Joos et al., 2003).52

This current carbon sink in the terrestrial biosphere is, by some models at least,53

predicted to turn into a source (Cox et al., 2000; Cramer et al., 2001; Friedlingstein et54
al., 2003). Better quantification of the exchange fluxes of CO2 between the terrestrial55

biosphere and the atmosphere and better understanding of the underlying processes56
are therefore of foremost importance for the design of efficient climate protection57

strategies. Terrestrial ecosystem models (TEMs) have been used extensively to study58

the processes leading to either carbon loss or gain by the land biota (Prentice et al.,59
2001; McGuire et al., 2001). However, results still vary significantly due to60

differences between models (Cramer et al., 1999). While only very few studies using61

TEMs have considered uncertainties in fluxes as a result of parameter uncertainties,62
Knorr and Heimann (2001a, b) have shown that uncertainties of TEM process63

parameters lead at least to the same spread of simulated atmosphere–vegetation64
carbon fluxes than inter-model differences.65

66

More recently, Kaminski et al. (2002) have shown that TEMs can be combined with67
atmospheric transport inversion techniques. By using an additional process model and68

a Bayesian approach to parameter inversion, such inversions are both better-69
constrained than transport inversions and allow inferences about the underlying70

processes. An example of a more complex Carbon Cycle Data Assimilation System71

(CCDAS) is given by Rayner et al. (2004). CCDAS requires to specify prior means72
and error covariance matrices of model parameters, as an approximation of the prior73

probability density function (PDF) of parameter. To generate and analyse such a PDF74
is one purpose of the present study.75

76

Few attempts exist at quantifying uncertainty ranges based directly on experimental77
data (White et al., 2000; Knorr, 2000; Knorr and Heimann, 2001a). It is therefore of78

general interest to utilize the still growing amount of eddy covariance measurements79
of CO2 and water fluxes (FLUXNET, Global Carbon Project 2003) for ecosystem80
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model parameter estimation. Wang et al. (2001) used a non-Bayesian parameter81

optimization and showed that for their model, up-to five parameters could be82
estimated on the basis of eddy covariance measurements of CO2, water, heat, and83

ground heat fluxes. Prior knowledge of parameter values was used to initialize the84
parameters that were optimized, to set the parameters that remained unaffected by the85

optimization, and to determine reasonable limits for the space of parameter solutions86

allowed. The result is a set of model parameters that are either based fully on prior87
estimates, or fully on the inversion against measurements.88

89
Here, Bayesian methods offer a more consistent approach by combining prior90

knowledge with the additional information gained from the inversion. This does not91

only allow the simultaneous determination of all parameters, it also allows92
considering prior knowledge consistently for all parameters. Weakly constrained93

parameters are thus given an appropriate uncertainty range instead of being excluded94

a priori from the optimization. The method can be applied to global scale inversions95
(Rayner et al., 2004), or to sites using flux measurements as a model constraint.96

97
With this contribution, we will demonstrate a general method for Bayesian parameter98

estimation of complex, process-based TEMs, where parameter uncertainty ranges are99

derived from systematic sampling of the complete PDF. By comparing prior and100
posterior uncertainty ranges of parameters, it will be determined which parameters101

can be constrained by eddy covariance measurements of CO2 and water fluxes for a102
given set of prior parameter uncertainties and for a given error margin of103

measurements, using a particular TEM. The analysis of covariances is then used to104

determine which parameter values cannot be determined independently by the105
method. Finally, simulations with the constrained model – using both the complete106

PDF or its first two moments – are carried out for much longer time series than those107
used during the parameter estimation, to test the validity of the parameterization108

across time. Here, we also assess whether an approximation to the full PDF as used by109

CCDAS (means and error covariances) sufficiently represents uncertainties in net CO2110
fluxes. The method is thus presented as a prototype for an initial step of CCDAS that111

allows the exploitation of widely availability site-specific flux data through112
constraining model parameters.113
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Methods114

115
Monte Carlo inversion116

117
The given task of this study is to determine the probability distribution of a vector of118

model parameters p, given a set of measurements f, in this case fluxes. Whether a119

given vector p agrees with f is determined by running the model M, such that120
121

€ 

fM (p) =M(p;c, s) (1)122

123
fM  is the vector of model-simulated measurements, and c and s vectors of124

environmental boundary conditions and model state variables, respectively. f, fM, c125
and s contain values across both time and types of data (CO2, water and heat fluxes;126

temperature, solar radiation, humidity; soil moisture and leaf area index), while p is127

assumed invariable in time. For a process-based TEM, M is usually non-linear and too128
complex to be expressed as a set of standard mathematical functions. According to129

Mosegaard (1998), this amounts to a general inverse problem that can most savely be130

solved by direct sampling of the probability density function (PDF) in parameter131
space using Monte Carlo techniques. Developed for applications in nuclear132

(Metropolis et al., 1953), and later geophysics (Mosegaard and Tarantola, 1995;133
Mosegaard, 1998; Mosegaard and Rygaard-Hjalsted, 1999), it is now widely used in134

other fields of environmental modeling. It consists of a stochastic technique that135

generates a random set of points p1... pN in parameter space with a distribution that136
approximates any given function f(p) for large values of N. For a Bayesian inversion,137

this function is chosen as the posterior PDF of model parameters, given by138
139

€ 

f (p) = νL(p)ρ(p) (2)140

141
with a normalization constant, ν (Mosegaard and Sambridge, 2002). L(p) is the142

likelihood function, which expresses the misfit between model derived values and143

measurements in relation to measurement error, and ρ(p) is the prior probability144

distribution of normalized parameters (see below). Errors representing missing or145
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incorrect processes were neglected in this study. The likelihood function is expressed146

as the negative exponential of the misfit against measurements, Jf(p), such that147
148

€ 

L(p) = exp{−J f (p)} (3a)149

150
with151

152

€ 

Jf (p) =
1
2
M(p) − f( )TCf

−1 M(p) − f( ) (3b)153

154

Cf is the error covariance matrix of the measurements, and T denotes the transposed155
vector. Similarly, the prior probability, ρ(p), can be written as156

157

€ 

ρ(p) = exp{−Jp(p)} (4a)158

159

and160
161

€ 

Jp(p) =
1
2
p− p0( )TCp

−1 p −p0( ) (4b)162

163
with p0, the vector of prior (normalized) parameter values, and Cp, the error164

covariance matrix of the priors.165
166

In standard inversion techniques, the inversion problem consists of finding the global167

minimum of the function J(p)=exp{– f(p)}. In the case of Monte Carlo inversion, the168
generated series of sample points, p1 ... pN, simply has a distribution with its highest169

density in the vicinity of the maximum of f(p). If the objective is less to find the exact170

optimum but more to gain understanding of the probability distribution of parameters,171
this technique has obvious advantages. The sampled distribution can subsequently be172

used to compute the expected values of any desired variable or expression, x, under173
the predefined PDF, f(p):174

175
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€ 

x = x(p)∫ f (p)dp ≅ 1
N

x(
i=1

N

∑ pi) (5)176

177
To assess to what degree the distribution of model parameters deviates from a178

Gaussian one, it is also possible to compute the projection of the multi-dimensional179
PDF onto the dimension of a single parameter (importance sampling) from:180

