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[1] Photosynthesis by terrestrial plants is the main driver of the global carbon cycle, and
the presence of actively photosynthesizing vegetation can now be observed from space.
However, challenges remain when translating remotely sensed data into carbon fluxes.
One reason is that the Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR), which documents the presence of photosynthetically active vegetation, relates
more directly to leaf development and leaf phenology than to photosynthetic rates. Here,
we present a new approach for linking FAPAR and vegetation‐to‐atmosphere carbon
fluxes through variational data assimilation. The scheme extends the Carbon Cycle Data
Assimilation System (CCDAS) by a newly developed, globally applicable and generic leaf
phenology model, which includes both temperature and water‐driven leaf development.
CCDAS is run for seven sites, six of them included in the FLUXNET network.
Optimization is carried out simultaneously for all sites against 20 months of daily FAPAR
from the Medium Resolution Imaging Spectrometer on board the European Space
Agency’s ENVISAT platform. Fourteen parameters related to phenology and 24 related to
photosynthesis are optimized simultaneously, and their posterior uncertainties are
computed. We find that with one parameter set for all sites, the model is able to reproduce
the observed FAPAR spanning boreal, temperate, humid‐tropical, and semiarid climates.
Assimilation of FAPAR has led to reduced uncertainty (by >10%) of 10 of the 38
parameters, including one parameter related to photosynthesis, and a moderate reduction in
net primary productivity uncertainty. The approach can easily be extended to regional or
global studies and to the assimilation of further remotely sensed data.
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1. Introduction

[2] The terrestrial biosphere does not only respond to
climate fluctuations and change, it is an active part of the
Earth’s climate system. By taking up or releasing carbon, it
directly impacts on the levels of CO2 in the atmosphere,
influencing climate [Friedlingstein et al., 2006]. Therefore,
understanding how CO2 fluxes between the atmosphere and
the terrestrial biosphere respond to interannual fluctuations
of today’s climate is crucial for sound projections of future
climate change [Ciais et al., 2005; Knorr et al., 2005b; Zeng
et al., 2005]. Capturing changes of the terrestrial biosphere
by satellites is an especially interesting method because of
its global coverage. The presence of healthy vegetation can

be captured well from space, because it exhibits a strong
contrast in reflectance between the visible and the near‐
infrared part of the solar spectrum [Verstraete et al., 1996].
This feature is robust across all land plants because it has its
roots in an adaptive mechanism: visible light is photosyn-
thetically active, while near‐infrared light is not, and there-
fore its absorption is avoided to reduce overheating and
transpirational loss [Jones, 1983]. This robustness of spectral
features has led to the design of various vegetation indices
[Deering et al., 1975; Verstraete and Pinty, 1996; Huete,
2007], but the quantity best related to the phenomenon just
discussed is the Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR). In the context of this study, it is
defined as the amount of radiation in the photosynthetically
active range (0.3–0.5mm) absorbed by healthy leaves or
conifer needles divided by the total amount of radiation ab-
sorbed at the surface (i.e., one minus albedo in that spectral
range) [Pinty et al., 2009]. Thus, an optically deep canopy
composed entirely of leaves would be able to reach a theo-
retical maximum close to 1, while no vegetation always
amounts to a value of 0.
[3] This study is based on the assumption that agreement

between satellite‐derived FAPAR and FAPAR computed by
the vegetationmodel assures that, given the same illumination
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conditions, the modeled photon absorption by leaves is
consistent with what was estimated during the satellite
retrieval. However, it must be borne in mind that the proper
interpretation of FAPAR data requires understanding of the
various physical processes that impact the reflected light on
its course through the atmosphere and the canopy before it
arrives at the sensor. This understanding has been embedded
in radiative transfer models that are then used in inversion
methods to retrieve vegetation parameters from remote
sensing data. Various mathematical tools have been devel-
oped that minimize the effects due to the scattering by
atmospheric particles, the brightness of soils and the
changing geometry of illumination and observation.
[4] Current operational remotely sensed FAPAR products

are mainly derived from medium‐resolution satellite instru-
ments to provide regional and global operational FAPAR
products at a variety of spatial and temporal scales. They have
been designed for various sensors, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS [Knyazikhin
et al., 1998a]), the Multiangle Imaging Spectro‐Radiometer
(MISR [Knyazikhin et al., 1998b]), the Sea‐viewing Wide
Field‐of‐view Sensor (SeaWiFS [Gobron et al., 2002]) and
the Medium Resolution Imaging Spectrometer (MERIS
[Gobron et al., 2008]), as part of various projects, such as
LANDSAF [Roujean and Bréon, 1995] and CYCLOPES
[Baret et al., 2007], and as a derived product of broadband
surface albedo [Pinty et al., 2007].
[5] FAPAR products have been used to monitor large‐

