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Objectives

 Demonstrate the assimilation of optical
reflectance data from satellites into a new

generic model of leaf phenology (Fig. 1)

e Assess the reduction 1n uncertainty of carbon

fluxes after simultaneous assimilation of
satellite-data at multiple sites

 Explore suitability for global-scale applications
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Figure 1: Revised CCDAS scheme.

Table 1: The 14 parameters for the new phenology scheme as optimised in CCDAS. An

additional 24 Parameters were optimised from the original CCDAS,
reductions of up to 7%

with uncertainty

Parameter PFTs' Prior value Posterior value Uncert. reduction | %]

o Efficient algorithm finds optimum for "A maximum LAI all 5.00+0.25 4.36+0.23 6
. . T, temperature threshold 4,5 10.00+0.50 9.344+0.27 46

all 6 sites simultaneously after ~60 T, ] 6.00+0.50 8.11+0.50 0

: : duc; dfi /= 9,10 2.00+0.50 1.53+0.41 18
1terations, producing goo tto T, spatial variability of 7, 1,2,.4,.5, 8 2.00+0.10 2.044+0.10 I

: T, 9, 10 0.50+0.10 0.52+0.10 0

observed FAPAR (Fig. 1) (. day length threshold 4,5,8 10.50+0.50 13.73+0.43 14

: : t, spatial variability of 7. 4,5, 8 0.50+0.10 0.46+0.10 0

* For 6 sites, FAPAR data constrain ¢ see Equ. (1) all 0.50+0.10 0.52+0.10 0
ki=1/t; see Equ. (1) all exc. 5 0.100=0.050 0.058+0.012 76

most phenology parameters (Table 1). k;=1/t, see Equ. (1) 5 3.0+1.5x107 3.3+8.9x10™ 40
.. : Ty water-limited leaf longevity 1 360180 1114+192 61
 Limited constraint for parameters . 2 ) 50+25 112419 62
Ty 9, 10 50+25 28+12 9

related to photosynthesis (=7%).

 Only small constraint on carbon

fluxes (Fig. 3).

Outlook

FAPAR

e Algorithm fast enough for
global applications.

* Since one set of parameters 1S
used across multiple sites,

adding more grid cells will

FAPAR

Increase constraint on

parameters from satellite data.

e Expect significant constraint on
carbon fluxes if model is applied
globally.

FAPAR
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'1: tropical evergreen trees, 2: tropical drought-deciduous trees; 4: temperate cold-deciduous trees: 5:
evergreen conifers; 8: deciduous understorey shrub; 9: C3 grass; 10: C4 grass. The PFTs exist at the
following sites: Sodankyla (5, 4), Zotino (5, 4), Loobos (35, 8, 9), Hainich (4, 9), Manaus (1,
Maun, Botswana (2, 10).
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Figure 2: a priori (dotted) and a posteriori (solid) FAPAR simulated
with BETHY at the 6 sites. Satellite data are shown with error bars.

Methods

 Extend the Carbon Cycle Data Assimilation
System (CCDAS)! to include hydrology and
leaf phenology

* Incorporate satellite data of the Fraction of
Absorbed Photosynthetically Active

Radiation (FAPAR) from ESA’s MERIS?
instrument for 6 sites.

e Optimise process parameters of global
vegetation model BETHY? for best
agreement of model and satellite FAPAR.

 Use local information at the optimum to
infer a posteriori uncertainties of parameters
and compare to a priori uncertainties.

 Project a priori and a posteriori uncertainties
from parameters to carbon fluxes.

Generic Phenology
Model

D = A, - A - 2

(I-7f) (Equ.1)

e [eaf areaindex (LAI): A

e Leaf sprouting rate: &

 Leaf shedding time: T,

e Water-limited LAIL: A,
 Fraction of plants in growth phase: f
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Figure 3: a priori (black) and a posteriori (red)
NPP simulated with BETHY , with error bars.
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