181

€ 

fi( p) = f (p)∫ dp1...dpi−1dpi+1...dpn ≅
1
εN

I p−ε / 2 ,p+ε / 2(
i=1

N

∑ pi) (6)182

183

Ia,b(x) denotes the interval function, which is 1 if a≤x<b, else 0, and ε an appropriately184

chosen resolution parameter.185
186

The complete method of Monte Carlo inversion is described in detail by Mosegaard187

and Tarantola (1995) and reviewed by Mosegaard and Sambridge (2002). We always188
perform one iteration starting from the prior set of parameters, i.e. p1=p0. For some189

cases (see Results), we add an ensemble of Monte Carlo integrations with varying190
starting points in the way suggested by Gelman et al. (1995). To generate subsequent191

values p2, p3,... in the series, a new point is tried by varying all vector elements by192

some step, Δp, chosen with a Gaussian distributed random number generator with193

mean zero and standard deviation set for each parameter separately to the prior194
uncertainty times an appropriately chosen step-length factor. The new point, pi+Δp at195

step i of the iteration, is accepted or rejected according to a two-step version of the196

Metropolis algorithm: The first step is always accepted, if ρ(pi+Δp)/ρ(p)≥1, and it is197

accepted with a probability of ρ(pi+Δp)/ρ(p) if ρ(pi+Δp)/ρ(p)<1. The second step is198

assessed in the same way as the first, only that the prior probability ρ(p) is replaced199

by the likelihood function L(p). Only if both steps are accepted, the next point in the200

series is pi+1=pi+Δp, else pi+1=pi. We adjust the step length for each parameter to201

values which lead to an average acceptance rate of the new points around 0.3 (Gelman202
et al. 1995).203

204

205
206
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Simulations207

208
As a demonstration of the Monte Carlo method, we chose two different209

photosynthesis models and two setups with a reduced and a more extensive part of210
BETHY. The reduced version of BETHY is used together with the C4 photosynthesis211

model and excludes the heterotrophic respiration part. Compared to the C3 version212

with heterotrophic respiration, this reduces the number of free parameters from 23 to213
14. The C4 version uses eddy covariance measurements by Kim and Verma (1991)214

from the FIFE grassland experimental site in Kansas, and the C3 version data from the215
Loobos pine forest site in the Netherlands (Dolman et al., 2002)216

217

Input and flux data218
219

The FIFE site in northeastern Kansas, USA (39°03’N, 96°32’W) was dominated by220

the C4 tallgrass species Andropogon gerardii, Sorghastrum nutans, and Panicum221
virgatum. The implementation of BETHY for this site is also described by Knorr222

(1997). In this case we assimilated day-time data of net canopy assimilation (GPP223
minus total-canopy leaf respiration) derived from eddy covariance measurements of224

NEE by subtracting soil and plant, excluding leaf, respiration rates derived from225

night-time CO2 fluxes. We also assimilated day-time canopy conductance values that226
were obtained through inversion of the Penman-Monteith equation against day-time227

latent energy flux measurements. PAR, air temperature, VPD, and relative plant228
available soil moisture (w/wm, Equ. A12, A17) were used as input data. All data, for229

four different days between June and August 1987, were taken from Kim and Verma230

(1991). Global radiation was computed from Julian day, longitude and latitude, while231
wind speed and free-air CO2 concentration were left constant at 3 m/s and 355 ppm,232

respectively. We used a relative uncertainty of 20% for both net canopy assimilation233
and canopy conductance, with a threshold of 3.0 µmol m-2 s-1 and 1.5 mm s-1,234

respectively.235

236
The vegetation at the Loobos site (the Netherlands, 52°10’ N, 5°74’ E) was dominated237

by Pinus sylvestris with an understorey of the grass Deschampsia flexuosa (Dolman et238
al. 2002). Global radiation, photosynthetically active radiation (PAR), air temperature,239
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ambient CO2 concentration, wind speed, vapor pressure deficit (VPD) and total soil240

water content, wtot, were used as input data. Soil water content at wilting point (2.5 %241
vol.) and at field capacity (12.4 % vol.) were estimated from soil texture information.242

We assimilated half-hourly values of net ecosystem exchange (NEE) and latent243
energy flux (LE) from seven days in 1997 and 1998.  The uncertainty of NEE was244

taken to be 20% of NEE during day and 50% of NEE during night, accounting for low245

wind speed and little turbulence during night times. The minimum uncertainty246
threshold was set to 3.0 µmol m-2 s-1. Uncertainties of LE were considered to be 20%247

of LE, with a threshold of 22.0 Wm-2. Uncertainties of input data were not considered248
for either site.249

250

Prior model parameter values and uncertainties251
252

All model parameters and their prior values are listed in Table 1. Their choice is based253

on the model description of BETHY (Knorr, 2000), with a few exceptions: the value254
for rJmVm was derived from data by Wullschläger et al. (1993), Medlyn et al. (2002)255

and Leuning (2002); k25 and Ek follow Knorr (1997); ERd was set to the value cited by256
Kim and Verma (1991); fR,leaf was modified for one plant respiration rate instead of257

separate maintenance and growth respiration; Rhet
0 was set to a value for which the258

heterotrophic respiration model (at a priori parameter values) driven with data from259
the Loobos site reproduces the range of measured soil respiration rates given in Raich260

et al. (2002) and Reichstein et al. (2003); Q10 follows Raich et al. (2002); wpwp was261
derived from soil texture information and soil water potential relations from262

Schachtschabel et al. (1992); and av was set to the upper bound of values given by263

Knorr (2000).264
265

For the prior parameter uncertainty, we chose 0.125, 0.25, and 0.5, respectively, as266
one standard error in the space of normalized parameter values, pi. These values were267

the same as those sampled by the Metropolis algorithm (see above), and were268

uniformly set to a prior value of 1. Those normalized parameter values are translated269

into model parameters, pi (see previous section) through a logarithmic transformation,270

given by:271
272
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€ 

pi = ln( pi −1)pi,0 (7)273

274

pi,0 is the prior value in model parameter space as listed in Table 1. We chose a log-275
normal distribution because of large prior uncertainties with all parameters positive by276
definition. For fCi, however, we require 0≤fC≤1, and so that we chose to use a normal277

distribution cut off at 0 and 1. fCi,0 is the prior estimate of fCi, and fCi=pk fCi,0  replaces278

Equ. 7, where k is the parameter index for fCi. The vector of prior normalized279
parameters is thus p0={1,...,1}, and Cp, the error covariance matrix of the priors:280

281

  

€ 

Cp  i, j =
x 2, if i = j
0, else

 
 
 

282

283
where x is 0.125, 0.25, or 0.5, as above. Covariances for priors are assumed to be284

zero. For the prior probability distribution, ρ(p) (Equ. 4), we have the additional285

condition286
287

  

€ 

ρ (p) =
0, if pk ≤ 0 or pk ≥1/ fCi,0

exp{−Jp (p)}, else.