scale changes in vegetation status [Gobron et al., 2005,
2010] and have then been related to large‐scale changes in
land‐atmosphere CO2 fluxes via algorithms for net primary
productivity (NPP) [Cao et al., 2004] or by validation with
results from vegetation modeling [Zeng et al., 2005; Knorr
et al., 2005a, 2007]. The latter approach raised the prospect
of eventually identifying all major processes at the ecosys-
tem level that are responsible for the climate response and
including them in an assimilation system, opening up the way
for improving future assessments of climate change impacts.
This has been taken a step further by the Carbon Cycle Data
Assimilation System (CCDAS [Rayner et al., 2005]). Here,
observational evidence for interannual changes in atmosphere‐
biosphere carbon fluxes is assimilated into a terrestrial veg-
etation model through constraining prior uncertainty ranges
of process parameters. This approach allows using data that
are only rather indirectly related to the process studied, in the
case cited concentrations of atmospheric CO2 at remote flask
sampling sites, which would normally exclude them from
being used for anything but validation of model results.
[6] This advantage of using indirect information for

constraining mathematical process descriptions is also valid
for the use of FAPAR for constraining rates of carbon fluxes
and even photosynthesis. Even though FAPAR has been
used in the past to infer NPP by multiplying with incident
photosynthetically active radiation (PAR) and some effi-
ciency factor [Monsi and Saeki, 1953; Prince, 1991; Ruimy
et al., 1994], the presence of leaves is determined not by the
rate of photosynthesis, but by the adaptation of the plant to
environmental stresses such as frost or drought [Woodward,
1987], a process described as leaf phenology. Therefore,
CCDAS used FAPAR not as an input quantity for an effi-
ciency NPP model, but as a constraint on a small number of
model parameters independently for each grid cell of the

global model. This has been carried out in a first assimila-
tion stage [Knorr and Schulz, 2001], which was not
included in the overall estimation of parameter uncertainties
[Rayner et al., 2005] and their propagation to diagnostic and
prognostic uncertainties of carbon fluxes [Scholze et al.,
2007].
[7] The main aim of the present study is therefore to

report on progress in the further development of CCDAS,
where the assimilation of FAPAR data has been fully inte-
grated into the variational stage of the system. What is
meant here is that a large set of parameters is optimized for a
multitude of locations simultaneously by minimizing a
global cost function, and the second derivative of the cost
function is used to infer improvements in parameter accu-
racy from the prior to the posterior estimate. Details of the
approach are given in section 2. The wider aim is to assess
in more general what information is added by including
FAPAR into a modeling framework aimed at simulating
NPP in addition to information from climate, land use and
soils data. This second aim is motivated by the widely used
efficiency approach for modeling carbon fluxes from FAPAR
[Field et al., 1998; Zhao et al., 2005; Turner et al., 2009] (i.e.,
where FAPAR is used as an input parameter and the models
therefore can run only for time periods where such observa-
tions are available), and by the existence of satellite‐derived
net (NPP) and gross primary production (GPP) products
[Zhao et al., 2005; Sims et al., 2008].

2. Description of CCDAS

[8] The setup, data and models used in CCDAS have been
described by Scholze [2003], Rayner et al. [2005], and
Scholze et al. [2007] to which we refer for details regarding
the formulation. In brief, BETHY, the core CCDAS model,
is a process‐based model of the terrestrial biosphere [Knorr,
2000]. It simulates carbon assimilation and plant and soil
respiration embedded within a full energy and water balance
and phenology scheme. BETHY is a fully prognostic model,
and is thus able to predict the future evolution of the ter-
restrial carbon cycle under a prescribed climate scenario.
Global vegetation is mapped onto 13 plant functional types
(PFT) based on Wilson and Henderson‐Sellers [1985] (see
Table 1 for the PFTs covered by this study). Each grid cell
of arbitrary size can contain up to three different PFTs, with
the amount specified by their fractional coverage. As men-
tioned, all previous CCDAS studies have used a two‐stage
inversion procedure, where the first stage uses the full BETHY
model to assimilate fields of FAPAR derived from satellite
data, thereby optimizing parameters controlling soil mois-
ture and phenology. The second stage uses a reduced version
of BETHY with no phenology scheme and no water balance,
to assimilate atmospheric CO2 concentration observations
from a global station network [GLOBALVIEW‐CO2, 2004].
This simplified form of the model uses the leaf area index
(LAI) and plant available soil moisture fields provided by
the first stage after optimization.
[9] The assimilation of FAPAR data in CCDAS [Knorr

and Schulz, 2001] is based on minimization of the differ-
ence between satellite and model‐derived FAPAR. Within
BETHY, FAPAR is calculated as the vertical integral of
absorption of photosynthetically active radiation by healthy
green leaves divided by the difference between the incoming
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and outgoing radiation flux at the top and bottom of the
canopy. This integration is carried out by a two‐flux
scheme, which takes into account soil reflectance, solar
angle and amount of diffuse radiation. Equating satellite and
model FAPAR means that given the same illumination
conditions, the same number of photons enter the photo-
synthetic mechanism of the vegetation, even if some of the
assumptions differ between BETHY and the model used to
derive FAPAR [Gobron et al., 2000]. It also means that
FAPAR in the model is defined only with respect to the
absorption by photosynthesizing plant parts [Pinty et al.,
2009], which is consistent with the definition used for
deriving the MERIS FAPAR product.
[10] The second stage then allows the rigorous propaga-

