Carbon cycle data assimilation using satellite-derived FAPAR and a revisited phenology scheme for global applications

Wolfgang Knorr (1), Thomas Kaminski (2), Marko Scholze (1), Bernard Pinty (3,5), Nadine Gobron (3), Ralf Giering (2), and Pierre-Philippe Mathieu (5)

(1) Dept of Earth Science, University of Bristol, UK, (2) FastOpt GmbH, Hamburg, Germany, (3) European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Global Environment Monitoring Unit, Italy, (4) European Space Agency, ESRIN, Frascati, Italy, (5) Seconded to the Earth Observation Directorate, ESA-ESRIN, Frascati, Italy

Problem Statement

- Satellite observations of the plant absorbed fraction of photosynthetically active radiation (FAPAR) are available for many years globally, and through an appropriate model may provide an indirect constraint on carbon and water fluxes
- Predictive models of the terrestrial biosphere are needed that simulate FAPAR, water and carbon fluxes. This requires a (sub-) model of leaf phenology of all major global biomes.
- Challenge is to design a terrestrial model such that:
 - its process parameters can be estimated by means of a gradient-based optimisation algorithm, which requires smooth dependency on process parameters
 - it satisfies **simultaneously multiple observational constraints**

Assimilation of MERIS FAPAR at site scale

- **Revised original phenology** scheme to render the model suitable for gradient-based optimisation (e.g. avoid sudden changes of leaf status by allowing spatial variability within a grid cell).
- Assimilation of MERIS FAPAR product at seven sites simultaneously.
- A single set of process parameters to match observations over all sites composed of a mix of seven Plant Functional Types (PFTs).
- Optimization of :
 - 14 parameters related to phenology
 - 24 related to photosynthesis not all are PFT specific [LAI_{max}]
 - additional parameters with no impact on FAPAR [Q10]

Assimilation of MERIS FAPAR at site scale

- Gradient information from automatically generated adjoint model code (using the automatic differentiation tool TAF)
- At optimum, curvature of cost function (automatically generated 2nd derivative) yields **posterior uncertainty** of parameters
- Parameter uncertainties are projected onto **diagnostic quantities** (e.g. carbon fluxes) using a model linearization around optimum.

The Carbon Cycle Data Assimilation System at site scale

The selected sites

	X		×	
Site	Country	Latitude	Longitude	
Sodankylä	Finland	67.3619°N	26.6378°E	Boreal evergreen forest
Zotino	Russia	$60.8008^{\circ}N$	89.2657°E	Boreal mixed forest
Aardhuis	Netherlands	52.2381°N	5.8672°E	C3 grassland
Loobos	Netherlands	52.1679°N	5.7440°E	Temperate pine forest
Hainich forest site	Germany	51.0793°N	10.4520°E	Temperate deciduous forest
Manaus	Brazil	2.5892°S	$60.1311^{\circ}W$	Tropical rainforest
Maun	Botswana	19.9155°S	23.5605°E	Tropical savanna
Hainich grass site	Germany	51.0199°N	10.4348°E	C3 grassland

Assimilation of MERIS FAPAR at site scale

Dotted: prior; solid line: posterior FAPAR; crosses with error bars: MERIS FAPAR.

FastOpt

esa

Reduction in Uncertainty of NPP

Site	prior NPP	post. NPP	rel. change	prior unc.	post. unc.	unc. reduction [%]
Sodankylä	137	151	0.68	112	98	5
Zotino	201	216	0.54	28	28	0
Aardhuis	853	842	-0.07	164	101	38
Loobos	449	424	-0.40	62	59	5
Hainich forest	689	657	-0.29	112	98	13
Manaus	1465	964	-1.96	255	168	34
Maun	350	346	-0.10	50	46	8
Hainich grass	619	786	0.97	172	89	48

Prior: without FAPAR assimilation*Posterior*: after FAPAR assimilation*NPP*: Net Primary Productivity

Assimilation of MERIS FAPAR and atmospheric CO₂

Perform first **simultaneous** assimilation of two data streams in fast global test configuration:

- Very coarse 8 x 10 degree global grid
- Monthly CO₂ from two sites: MLO and SPO over five years (120 observations)

1st global results: prior

1st global results: satellite

1st global results: posterior

1st global results: Difference posterior - prior

1st global results: Fit to atmospheric CO₂

Summary

- Simultaneous assimilation of MERIS FAPAR product at six sites with revised phenology scheme
- Impact of observations quantified by uncertainty reduction
- First tests indicate that simultaneous assimilation of global scale MERIS FAPAR and atmospheric CO₂ is feasible