 
 
 

288

289

290
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Results291

292
We will first show results to demonstrate convergence of the algorithm. Next,293

optimized parameter values will be described by their means, standard errors, and294
covariances, all in the space of normalized parameters (cf. Equ. 7). Comparison with295

prior means and errors indicates about how many parameters we have learned296

something through the assimilation of the eddy covariance data. We also assess for297
which parameters the posterior PDF differs from the Gaussian distribution assumed298

for the prior PDF. For the Loobos site, we eventually compute the cumulative NEE299
with and without optimized parameters over a period of two years to test the validity300

of parameterizations across time and to assess to what degree the inversion has lead to301

a constraint on the modeled ecosystem carbon balance.302
303

Convergence of the algorithm304

305
To insure convergence, we performed rather long integrations with 500,000 iterations306

(and more in one case). For the two cases with 0.25 prior uncertainty, we produced a307
series of six independent simulations starting from different points in parameters308

space: the prior parameter vector, p0={1,...,1} in the space of normalized parameters,309

and points shifted away from the  estimated posterior optimum, p’, by one to several310
times the posterior standard deviations, σ’={σ’1,...,σ’n} estimated from preliminary311

simulations. For FIFE, the starting points were p0, p’+σ’, p’+2σ’, p’+3σ’, p’–σ’,312

p’–2σ’, for Loobos p0, p’+2σ’, p’–2σ’, p’+4σ’, p’+4{+σ’1,–σ’2,+σ’3,...}  and313

p’–4{+σ’1,–σ’2,+σ’3,...}. To determine at which iteration the sequences have314

converged to a common maximum, as opposed to sampling local maxima, we applied315

Gelman’s criterion of convergence (Gelman et al., 1995) for all parameters. This test316

of convergence, designed for practical purposes, yields a reduction factor that317
measures both the variance within each sequence of the series, and the variance of318

means across sequences for exactly the second half of the series up to the iteration319
indicated.320

321

The parameters that took longest to reach a common maximum, according to322
Gelman’s criterion, were αi for FIFE and fCi for Loobos. The evolution of the323
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estimated mean values are shown in Figs. 1a and 1b, respectively, for every tenth324

iteration. Also shown are one fast converging parameter, and the parameter that was325
most highly correlated to the first. Note that for in Fig. 1b, EVm appears to be326

converging more slowly than fCi. The explanation is that EVm remains highly uncertain327
and, as we will see later, assumes an extremely non-Gaussian distribution within the328

posterior PDF. In general, parameters for the FIFE site seem to converge faster than329

for Loobos, which would be expected for an inversion with 14 instead of 23330
parameters.331

332
A more convenient way to visualize convergence of the sampling sequences is a phase333

diagram using the costs of the prior probability (Equ. 4b, costs of parameters) and the334

misfit in the Likelihood-function (Equ. 3b, costs of diagnostics) as the two axes335
(Gelman et al., 1995). As Figs. 1c and 1d show for both sites and 0.25 prior336

uncertainty, all sequences appear to converge against a common global cost function337

minimum (maximum of the PDF), despite widely varying starting points. The338
convergence, however, is less straight for FIFE, where a local minimum with a cost of339

diagnostics of around 500 is initially reached by some of the simulations. Analysis of340
the other simulations (not shown) reveals that the sequence with 0.125 prior341

uncertainties remains even longer in a similar local minimum until it reaches a region342

with costs of diagnostics and parameters both around 200. The simulation with 0.5343
prior uncertainty does not seem to find a local minimum and converges more rapidly,344

with costs of diagnostics around 100, and costs of parameters around 35.345
346

The ratio of the costs of diagnostics over parameters in the region of the global347

minimum gives an indication of how strongly the inversions are constrained by348
observations. For the FIFE site, this ratio varies between around 1, 2, and 3 for 0.125,349

0.25, and 0.5 prior uncertainties. For Loobos, the costs of diagnostics decrease only350
about 10% from 0.125 to 0.5 prior uncertainties, and the costs of parameters all lie351

around 40, giving an almost constant ratio of around 10. Apparently, the more352

reduced model version with 14 parameters needs rather week constraints on353
parameters to converge efficiently, and is still less constrained by observations than354

the more direct inversion against NEE and LE. Note, however, that the FIFE inversion355
used only 4 days and only data from day-time fluxes.356
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357

To determine a practical initial cut-off for iterations before convergence to the global358
PDF maximum, the so-called “burn-in time” with length n iterations, we used again359

Gelman’s test (Gelman, 1992; Cowles and Carlin, 1996). It requires that the reduction360
factor computed for iterations n+1 to 2n reaches a value of around 1.2 to 1.4 for all361

sampled quantities of interest. To be on the safe side, we chose 2n=100,000. Fig. 1e362

and 1f show this reduction factor for the same parameters as Fig. 1a and 1b, together363
with the values of the product of the fastest converging parameter with the two others.364

Such products are required to compute parameter covariances and appear to converge365
at least as rapidly as the slowest parameter.366

367

Convergence of parameters for the cases with 0.125 and 0.5 prior uncertainties was368
evaluated by plotting expected values of all parameters against the length of the burn-369

in time. A burn-in time of 50,000 iterations was found to be sufficient for all cases but370

FIFE 0.125, where 1,000,000 iterations  were chosen instead. Of the following371
450,000 iterations, we used every tenth step for parameter sampling to avoid372

correlations between subsequent samplings. The following analysis was thus based on373
45,000 parameter samplings for 0.125 and 0.5 prior uncertainties, and 270,000374

samplings from six sequences for 0.25 prior uncertainties. Each sequence of 500,000375

iterations took ca. 5 hours CPU time on a Linux PC workstation.376
377

Parameter change and uncertainty reduction from constraining with eddy covariance378
data379

380

Means and standard deviations can be estimated directly from the samplings of the381
posterior PDF in the space of the normalized parameters. Since the parameters382

represent different processes, comparison with prior means and uncertainties provides383
valuable information on those processes about which we can learn most through the384

use of eddy covariance data. The means and ranges corresponding to one standard385

error are shown in Fig. 2 for all prior and posterior parameter values. For the non-386
Gaussian prior distribution of fCi, we show the corresponding percentiles.387

388
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For the C4 FIFE site, patterns of parameter change are consistent between versions389

0.25 and 0.5, with version 0.125 being similar for most parameters, except for those390
two of the CO2 specificity, k. The standard rate, k25, and its activation energy, Ek, are391

decreased by a large amount when prior uncertainties are large, while they are not392
affected by the inversion when prior uncertainties are small. We interpret this result in393

the following way: both parameters describe one of three co-limiting rates that394

determine C4 photosynthesis (Equ. A7). In one case, the priors are set in such a way395
that the rate, Jc, is never limiting the actual rate A. Once prior uncertainties are396

increased, the inversion gains more freedom and finds a solution where all three rates,397
Je, Jc, and Ji, are limiting and agreement with observations is significantly improved398

(see lower cost of diagnostics between the local and the global minimum in Fig. 1c).399

400
For the Loobos C3 site, patterns of parameter changes are similar for versions 0.125401

and 0.25. The pattern of version 0.5 differs from these for at least 5 parameters: Γ*
25,402

KC
25, ERd, k and av. For the photosynthesis parameters, there is a consistent pattern of403

lower quantum efficiency, αq, with little change in maximum carboxylation rate, Vm
25,404

and an increase in the carboxylation rate’s activation energy, EVm. For others, there is405
no consistency: the direction of change depends on the prior uncertainty (for rJmVm,406