tion of uncertainties as described by Kaminski et al. [2002,
2003] and Rayner et al. [2005] and demonstrated by
Kaminski et al. [2002], Rayner et al. [2005], and Scholze et
al. [2007]. It uses a probabilistic framework, described in
detail by Tarantola [1987] or Enting [2002], who also gives
an exhaustive overview on applications to biogeochemistry.
[11] The state of information on a specific physical

quantity is conveniently formulated in terms of a probability
density function (PDF). The prior information is quantified
by a PDF in the space of control variables (here: process
parameters of BETHY and the initial atmospheric CO2

concentration), and the observational information by a PDF
in the space of observations. Their respective means are
denoted by x0 and d and their respective covariance matrices
by C0 and Cd. Note that Cd has to account for uncertainties
in the observations and uncertainties from errors in simu-
lating their counterpart. We approximate the posterior PDF
by a Gaussian with mean xpost and covariance matrix Cpost.
The mean is the minimum of the following cost function:

JðxÞ ¼ 1

2
MðxÞ � dð ÞTCd

�1ðMðxÞ � dÞ þ ðx� x0ÞTC0
�1ðx� x0Þ

h i
;

ð1Þ

where M(x) denotes the model operated as a mapping of the
control variables onto simulated counterparts of the ob-
servations. In practice, the minimization of J is performed
iteratively by a gradient algorithm, and the search direction
is determined via the gradient of J, evaluated by adjoint
code. The use of adjoint model code greatly enhances
computational performance of the nonlinear optimization.

[12] We approximate the covariance matrix of the model
parameters as

Cpost
�1 ¼ HðxpostÞ; ð2Þ

where H(xpost) denotes the Hessian matrix of J, i.e., the
matrix composed of its second partial derivatives @2J

@xi@xj
.

Since the dimension of xpost never exceeds a few hundred, it
is computationally feasible to evaluate the full Hessian by
running efficient second derivative code.
[13] The inverse step is followed by a second step, the

estimation of a diagnostic or prognostic target quantity y.
The corresponding PDF is approximated by a Gaussian with
mean

y ¼ NðxpostÞ ð3Þ

and covariance

Cy ¼ N0ðxpostÞCpostN
0ðxpostÞT þ Cy;mod; ð4Þ

where N(x) is the model operated as a mapping of the
control variables onto the target quantity. In other words, the
model is expressed as a function of the vector of its para-
meters x and returns a vector of quantities of interest, for
example the rate of photosynthesis at some desired time
step. N′(xpost), the Jacobian matrix of N, is its linearization
around xpost, and Cy,mod is the uncertainty in the simulation
of y resulting from errors in the model. In the hypothetical
case that the model was perfect, only the first term would
contribute to Cy. On the other hand, if the control variables
were known to perfect accuracy, only the second term
would contribute to Cy.
[14] The minimization of equation (1) and the propagation

of uncertainties are implemented in a normalized parameter
space with Gaussian prior. The normalization is such that
parameter values are specified in multiples of their standard
deviation, i.e., C0 is the identity (for details, see Kaminski et
al. [1999] and Rayner et al. [2005]). We assume that Hes-
sian Eigenvalues less than 1 reflect small‐scale noise. To
remove this noise Hessian Eigenvalues around 1 are set to 1
as in the procedure detailed by Rayner et al. [2005].
[15] The basic setup of the previously used and the newly

developed CCDAS are shown in Figure 1. The previous
scheme consists of two stages, and satellite‐derived FAPAR
are only assimilated in Stage 1. Since uncertainties of
parameters and diagnostic quantities (such as NPP) are only
evaluated in Stage 2, no information on the reduced
uncertainty after assimilating FAPAR data is available. The
purpose of this two‐stage process is to reduce computational
demand for the optimization in Stage 2, which is run only
with part of the full BETHY model of Stage 1. Instead, the
state variables of the phenology and hydrology model are
passed from Stage 1 to Stage 2, where the reduced “carbon‐
BETHY” lacks those two components. The quantity
assimilated in Stage 2 is atmospheric CO2, which requires
an atmospheric transport model (TM2) as well as additional
background CO2 fluxes. Those background fluxes, which
enter directly into TM2, are not required for the new setup,
but would be if this were applied at the global scale with
assimilation of CO2 concentrations. This is currently under
development.

Table 1. List of the Plant Functional Types With Their Corres-
ponding Numbers in the Global Version of BETHY, and the Asso-
ciated Phenologya

PFT Description Phenology

1 tropical broadleaf evergreen tree warm‐evergreen
2 tropical broadleaf deciduous tree warm‐deciduous
4 temperate deciduous tree cold‐deciduous
5 evergreen coniferous tree cold‐evergreen
8 deciduous understorey shrub cold‐deciduous
9 C3 grass grass
10 C4 grass grass

aPFT, plant functional type.
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[16] FAPAR in the new setup is directly assimilated into
“CCDAS BETHY”, which includes the hydrology model of
the previous full BETHY (with some slight modification,
see below), and the newly developed phenology model
which replaces the one of the full BETHY [Knorr, 2000].
Another modification, which is not depicted in Figure 1, is
that BETHY can now be switched between modes where it
runs for a multitude of sites simultaneously (as in this study,
see section 4.3), globally, or simultaneously at sites and
globally.
[17] By including the FAPAR assimilation into the pre-

vious Stage 2, the derivative‐based framework can now be
used to propagate uncertainties in observed FAPAR back
to uncertainties in control variables and then forward to
uncertainties in target quantities. This change, however,
requires some modification to the model as it was present in
full BETHY, which is the reason why a new phenology
scheme had to be developed. The requirement is that the
simulated FAPAR (and, with it, the cost function in equation
(1)) and the carbon fluxes (see equation (3)) are at least
twice differentiable functions of all process parameters. As it
is explained below, this was not the case for the phenology
scheme of the previous full BETHY. All derivative code of
Stage 2 or the new CCDAS is generated from the model
code by the automatic differentiation tool Transformation of
Algorithms in Fortran (TAF) [Giering and Kaminski, 1998].
[18] The following changes to the BETHY version of

Knorr [2000] were necessary: First, the phenology model
was replaced by a new scheme described in section 3.
Second, the soil evaporation model was simplified such that
soil evaporation, Es, happens at the following rate:

Es ¼ Es;pot � ws=ws;max; ð5Þ

where Es,pot is the potential rate determined by the net
radiation at the soil surface, ws the amount of water in a
second soil water bucket, and ws,max its maximum value.
The modified BETHY works with two overlapping buckets,
both of which have exactly the same inputs and outputs, but
the shallower bucket, which overflows earlier, determines
soil evaporation via equation (5), whereas the original,
deeper bucket (maximum value Ws,max) determines transpi-
ration rates. We set ws,max to the lower of 5 mm and Ws,max

(see section 4.2). Third, the size of the large bucket is redis-

tributed between tree/shrub and herbaceous PFTs such that
the averageWs,max of the herbaceous PFTs at each grid cell is
30% of the average of the tree PFTs.

3. A Generic Global Phenology Scheme

[19] The purpose of this section is to explain the devel-
opment of a new generic phenology scheme that captures all
major phenology types of the global terrestrial biosphere
with one set of equations. Its parameters are described in
Table 2. Differences between functional types are formu-
lated entirely through differences in parameters, as shown in
Table 3. Other required features of the scheme are explained
next.
[20] The remainder of this section is laid out as follows:

section 3.1 explains the consequences of using the deriva-
tive approach for the design of the phenology scheme.
Section 3.2 explains the approach to subgrid variability
necessary to ensure differentiability, and introduces para-
meters for temperature and light dependent growth triggers.
These are discussed in detail in section 3.4, following
section 3.3, which introduces the differential equation
describing the time evolution of the LAI. Finally, section 3.5
discusses water and other limitations and their implemen-
tation via a maximum LAI, with a single parameter allowing
for different water‐use strategies between PFTs.

3.1. Requirements

[21] Currently available phenology schemes for global
vegetation models have some issues that make them
unsuitable for use in CCDAS. Firstly, the present phenology
scheme of BETHY relies heavily on NPP to determine LAI
under drought conditions [Knorr, 2000]. Several tests with
CCDAS have shown that this leads to oscillations around an
optimal point where LAI and NPP are in equilibrium. Those
oscillations then cause sudden jumps in the cost function
with extremely small changes in the control parameters. An
alternative approach using soil water content directly to
drive drought‐limited LAI was not considered, because the
amount of soil water sufficient to support a certain LAI
depends on the local evaporative demand.
[22] More complex schemes such as the phenology

scheme of SILVAN [Kaduk and Heimann, 1996] or logro‐P
(C. Reick, personal communication, 2010, implemented by

Figure 1. Sketch of the (left) previously used and (right) new CCDAS structures: ovals represent input
and output data, and gray boxes represent calculation steps. Shown in bold are the state variables of the
phenology and hydrology scheme. Diagnostics are quantities of interest such as carbon fluxes computed
by CCDAS. Uncert., uncertainty; param., parameters.
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Raddatz et al. [2007]) use a number of switches, or “triggers”,
to change the state of the vegetation between dormant, growth
or senescent. With such a formulation involving discrete state
variables, however, the cost function in equation (1) cannot
be differentiated where one of those states changes. One goal
of the present work is therefore to find a globally applicable
but reasonably simple phenology scheme that should be
differentiable everywhere with as few as possible sudden
changes.
[23] In the following we present such a newly devised

phenology scheme with state variables that depend on the
process parameters in differentiable form. The complexity of
the formulation and the number of process parameters have
been kept low. Nevertheless, the scheme allows for both
temperature and water limitation and is able to represent the
major global phenology types, namely cold‐deciduous,
warm‐deciduous, cold‐evergreen, moist‐evergreen, grass
and annual crop. This constitutes an important advance over
similar global schemes that have been derived from
remotely sensed information, but either consider only tem-
perature limited phenology, or use only soil moisture
without considering evaporative demand [Botta et al.,
2000].