Γ*
25, KC

25), or changes are small overall. For the respiration parameters, there is a407

consistent increase in Q10, and a decrease in the overall heterotrophic respiration408

expressed through Rhet
0 (except for 0.125 prior uncertainty). As for FIFE, the posterior409

values of the stomatal parameters cw and fCi are almost independent of the prior410

uncertainty ranges, and there is a universal downward adjustment of the third.411
412

Another quantity that measures the gain in information after inversion against the413

eddy covariance data is the relative reduction in uncertainty, defined as414
1–σprior/σposterior, where σ is the parameter’s standard deviation. For fCi with its non-415

Gaussian prior distribution, we again use the equivalent percentile range for σprior. If416

this value comes close to one, we have gained almost complete knowledge of the417

particular parameter concerned. Because σ is derived from the complete PDF, cases418

where this value is less than 0 are also possible. The relative reduction in uncertainty419

is shown in Fig. 3.420
421
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For both sites, most information is gained for the stomatal parameters, in particular fCi.422

This is not a great surprise, since stomata regulate water-use efficiency, i.e. the ratio423
of lost water to gained carbon dioxide molecules, and the fluxes of both (or derived424

quantities) are just the information that is assimilated. The next best-constrained425
process is photosynthesis, with most information gained for quantum efficiency (αi or426

αq for C3 or C4), maximum carboxylation rate, Vm
25, and for C4 the functionally427

similar CO2 specificity, k25 (except, again, for FIFE 0.125). Within the energy and428
radiation balance, most information is consistently gained for the sky emissivity429

parameter, εs. Only in some cases, information is gained about albedo (av) and430

aerodynamic conductance (ga,v). For FIFE, the two respiration parameters are431
consistently constrained, while for Loobos, only very little can be learned about either432

autotrophic or heterotrophic respiration. There seems to exist a principle difficulty to433

distinguish between autotrophic and heterotrophic respiration on the basis of net CO2434
flux measurements. This results should caution us against the use of night-time CO2435

flux data to derive GPP from NEE, here implicit in the data from the FIFE site.436
437

Covariances between parameters438

439
Covariances between parameters, given in their normalized form in Table 2 for 0.25440

prior uncertainties and both sites, can be used to find groups of parameters that tend to441

be constrained together. For FIFE, we rather do not find such distinct groupings of442
parameters. Instead, we find that 11 of the 14 parameters from different parts of the443

model are strongly correlated with other parameters, with a normalized covariance444
(=correlation coefficient) of up to 0.91 for the pair cw and εs. Two parameters, fRd and445

εs, have a correlation of over 0.30 to four other parameters. For Loobos, however, we446

can identify some distinct groups of parameters for which errors are correlated. The447

first such emerging group consists of the six first photosynthesis parameters (αq, Vm,448

EVm, rJmVm, Γ*
25, KC

25) plus the stomatal parameter fCi. These are linked to a second449

energy balance group consisting of εs and ga,v via fCi, EVm and αq. fCi is only weakly450

correlated to the other, soil moisture related stomatal parameter, cw. This latter451

parameter cannot be separated from the wilting point parameter, wpwp: the normalized452
covariance reaches 0.75, which indicates that the effect on NEE and LE of changes in453

one parameter is compensated by changing the other parameter in the same direction.454
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A third group is formed by the three heterotrophic respiration parameters, Rhet
0, κ, and455

Q10: these are linked to the first group by a high normalized covariance between Q10456

and EVm.457
458

Analysis of the posterior PDF459
460

So far, we have only analyzed means and covariances derived from the PDF of the461

posterior parameters. Table 3 lists the prior and posterior means, here of the model462
parameters instead of the normalized parameters. We will now assess whether the463

assumption of Gaussian posterior distributions is adequate – the advantage would be464

easy use of the PDF in a global carbon cycle data assimilation system (see465
Introduction). The analysis is based on the medium case of 0.25 prior uncertainty of466

normalized parameters. The skewness and kurtosis of the PDF projected onto each467
normalized parameter, also listed in Table 3, show only small deviations from468

Gaussian distributions. Exceptions are εs for FIFE, and EVm, ga,v and wpwp for Loobos469

(see Fig. 4). EVm, ga,v also show an increase in the standard deviation from prior to470

posterior.471

472
If the distribution of a parameter is much different from Gaussian, then estimation473

techniques that use the gradient in parameter space to find the cost function minimum,474

and second derivatives of the cost function to derive parameter uncertainties, will give475
erroneous results. For fCi (FIFE), this would lead to a mean of 1.11 instead of 1.09,476

and a slight underestimate of the uncertainty. The effect would not be large for wpwp477
(Loobos), either, and still quite acceptable for ga,v, given the generally large478

uncertainties.479

480
Extrapolation of results in time481

482
We have now obtained a constrained parameter PDF for the BETHY C4 and C3483

models from four or seven selected days of eddy covariance data, respectively. The484

question to ask now is how the gained process knowledge, expressed through reduced485
parameter uncertainty, translates into reduced uncertainty about the quantity of486

highest interest: the net sink at the site over a longer time period. For that purpose, we487
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have computed the cumulative NEE over a period of two years at the Loobos site,488

complete with 95% confidence ranges, from the prior, the posterior Gaussian, and the489
full posterior PDF. The posterior Gaussian PDF approximates the full PDF by using490

only the means and the error covariance matrix. As Fig. 5 shows by the green area,491
prior uncertainties about parameter values of BETHY were consistent with the492

Loobos site being both a strong sink (positive NEE), or a moderate source of carbon493

(negative NEE) over the two years. After constraining the model, the 95% confidence494
range lies outside of the median prior estimate. This means that extrapolating seven495

days of NEE and LE data through the assimilation procedure resulted in a sink496
estimate that was significantly different from the best prior estimate. Further, we find497

that using the full PDF in parameter space results in only about half of the uncertainty498

in NEE over the two years compared to using a PDF derived from parameter means499
and covariances. Skewness and kurtosis of the full PDF of the cumulative NEE can500

also be relatively large.501

502
Note that this result still depends on the prior uncertainty, which was only estimated503

in a simple and preliminary way for this study. Also, assimilating more days of flux504
measurements would lead to stronger constraints of model parameters and fluxes,505

which would lead to even smaller uncertainties of the cumulative NEE. Here, we can506

instead use the measured NEE of the two years, with a few gaps (for which we507
assumed NEE=0), to validate our time extrapolation (Fig. 5, blue line). With this508

additional assumption as a point of caution, we arrive at around 25 mol(CO2)/m2/yr or509
300 gC/m2/yr net uptake from both the observations and the model simulations. The510

generally good agreement between modeled (after assimilation) and measured NEE511

across the two years shows that the model is able to capture the main processes that512
influence this quantity. We therefore suggest that the method shown here, with all513

available measurements assimilated, could be a superior gap filling method compared514
to the ones usually employed by the eddy covariance community.515
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Discussion516

517
We have performed several Bayesian inversions of an ecosystem model, BETHY,518

constrained by eddy covariance data of carbon and water fluxes. There were two sites,519
one C3 and one C4, and three sets of assumptions about prior parameter uncertainties.520

We find that the method works very well, although some care has to be taken to insure521

algorithm convergence. Compared to non-Bayesian, standard optimization techniques522
(e.g. Wang et al., 2001), the method treats all parameters equally and simultaneously,523

and is still able to distinguish between those parameters that can be constrained by the524
eddy covariance data, and those that can not. With four or seven days of diurnal data525

assimilated, the Bayesian part of the cost function in the region of the minimum was526

between two and ten times the cost of the measurements, so that the inversion was527
found to be constrained predominantly by the flux data. Similar to Wang et al. (2001),528

who used non Bayesian inversions, we find that typically five parameters can be529

effectively constrained by the method. Even though this depends on somewhat530
subjective assumptions about the prior uncertainty and what degree or relative error531

reduction can be considered as “effectively constrained”, this particular result is rather532
robust.533

534

The method also delivers information on the error covariances of parameters. This535
information can be used to find out which processes can be constrained individually536

by the assimilation of the eddy flux data. Analysis of the full PDF, only possible by537
Monte Carlo methods, shows that most parameters tend to be distributed close enough538

to a Gaussian one for gradient and second-derivative methods to work effectively.539

These usually require a few orders of magnitude fewer iterations. Only one parameter540
was identified with a distribution so far away from a normal one that such methods541

would have underestimated the posterior mean and uncertainty to a large degree.542
543

One straightforward and easy application of the method presented here would be to544

use the posterior means and covariances of the parameter PDF as priors in a global-545
scale data assimilation system (cf. Rayner et al., 2004). We expect that using the546

Gaussian part of the complete PDF will tend to overestimate the uncertainty of the547
model diagnostics.548
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549

We have so far restricted our study to cases that are rather rare when considering the550
entire FLUXNET archive: we relied on the availability of soil moisture551

measurements. Applying the method for more sites, however, will be crucial for552
identifying representative model parameterizations by plant functional type, or some553

other generalization on which global models necessary rely on. Therefore, we expect554

to conduct further studies with the complete BETHY model with the full water555
balance. If no complete data on LAI are available, a phenology scheme may also be556

included. LAI and soil moisture data could then also be assimilated instead of being557
used as input. We also suggest to use more days and longer periods for assimilation,558

although we find that only a few days of data already deliver a strong model559

constraint.560
561

Finally, we have considered only some first approximations for prior parameter562

uncertainties, and for uncertainties in eddy flux measurements. We found that in some563
cases (for the FIFE site, in particular), the results depended rather strongly on the564

choice of the prior parameter uncertainties. This means that a careful choice of prior565
parameter values and their uncertainties can be important for the optimization.566

567

568
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Conclusions569

570
The parameterization of global terrestrial ecosystem models for carbon cycle studies571

poses great challenges. We are confronted with model errors, errors from the finite572
accuracy of parameter estimation, and representation errors that result from the fact573

that models need to work with a finite set of idealized vegetation types. This study574

demonstrates that inversion against eddy covariance data can be a powerful tool for575
using local measurements to constrain the possible range of ecosystem model576

parameters. Such information about parameter uncertainties is crucial for577
understanding to what degree of confidence we can use models to compute the global578

terrestrial carbon balance.579

580
The advantage of the Monte Carlo inversion technique is that it works even for highly581

non-linear models, and that it allows to sample the complete posterior probability582

density function. This can be used to estimate how well methods will work that derive583
uncertainties from the curvature of the cost function at its global minimum. Because584

they require far fewer iterations, such methods are better suited for global585
applications, especially when parameters need to be inverted simultaneously at the586

global scale.587

588
Further application of this method will require a careful analysis of the prior589

uncertainties of model parameters. For the envisaged global applications, it will also590
be important to repeat the analysis with a sufficient number of sites per major591

vegetation type in order to gain an understanding of the representation error. We592

suggest that using such studies to determine prior parameter uncertainties for global593
carbon cycle data assimilation could be one of the principle application of data from594

the growing network of eddy covariance measurement sites. We believe that such a595
method of extrapolating measurements from local sites to the global scale through the596

determination and spatial extrapolation of parameters would be the most promising597

and most adequate route to better global terrestrial ecosystem models. These will be598
crucial for any application aimed at predicting the future response of the carbon cycle599

to climate change, including atmosphere–vegetation feedbacks.600
601
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Table 1: Parameters of BETHY that were used in the inversion against eddy716

covariance measurements.717

718

symbol description value unit Equ. C3 C4

αq quantum efficiency of photon capture (C3) 0.28 mol(e-)/mol A1c X

Vm
25 maximum carboxylation rate at 25 °C (C3) 29 µmol/m2/s1 A2 X

Vm
25 maximum carboxylation rate at 25 °C (C4) 8 µmol/m2/s1 A2 X

EVm activation energy of  Vm 58520 J/mol A2 X X

rJmVm ratio of Jm to Vm at 25 °C 1.79 - A3 X

Γ*
25 CO2 compensation point without dark resp. at 25 °C 42.5 µmol/mol A4 X

KC
25 Michaelis Menten constant for carboxylation at 25 °C 460 µmol/mol A5 X

EKc activation energy of KC 59356 J/mol A5 X

KO
25 Michaelis Menten constant for oxygenation at 25 °C 0.33 mol/mol A6 X

EKo activation energy of KO 35948 J/mol A6 X

αi quantum efficiency of photon capture (C4) 0.04 mol(CO2)/mol A7 X

k25 CO2 specificity at 25 °C 0.14 mol/m2/s1 A8 X

Ek activation energy of  k 50967 J/mol A8 X

fRd ratio of leaf dark respiration at 25 °C and  Vm
25  (C3) 0.011 - A10 X

fRd ratio of leaf dark respiration at 25 °C and  Vm
25 (C4) 0.042 - A10 X

ERd activation energy of leaf dark respiration 45000 J/mol A10 X X

fR,leaf ratio of canopy to total plant respiration 0.5 - A11 X

Rhet
0 heterotrophic respiration at 0 °C and field capacity 2.07 µmol/m2/s1 A12 X

 κ soil moisture factor of heterotrophic respiration 1 - A12 X

Q10 temperature dependency of heterotrophic respiration 1.72 - A12 X

wpwp soil water content at permanent wilting point 2.5 vol% - X

fCi non water limited ratio of Ci,0 and Ca (C3) 0.87 - A14 X

fCi non water limited ratio of Ci,0 and Ca (C4) 0.67 - A14 X

cw maximum water supply rate of root system 1 mm/hour A17 X X

ω single scattering albedo of leaves 0.12 - - X X

av albedo of close vegetation surface cover 0.2 - A18 X X

as fraction of solar rad. abs. by soil under close canopy 0.05 - A18 X X

εs sky emissivity factor 0.64 - A19 X X

ga,v vegetation factor of atmospheric conductance 0.04 - A20 X

photosynthesis

carbon balance

stomatal control

energy and radiation balance
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Table 2: Elements of the reduced error covariance matrix, equal to the correlation719

coefficient, derived from the posterior PDF the FIFE and Loobos sites. Prior720
parameter uncertainties in normalized space were 0.25. Values above 0.3 or below -721

0.3 are considered to indicate a close correlation between parameter errors and are722
marked.723