3.2. A General Spatial Approach

[24] The phenology models cited above use triggers that
set vegetation instantly from a dormant to an active, and
again to a senescent stage. However, in reality over an area
the size of a model grid cell, such transitions will happen at
different times because either the environmental conditions
or the exact point of the trigger, or both vary. Apart from
being unrealistic, the sudden change of state will create a
nondifferentiable dependency of the state variables on the
control parameters (see section 3.4).
[25] Here we assume that spatial variability within a grid

cell is entirely the result of differences in the threshold
parameter defining the trigger, effectively subsuming impacts
of small‐scale climatic variability under the same. This
parameter is assumed to have a Gaussian probability dis-
tribution in space. There are two of those threshold para-
meters: ~T� and~tc. It is important to note that the transition to
the active state requires both ~T� > T and ~tc > td, where T is a
temperature and td length of day. The tilde (∼) denotes that
these are parameters or state variables of individual plants
within a grid cell. As shown next, these parameters are
integrated over their probability distribution, replacing the
integration across the space of the grid cell.

[26] Before proceeding to the spatial integration, we
define a generic differential equation in time for the LAI of
individual plants, ~L (t):

d~LðtÞ
dt

¼ f1; if T � ~T� and td � ~Tc;
f2; else;

�
ð6Þ

where f1 and f2 are some arbitrary functions of the state of
the vegetation.
[27] In this discrete formulation, the response of LAI to

changes in ~T� or ~tc is usually nondifferentiable at the
threshold. The continuous version of equation (6), which is
valid for the spatially integrated LAI, L(t), resolves to an
integral over the Gaussian probability density functions
(PDF), p and q, of the two trigger variables:

dLðtÞ
dt

¼ f1

Z T

�1

Z td

�1
pð~T�Þqð~tcÞd~T�d~tc

þ f2 1�
Z td

�1

Z td

�1
pð~T�Þqð~tcÞd~T�d~tc

� �
: ð7Þ

The spatial PDF p is characterized by a mean T� and its
standard deviation Tr, while the mean of q is tc and the
standard deviation tr. All four are CCDAS control para-
meters. Note the distinction between these two spatial PDFs
and the fact that their four parameters have again PDFs in
the Bayesian sense in the same way as all other control
parameters.
[28] The previous expression simplifies to

dLðtÞ
dt

¼ ff1 þ ð1� f Þf2 ð8Þ

with

f ¼
Z T

�1
pð ~T�Þd ~T�

Z td

�1
qð~tcÞd~tc¼ F

T � T�
Tr

� �
F

td � tc
tr

� �

ð9Þ

whereF is the cumulative normal distribution. f is the fraction
of plants within the proportion of a grid cell occupied by each
PFT that are actively growing or maintaining leaves.

3.3. Time Evolution of LAI

[29] Describing the generic formulation for the time
evolution of LAI of a single plant, which is then integrated
spatially via equation (8), requires definition of f1 (for plants

Table 2. Summary of the Parameters of the Phenology Model

Symbol Description Units

~L maximum leaf‐area index ‐
T� temperature at leaf onset °C
Tr spatial range (1s) of T� °C
tc day length at leaf shedding hours
tr spatial range (1s) of tc hours
x initial linear leaf growth d−1

kL inverse of leaf longevity, tL d−1

tW length of dry spell before leaf
shedding

days

Table 3. Differentiation Between Phenology Typesa

PFT
Phenology

Type

Growth Trigger Deciduousness

Temperature
T� (°C)

Day Length
tc (h)

Temperature
tL

(days)

Water
tW
(days)

1 warm‐evergreen −∞* 0* ‐ 360
2 warm‐deciduous −∞* 0* ‐ 50
4 cold‐deciduous 10 10.5 10 0*
5 cold‐evergreen 10 10.5 333 0*
8 cold‐deciduous 8 10.5 10 0*
9, 10 grass 2 0* 10 50

aAsterisks denote a fixed parameter value indicating that this limitation is
not active. Dashes show that the parameter is not active because of the
choice of T�. All other parameter values are prior estimates and are
optimized during data assimilation.
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in their growing season) and f2 (for senescent plants). For f1,
we assume the simplest formulation that satisfies the fol-
lowing two conditions: leaf growth starts immediately and is
not limited by substrate availability, such as LAI itself; and
growth stops if a target LAI is reached that is in balance with
the environmental limitations, described as Lmax. These
conditions are met by the following formulation:

f1 ¼ �ðLmax � LÞ; ð10Þ

where x is a linear growth constant describing the increase in
LAI per time unit shortly after bud burst. This rate is chosen
to be independent of carbon gains (NPP), because initial leaf
development relies on buds and reserves from the previous
year [Kaduk and Heimann, 1996]. This formulation differs
from those used in similar applications, such as logro‐P or
the one by Liu et al. [2008], where the initial growth is
exponential resulting in a logistic function for the time
integral under constant conditions. Equation (10) (with f = 1)
results in a time dependence described by L(t)/Lmax = 1 −
exp(−xt) for L(0) = 0, which is linear in L for small t. The
advantage of this approach is that it does not require setting
a minimum LAI to set off growth (0.1 in the work by Liu et
al. [2008]). This would not work here, because Lmax might
be less than such a minimum value. The difference in
approach can be explained by the fact that the work just
cited is restricted only to temperature controlled phenology
and does not include situations where either the temperature
or the water balance only allows small values of LAI.
[30] For those plants that are outside their growth stage,

we again chose the simplest formulation that allows
accommodating both deciduous and evergreen phenology:

f2 ¼ L=�L ð11Þ
The new parameter, tL, which is related to leaf longevity,
describes how quickly leaves are shed, or whether they stay
inactive until the next growing season. Deciduous vegeta-
tion will normally shed leaves (which includes leaves
turning brown according to our definition of FAPAR) within
days toweeks. Evergreen vegetation, on the other hand, should
have values at the order of a year or more.
[31] We now consider evolution of the spatially integrated

grid‐cell average LAI. Inserting equation (10) and equation
(11) into equation (8) yields:

dLðtÞ
dt

¼ �½Lmax � LðtÞ�f � LðtÞ
�L

ð1� f Þ: ð12Þ

In order to find a convenient form for integrating this
expression, we define

r ¼ �f þ ð1� f Þ=�L ð13Þ
and

Llim ¼ �Lmaxf =r; ð14Þ

so that equation (12) takes the form:

dLðtÞ
dt

¼ �Lmaxf � rLðtÞ ð15Þ

¼ r½Llim � LðtÞ�: ð16Þ

[32] As long as f and Lmax (and therefore r and Lmin) do
not depend on t, the equation above has the following
solution:

Lðt þDtÞ ¼ Llim � ½Llim � LðtÞ�e�rDt ð17Þ

[33] Here it is sufficient to state that Lmax depends on
quantities that are updated either daily or every few days,
while f depends on daily values of temperature and day
length. Therefore, the last equation can be used to integrate
over a single daily time step of the phenology scheme, Dt.
This mixture of analytical and numerical integration is not
only highly efficient, it also ensures stability, i.e., it avoids
negative L as long as Llim and L(0) are nonnegative.

3.4. Temperature and Day Length Requirements

[34] Determining the date of leaf onset in cold‐seasonal
climates is often approached by the concept of growing‐
degree days (GDDs), defined as the sum of the daily mean
temperatures minus a threshold temperature, TGDD, as long
as this contribution is positive (see the discussion by Botta et
al. [2000]). In the simplest approach, the parameters of the
scheme would be the critical GDD (GDDc), and TGDD. GDD
approaches attach the same weight to temperatures in the
past, and therefore must be reset at certain times per year, for
example at the beginning of January for sites in the northern
temperate zone. For a global model, this might lead to
complications when determining the appropriate date of the
reset. Further, the LAI at a given day with a given GDD will
be some positive number if GDD ≥ GDDc, but 0 if GDD <
GDDc. If GDD is close to GDDc, then a small change in
GDDc can lead to a jump in the LAI at leaf onset. The LAI
is therefore not always differentiable with respect to the
parameter GDDc. The same applies to TGDD because it
changes GDD. Thus, the GDD concept produces non-
differentiable dependencies of the state variables on the
parameters.
[35] Instead of the GDD sum, our approach uses a phe-

nology determining temperature, T, defined as the normal-
ized integral over the 2m air temperature, T2m, with
exponentially declining weights attached when going back
into the past:

TðtÞ ¼

Z 0

�1
T2mðt þ~tÞe~t=�md~t
Z 0

�1
e~t=�md~t

¼ 1

�m

Z 0

�1
T2mðt þ~tÞe~t=�md~t

¼ 1

�m
e�t=�m

Z t

�1
T2mðt0Þet0=�mdt0: ð18Þ

This is equivalent to an exponentially declining memory of
the plants for the ambient temperature.
[36] The remaining parameter is tm, the averaging period

for T. Decreasing tm means that the temperature trigger uses
more recent temperature data, so that the threshold is
reached earlier and the vegetation period is shifted forward
in the season. However, if tm becomes too short, T oscillates
because short‐term fluctuations in T2m are not dampened
any more. Because this leads to instabilities in the optimi-
zation, the parameter is held fixed at a value of 30 days. This
is not an undue limitation of the model, because the opti-
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mization already has the possibility to both extend the length
of the growing season and shift it in time through changing
both T� and tc.
[37] It is computationally favorable to bring equation (18)

to an incremental form:

Tðt þDtÞ ¼ 1

�m
e�ðtþDtÞ=�m

Z tþDt

�1
T2mðt0Þet0=�mdt0

¼ 1

�m
e�Dt=�me�t=�m

�
Z t

�1
T2mðt0Þet0=�mdt0 þ

Z tþDt

t
T2mðt0Þet0=�mdt0

� �

¼ e�Dt=�mTðtÞ þ 1

�m
e�ðtþDtÞ=�m

Z tþDt

t
T2mðt0Þet0=�mdt0

ð19Þ

If Dt is the time step of the model and thus T2m constant
over that period, then the expression simplifies to

Tðt þDtÞ ¼ e�Dt=�mTðtÞ þ T2mðtÞð1� e�Dt=�mÞ; ð20Þ

which allows continuous updating of T with only instanta-
neous values of T2m. In practice, this scheme is implemented
by setting T = T2m at the beginning of the model run and
performing a sufficiently long spin‐up.
[38] The temperature condition for leaf growth is T > ~T�,

supplemented by an additional trigger for day length, td,
with the condition td >~tc. Because the warmest period across
the year is considerably later then the period of maximum
daylight hours, this double condition has the effect that leaf
onset is triggered by ~T�, and leaf shedding by ~tc. As a
reminder: the control parameters are T� and tc (means), and
Tr and tr (standard deviations on a grid cell).
[39] According to White et al. [1997], of the PFTs con-

sidered here only cold‐deciduous and cold‐evergreen trees
and shrubs have a day length trigger for leaf shedding (see
Table 3). Grass PFTs do not have such a day length
requirement, so that for those we set tc = 0. Warm‐evergreen
and warm‐deciduous PFTs also do not have an explicit
temperature requirement for growth because they are not
actively protected against cold conditions. For these, we set
T� = −∞. For all other PFTs, both are control parameters.
The temperature trigger for the cold‐deciduous and cold‐
evergreen (Table 1) is estimated to lie in the region of 10°C,
except for the understorey shrubs (PFT 8) where it would be
somewhat lower, and only little above freezing for grasses
(PFT 9,10).

3.5. Water and Structural Limitations

[40] On a global scale, the main limiting factor on ter-
restrial plant growth is not temperature but water
[Woodward, 1987]. Whenever photosynthesizing, plants
loose water by transpiration through pore openings (“sto-
mata”) in their leaves. This limitation together with any
other limitation on leaf growth, here considered “structural”,
is described by a single state variable, Lmax.
[41] If soil water is limiting, an increasingly negative soil

water potential leads to a falling leaf potential in a compli-
cated process involving root water uptake, xylem resistance
to flow, and transpiration through the leaf stomata. If sto-
mata close, leaves can retain water, but only to a degree that

depends on their cuticular resistance, which in itself is
dependent on the plant functional type (PFT). However, it is
not possible to represent those complex mechanisms in a
model designed for global‐scale applications.
[42] The scheme chosen here goes back to Woodward

[1987], who used annual potential evapotranspiration and
precipitation to derive water limited LAI on a global scale.
To accommodate the shorter timescale of our model, we
have modified his scheme by using daily actual transpiration
and soil moisture instead of annual potential evapotranspi-
ration and precipitation. However, to have LAI react not to
rapidly changing daily conditions but to the longer‐term
climatic state, the water limited LAI is averaged back in
time using the same approach as for T (equation (18)).
[43] Generally speaking, leaf development will stop and

leaves will be shed if there is insufficient soil water for
transpiration. At which level this happens exactly will be a
function of various drought adaptations of the PFT
concerned. Independent of the details, however, adaptation
will determine how long the plant, at a given LAI, can
survive with a given amount of soil moisture without rain.
This timescale, tW, can serve as a universal parameter of
water limitation. This defines a water‐limited LAI, LW

through

EðLW Þ�W ¼ W ð21Þ

where W is plant‐available soil moisture. What is needed
then is the total water loss after time tW as a function of leaf
area.
[44] To compute this water loss, we linearize the potential

rate of transpiration, E, as a function of the LAI, L:

EðLÞ �
~E
~L
L: ð22Þ

~E is the daily mean potential rate of transpiration last
computed by the model at a LAI of ~L. This approximation is
most accurate at low values of L and ~L, where net radiation
of the leaf canopy, which drives evapotranspiration [Jarvis
and McNaughton, 1986], can be assumed to scale linearly
with LAI.
[45] Combining equation (21) and equation (22) yields

LW ¼ W ~L
~E�W

: ð23Þ

The parameter tW represents the expected length of drought
periods tolerated before leaf shedding. For tW → 0 the plant
“expects” its water reserves to always be sufficient for
continuing survival. In this case, LW → ∞, meaning the
plant has no explicit drought adaptation in its phenology.
This is assumed for the cold‐deciduous and cold‐evergreen
PFTs. For warm‐evergreen plants, we expect the value for
tW in the region of 1 year, and for grasses and warm‐
deciduous plants between one and two months. Water limi-
tation is implemented separately for each PFT to reflect dif-
ferences in the water use strategy, defined mainly by tW.
[46] Observe also that for ~E → 0 we have LW → ∞, since

without evaporative demand the leaf area is not water limited,
as in the case of tW → 0. Since the LAI cannot grow indef-
initely, it must be limited by other factors, such as light