724

αq Vm
25 EVm rJmVm Γ*

25 KC
25 EKc KO

25 EKo fRd ERd fR,leaf Rhet
0  κ Q10 wpwp fCi cw ω av as εs ga,v

1.00 0.40 0.45 0.11 0.71 -0.31 -0.05 0.06 0.06 -0.02 0.11 -0.02 -0.06 -0.04 0.11 0.02 0.35 0.01 0.07 -0.05 0.00 -0.31 -0.19 αq
1.00 0.51 -0.03 0.45 0.37 -0.13 -0.14 0.10 -0.18 0.20 0.06 -0.11 0.11 0.17 0.12 0.36 0.19 -0.03 -0.03 -0.02 -0.17 -0.16 Vm

25

1.00 0.41 0.47 -0.17 0.26 0.11 -0.09 -0.14 0.24 0.03 -0.18 0.03 0.31 0.09 0.62 0.15 -0.01 -0.10 0.00 -0.30 -0.33 EVm
1.00 0.33 -0.31 0.14 0.12 0.01 -0.07 0.12 -0.01 -0.08 -0.05 0.19 0.04 0.25 0.12 -0.01 -0.11 -0.01 -0.20 -0.24 rJmVm

1.00 -0.21 -0.05 0.04 0.06 -0.06 0.11 0.02 -0.06 0.00 -0.03 0.12 0.40 0.24 -0.01 0.00 0.02 -0.24 -0.12 Γ*
25

1.00 0.05 0.18 -0.01 -0.03 -0.04 0.05 0.03 0.08 -0.14 0.00 -0.18 0.01 -0.01 0.04 -0.02 0.12 0.07 KC
25

1.00 0.00 -0.11 0.01 0.01 -0.01 0.01 -0.06 -0.02 -0.09 0.01 -0.04 0.02 -0.02 0.03 -0.03 0.03 EKc
1.00 -0.02 0.01 0.01 0.00 -0.01 -0.02 0.07 -0.04 0.04 -0.03 0.00 0.00 0.02 -0.04 -0.04 KO

25

Vm
25 1.00 1.00 -0.01 0.07 -0.02 -0.04 0.01 0.03 0.03 0.06 0.00 -0.02 0.00 -0.02 -0.01 -0.01 EKo

EVm 0.19 1.00 1.00 0.04 0.11 -0.03 0.22 -0.15 0.02 -0.02 0.00 -0.01 0.03 -0.01 0.02 0.02 fRd
αi 0.44 0.08 1.00 1.00 -0.08 0.05 -0.20 -0.08 0.02 0.15 0.05 0.00 -0.01 -0.01 -0.09 -0.01 ERd
k25 0.00 -0.03 -0.25 1.00 1.00 0.06 -0.22 0.15 -0.01 0.05 0.03 0.03 0.01 0.03 -0.01 -0.07 fR,leaf
Ek -0.10 -0.03 -0.30 -0.15 1.00 1.00 0.23 -0.39 -0.01 -0.19 -0.04 0.01 0.02 0.00 0.06 0.03 Rhet

0

fRd -0.15 -0.07 0.45 0.09 -0.08 1.00 1.00 0.36 0.00 0.07 0.04 -0.02 0.00 -0.02 0.01 -0.05  κ

ERd -0.15 0.03 -0.16 -0.28 -0.05 -0.35 1.00 1.00 0.12 0.22 0.18 0.01 -0.06 -0.01 -0.12 -0.11 Q10
fCi -0.22 -0.06 -0.15 -0.65 0.14 0.06 0.21 1.00 1.00 0.03 0.75 0.00 0.00 0.02 0.12 0.09 wpwp
cw -0.26 -0.03 -0.23 -0.07 0.02 -0.42 -0.09 -0.05 1.00 1.00 0.17 -0.01 -0.06 0.02 -0.58 -0.47 fCi
ω 0.01 0.03 0.03 0.03 0.08 -0.03 0.03 -0.03 -0.17 1.00 1.00 -0.01 -0.05 0.00 -0.12 -0.10 cw
av -0.01 -0.03 -0.01 0.08 0.13 0.02 0.13 -0.05 -0.47 -0.06 1.00 1.00 -0.01 0.01 0.02 0.01 ω

as -0.01 -0.01 -0.01 0.04 0.06 0.01 0.02 -0.02 -0.17 -0.03 -0.13 1.00 1.00 -0.01 0.12 0.01 av
εs -0.32 -0.05 -0.26 -0.04 0.11 -0.50 -0.06 -0.10 0.91 -0.05 -0.17 -0.04 1.00 1.00 0.02 0.01 as
ga,v 0.16 0.08 0.15 -0.21 -0.19 0.13 0.68 0.21 -0.18 -0.10 -0.24 -0.13 -0.40 1.00 1.00 0.67 εs

Vm
25 EVm αi k25 Ek fRd ERd fCi cw ω av as εs ga,v 1.00 ga,v

Loobos

FIFE



28

Table 3: Prior and posterior parameter values in model space for FIFE (above,725

BETHY C4 version), and Loobos (below, BETHY C3 version); standard deviation726
(SD) of the prior parameters, as well as SD, skewness and kurtosis of the posterior727

parameters, in normalized space. In the normalized parameter space, prior728
distributions are Gaussian.729

730
731

1)Prior distribution is Gaussian with a cutoff at 0 and 1 in model space. Shown is the 68.3 percentile732
range which is equivalent to 1 SD.733

734

735
736

parameter prior p0 posterior mean prior SD posterior SD skewness kurtosis

Vm
25 8.00E-06 1.59E-05 0.25 0.15 0.33 0.33

EVm 5.85E+04 5.54E+04 0.25 0.23 -0.07 -0.03

αi 4.00E-02 3.05E-02 0.25 0.08 0.30 -0.25

k25 1.40E-01 4.94E-02 0.25 0.07 0.28 0.29

Ek 5.10E+04 2.59E+04 0.25 0.17 -0.04 -0.01

fRd 4.20E-02 5.62E-02 0.25 0.20 -0.01 -0.04

ERd 4.50E+04 9.47E+04 0.25 0.09 -0.17 -0.02

fCi 6.70E-01 7.82E-01 0.241) 0.02 -0.28 0.30

cw 1.00E+00 9.26E-01 0.25 0.05 -0.33 0.10
ω 1.20E-01 9.27E-02 0.25 0.22 -0.11 -0.02

av 2.00E-01 1.03E-01 0.25 0.17 -0.27 0.07

as 5.00E-02 3.87E-02 0.25 0.22 -0.09 0.00

εs 6.40E-01 3.17E-01 0.25 0.07 -0.57 0.32

ga,v 2.43E-02 6.43E-03 0.25 0.19 -0.10 -0.20

αq 2.80E-01 1.60E-01 0.25 0.12 0.13 -0.14

Vm
25 2.90E-05 3.13E-05 0.25 0.18 -0.01 -0.12

EVm 5.85E+04 7.99E+04 0.25 0.26 -1.10 1.01

rJmVm 1.79E+00 1.89E+00 0.25 0.22 0.15 -0.18

Γ*
25 4.25E+01 4.33E+01 0.25 0.27 0.01 -0.16

KC
25 4.60E-04 4.56E-04 0.25 0.20 -0.23 0.20

EKc 5.94E+04 6.01E+04 0.25 0.27 0.06 0.03

KO
25 3.30E-01 3.31E-01 0.25 0.24 0.05 0.00

EKo 3.60E+04 3.77E+04 0.25 0.28 0.14 0.16

fRd 1.00E-02 9.69E-03 0.25 0.23 -0.01 -0.05

ERd 4.50E+04 4.35E+04 0.25 0.24 0.01 0.00

fR,leaf 5.00E-01 4.77E-01 0.25 0.23 0.01 0.11

Rhet
0 2.07E+00 1.77E+00 0.25 0.21 0.00 0.00

 κ 1.00E+00 9.91E-01 0.25 0.24 -0.01 -0.07

Q10 1.72E+00 2.11E+00 0.25 0.18 -0.21 0.22

wpwp 2.50E+00 1.98E+00 0.25 0.12 -0.55 0.54

fCi 8.70E-01 9.05E-01 0.201) 0.02 -0.11 -0.12

cw 1.00E+00 5.82E-01 0.25 0.08 0.02 -0.05
ω 1.20E-01 1.23E-01 0.25 0.26 0.03 0.06

av 2.00E-01 1.89E-01 0.25 0.24 -0.04 -0.02

as 5.00E-02 4.95E-02 0.25 0.25 -0.01 0.14

εs 6.40E-01 4.82E-01 0.25 0.13 0.16 0.32

ga,v 4.00E-02 2.92E-02 0.25 0.28 -0.39 0.71

model parameter normalized parameter
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Figure 1: Convergence of the Monte Carlo inversion, for the FIFE (left: a, c, e), and737

the Loobos site (right: b, d, e). a, b: Estimated mean of selected parameters depending738
on number of iterations; c, d: phase diagram of the two contributions to the total cost739

function, measuring deviation from prior parameters and between measured and740
modeled diagnostics (=fluxes), for sequences with varying starting points; e, f:741

Gelman’s reduction factor for the same parameters as above, and for two parameter742

products. The selected parameters are: the slowest converging, one fast converging,743
and the one most highly correlated with the first. Prior uncertainty of normalized744

parameters was 0.25.745
746

747

748
749

750

Figure 2: Prior and a posterior parameter values and uncertainties in normalized751
space. The boxes show means and one standard deviation of assumed prior parameters752

(SD = 0.1, 0.25, 0.5). Crosses show the posterior means, and error bars one standard753
deviation of the posterior parameters. Left: BETHY C4 version constrained with data754

from FIFE site; right: BETHY C3 version constrained with data from Loobos site.755

756
757

758
759

760

Figure 3: Relative reduction of uncertainty of parameter values. Zero or negative761
relative error reduction indicates that no information about a particular parameter762

could be gained, one would mean perfect knowledge of the inversion. Left: BETHY763
C4, FIFE site; Right: BETHY C3, Loobos site.764

765

766
767

768
769
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Figure 4: Probability distributions of selected parameters from FIFE (a) and Loobos770
(b–d). Comparison of importance sampling, approximating the true distribution, to the771
prior PDF and to posterior Gaussian PDF computed from mean and standard772

deviation. Additionally, the mean, standard deviation, skewness and kurtosis are given773
for the posterior distribution. Prior uncertainty: 0.25 in normalized parameter space.774

775

776
Figure 5: Cumulative NEE for two years, using the results from the inversion against777

seven days of NEE and LE, for the Loobos site. Green: prior uncertainty range,778

yellow: posterior uncertainty range using posterior mean and error covariance779
(Gaussian posterior PDF);red: posterior uncertainty range with full PDF; blue:780

measurements, dashed: missing data (NEE=0 assumed).781
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Appendix: The Biosphere Energy-Transfer Hydrology model (BETHY)787

788
Overview789

790
We use a process-based model of the coupled photosynthesis and energy balance791

system, the Biosphere Energy-Transfer Hydrology (BETHY) scheme, to simulate the792

exchange of CO2, water and energy between the plant canopy and the atmosphere.793
BETHY computes absorption of photosynthetically active radiation (PAR) in three794

layers, while the canopy air space is treated as a single, well mixed air mass with a795
single temperature. Evapotranspiration and sensible heat fluxes are calculated from796

the Penman-Monteith equation (Monteith 1965). Carbon uptake is computed with the797

model by Farquhar et al. (1980) for C3, and the one by Collatz et al. (1992) for C4798
plants. The stomata and canopy model of Knorr (2000) simulates canopy conductance799

in response to PAR; in the absence of water stress in such a way as to satisfy the800

demand for CO2. In water stressed situations, stomata are further closed until801
transpiration reaches a specific root supply rate that depends on soil moisture. The802

carbon balance is computed as plant and soil respiration subtracted from the803
photosynthesis rate to yield net CO2 fluxes. The full version of BETHY, described in804

Knorr (2000) and Knorr and Heimann (2001a), also contains submodels for soil water805

balance, snow, canopy and soil evaporation, and phenology, which are not used here.806
Instead, leaf area index and soil moisture are treated as external forcing data (elements807

of s in Equ. 1). The version of BETHY for C3 vegetation used here has 23 free808
parameters, while the C4 version has 14. Following is a description of all free model809

parameters and their meaning in the context of the model. Parameters have been810

marked as underlined mathematical symbols and are listed in Table 1, complete with811
their prior values. (Those that do not appear in one of the equations appear underlined812

in the text.)813
814

Photosynthesis815

816
For C3 vegetation, gross leaf CO2 uptake, A, is calculated as (cf. Farquhar 1980):817

818
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€ 

A =min[JC ,JE] (A1a)819

820
with821

822

€ 

JC = Vm
Ci −Γ*

Ci + KC (1+Ox /KO )
(A1b)823

824

  

€ 

JE =
α qIJm
Jm2 +α q

2

Ci − Γ*
4(Ci −2Γ*)

(A1c)825

826
A is gross photosynthesis, or gross primary productivity (GPP), I is absorbed PAR, Ci827

the leaf-internal CO2, and Ox the oxygen concentration (=0.21 mol(O2)/mol(air)). αq is828

the quantum efficiency of photon capture (mol(e-)/mol(photons)) and Vm the829
maximum carboxylation rate (in mol(CO2)m-2s-1), expressed as830

831

€ 

Vm =Vm
25 exp

EVm(Tk −298K)
RTk298K

 
 
 

 
 
 
exp k12

Λu +Λ l

2
 
 
 

 
 
 

(A2)832

833

with the activation energy EVm (in J mol-1). Λu and Λl are the LAI of the upper and834

lower bounds of the specific canopy layer under consideration, and k12 a leaf nitrogen835

scaling parameter set to 0.5/cos(θ12). θ12 is the solar zenith angle at noon.836

837
Further, Jm, the maximum electron transport rate (same units as Vm), is expressed as838

839

€ 

Jm = rJmVm ∗Vm
25 ∗

Tc
25°C (A3)840

841

This rate, at standard temperature, is assumed proportional to Vm with an additional842
proportionality constant (e.g. Wullschläger et al. 1993). Tc is the canopy temperature843

in °C, Tk the canopy temperature in Kelvin, and R the universal gas constant (8.314844

JK-1mol-1). The CO2 compensation point without dark respiration, Γ*, follows from:845

846

€ 

Γ* = Γ*
25 ∗

Tc
25°C (A4)847
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848

The two Michaelis-Menten constants for carboxylation and oxygenation, Kc and Ko,849
respectively (in J mol-1), have a temperature dependence based on Arrhenius’ equation850

similar to Vm:851
852

€ 

Kc =KC
25 exp

EKc (Tk − 298K)
RTk298K

 
 
 

 
 
 

(A5)853

and854

€ 

Ko =KO
25 exp

EKo(Tk − 298K)
RTk298K

 
 
 

 
 
 

(A6)855

856

For C4 photosynthesis, the model of Collatz et al. (1992) is used with:857
858

€ 

A =min[Je,Jc,Ji] (A7a)859

860
with861

862

€ 

Je =Vm (A7b)863

864

€ 

Jc = kCi (A7c)865

866

€ 

Ji =α i I (A7d)867

868

Vm is computed from Equ. A2, αi is the C4 quantum efficiency (in mol(CO2)/869

mol(photons)), and k is the C4 CO2 specificity (in mol(CO2)m-2s-1), with870
871

€ 

k = k 25 exp
Ek(Tk −298K)
RTk 298K

 
 
 

 
 
 

(A8)872

873
Photosynthesis rates are computed across three different layers of the canopy, each874

with its own value for I and Vm, and thus A. The sum over the three layers yields Ac,875

the canopy gross photosynthesis.876
877
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Carbon balance878

879
To compute net CO2 uptake by the leaves, leaf or “dark” respiration, Rd, is subtracted880

from A to yield net leaf CO2 uptake, An, with881
882

€ 

An = A− Rd (A9)883

884
and885

€ 

Rd = fRdVm
25 exp

ERd (Tk −298K)
RTk298K

 
 
 

 
 
 

(A10)886

887
Summation of Rd across canopy layers yields Rd,c, the canopy dark respiration.888

889

There are two standard values for fRd, one for C3 and one for C4 vegetation. Dark890
respiration is assumed to be a constant fraction of total plant, or autotrophic891

respiration, Raut, such that892

€ 

Raut =
Rd,c
fR,leaf

(A11)893

894

fR,leaf stands for the fraction of total plant respiration contributed by the leaves. This895
formulation differs from the form chosen in the original description of BETHY, which896

contains an additional term for “growth respiration” assumed proportional to net897
primary productivity. Such an implicit formulation yields a sum of two terms, one of898

which is proportional to Raut of Equ. A10, the other to GPP. The above formulation899

was chosen for simplicity in order to avoid unnecessary co-dependence of parameters.900
901

For soil (excluding root), or heterotrophic respiration, Rhet, we use an exponential902
temperature dependence on air temperature (Ta, in °C) times a soil water factor (with903

zero respiration at zero plant-available soil moisture):904

905

€ 

Rhet = Rhet
0 w

wm

 

 
 

 

 
 

κ

Q10
Ta /10°C (A12)906

907
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wm is the plant available soil water content at field capacity (% volume), and Rhet
0 soil908

respiration at 0°C and with soil water content at field capacity. w is the plant-available909
soil water content (% volume) and is computed from total soil moisture, wtot, as910

w=max{wtot, wm}- wpwp. wpwp, is the soil water content at the permanent wilting point,911
which is used as another free parameter in the case that total soil water content is used912

as input.913

914
Finally, the net carbon flux of the site is given by915

916

€ 

FCO2 = A − Raut − Rhet (A13)917

918

919
Stomatal control920

921

The model of stomatal control follows the assumption that, in the absence of water922
stress, leaf-level photosynthesis operates at a standard ratio between the leaf-internal923

CO2 concentration, Ci, and the CO2 concentration of free air, Ca. This value is given924

by925
926

€ 

Ci,0 = fCiCa (A14)927

928
with two values for fCi, one for C3 and one for C4 vegetation. In order to determine929

the demand for CO2 uptake, An is first calculated as An,0 for Ci = Ci,0, and Tc= Ta.930

Inversion of the diffusion equation for CO2 at the stomatal boundary is then used to931
compute stomatal conductance in the absence of water stress at each canopy layer (in932

m/s):933
934

€ 

gs,0 =
1.6An,0
Ca −Ci,0

RTk
p

(A15)935

936

p is air pressure (in Pa). If at the time of highest demand, D, transpiration rates exceed937
a root water supply rate, S, stomatal conductance at each canopy layer is reduced938

according to939
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940

€ 

gs =
gs,0

1+ beDa
(A16)941

942
by adjusting be such that S=D. Da is the vapor pressure deficit of the free air. This943

supply rate is taken as944

945

€ 

S =cw
w
wm

(A17)946

947

Next, the canopy temperature, Tc, is computed consistent with the energy balance after948

integrating gs over the canopy to obtain the canopy conductance used in the Penman-949
Monteith equation (see below). Then, the photosynthesis model is run again, but at a950

fixed stomatal conductance, gs, obtained from Equ. A16, which yields the final gross,951
A, and net photosynthesis rate, An.952

953

Energy and radiation balance954
955

PAR absorption is calculated according to the two-flux scheme by Sellers (1985) with956
three vertical layers of equal leaf area index (LAI). The diffuse fraction of PAR is957

calculated according to a procedure by Weiss and Norman (1985). Leaf-angle958

distribution is assumed to be uniform, and the only free parameters for this scheme is959
ω, the leaf single-scattering albedo.960

961

To determine evapotranspiration rates from the Penman-Monteith formula, BETHY962
computes net radiation balance of the canopy, Rn,c, according to the following963

equation:964

965

€ 

Rn,c = (1− tl ,v) (ε a −ε sfc )σTK,a
4 −G[ ]− 1− av − as( ) fPARRS (A18)966

967
εa and εsfc=0.97 are sky and surface emissivity, respectively, TK,a air temperature in968

Kelvin, σ=5.6703×10-8 Wm-2K-4 the Stefan-Boltzmann constant, and tl,v the longwave969

transmissivity of the vegetation, assumed tl,v=fc exp(-0.5Λ/fc)+(1–fc). fc is the fraction970
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of soil covered by vegetation. For the shortwave part, RS is incoming solar radiation971

(Wm-2), fPAR is the fraction of PAR absorbed by the vegetation and computed by the972
two-flux scheme, av the albedo of the vegetation at the limit of high LAI and closed973

canopy, and as the amount of solar radiation absorbed by the soil under the canopy at974
the same limit. The sky emissivity is computed from975

976

€ 

ε a =ε s
ea
TK,a

 

 
 

 

 
 

1/ 7

(1+0.22nc
2 ) (A19)977

978

with the cloud cover fraction nc. If no separate radiation data for PAR and solar979
radiation are available, RS is calculated from PAR according to Weiss and Norman980

(1985).981
982

The aerodynamic exchange between the canopy and the free air is described as983

984

€ 

Ga = ga,v * u (A20)985

986

with wind speed, u, and a proportionality factor serving as a free model parameter.987
Wind speeds below 1 m/s are uniformly set to 1 m/s to avoid unrealistically high988

canopy temperature under conditions of extremely still air and high incoming989

radiation. The prior value of ga,v  is determined from the following formula:990

€ 

ga,v =
k2

ln
href
rzhc

+az
 

 
 

 

 
 

 

 
 

 

 
 

2  (A21)991

992
href is the reference height above canopy (10 m), hc the canopy height, k=0.41, rz=0.1993

and az =1.994
995

996