KNORR ET AL.: NEW CCDAS PHENOLOGY SCHEME G04017G04017

7 of 16



availability, nutrients and structure. These additional limita-
tions are summarized into a single universal parameter L̂ (cf.
[Knorr, 2000]) and incorporated into the model via:

~Lmax ¼ �ðL̂;LW Þ ð24Þ

n (x, y) is a smoothed minimum function defined by

�ðx; yÞ ¼
xþ y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ yÞ2 � 4�xy

q
2�

ð25Þ

with h = 0.99. ~Lmax is recomputed daily with daily values of
the soil moisture,W, whereas ~E may be recomputed at longer
intervals. This allows avoiding recomputing the diurnal cycle
of photosynthesis and energy balance for every simulated
day, while keeping a daily time step of phenology and water
balance, to save computing time with the full BETHY model
[Knorr, 2000].
[47] Instead of L̂max, equation (10) uses Lmax, its weighted

time integration computed in the same way as T from T2m
(equation (9)), with the analogous definition:

LmaxðtÞ ¼ 1

�s
e�t=�s

Z t

�1
~Lmaxðt0Þet0=�s dt0: ð26Þ

Updating happens in the sameway as described by equation (20)
for T:

Lmaxðt þDtÞ ¼ e�Dt=�sLmaxðtÞ þ L̂maxðtÞð1� e�Dt=�sÞ: ð27Þ

[48] The advantage of this scheme is that it has only one
free parameter, tW, in addition to ts. Since changing ts
might lead to instabilities of the optimization in a way
similar to tm, this parameter is also held constant at value of
30 days.

4. Setup of the Data Assimilation System

[49] This section explains the sites, the input data, the
satellite FAPAR product used with the assimilation, and the
parameterization of the model. A complete list of the para-
meters included in the assimilation is shown in Table 4.
Some describe the site characteristics and are fixed, others
are control parameters of CCDAS and are optimized during
assimilation. CCDAS has the possibility of freely assigning
control parameters either to one PFT subgrid cell at a par-
ticular station, or to all subgrid cells that represent the same
PFT, or even to groups of PFTs. The parameter setup for the
new phenology parameters uses this PFT grouping. Para-
meters of the previous CCDAS are also optimized and
grouped in the same way as in previous work [Rayner et al.,
2005; Scholze et al., 2007].

4.1. Site Descriptions

[50] Out of the total of 13 PFTs of the global version of
CCDAS, seven distributed over eight sites occur in the
assimilation study presented here (Table 1). On a global
scale, the PFTs not considered (deciduous conifers, ever-

green and tundra shrubs and wetlands) represent more
marginal vegetation then the ones included.
[51] Each site consists of a rectangular study area over one

to several satellite pixels as described in Table 5. The last
site shown in Table 5 has been included for validation
purposes and is therefore excluded from the data assimila-
tion exercise. The areas were chosen in such a way that they
constitute homogeneous land cover as identified through
Google Earth images. BETHY represents the vegetation of
each site by two to three PFTs and a corresponding surface
cover fraction shown in Table 6, where the remainder cor-
responds to bare ground. The water holding capacity of the
soil (Ws,max) and the soil brightness class were extracted
from the global version of BETHY. For the Hainich grass
site, we use half the water holding capacity of the forest site,
while for Manaus, we assume that deep roots cause the
maximum available water storage to greatly exceed the
values at the other sites [Nepstad et al., 1994; Kleidon and
Heimann, 1999]. The soil reflectance values for the bright-
ness classes are 0.07 (dark) and 0.1 (medium) if the soil is
wet, and 0.15 (dark) and 0.2 (medium) if the soil is dry. The
model is run once per PFT at each site, and the results are
weighted according to the PFT fractions shown in Table 6.

4.2. Parameterization

[52] The way phenology types are differentiated by choice
of prior or fixed parameter values is summarized in Table 3.
Fixed parameters always indicate that the corresponding
limitation is deactivated, so the parameter does not need to
be included in the optimization. Whether a plant is ever-
green or deciduous is controlled either by tL or by tW.
[53] In one case, a phenology type has a different

parameterization depending on whether the vegetation is
overstorey (PFT 4) or understorey (PFT 8). This reflects the
different strategy of understorey plants, which need to
develop leaves earlier to evade being shaded out. In general,
however, parameters of different PFTs were grouped
together whenever reasonable. (T� for PFTs 4 and 5, tc of
PFTs 4, 5 and 8, and tL for PFTs 4, 8, 9, 10). The two grass
PFTs (9, 10) always use the same control parameters for
phenology as they are only differentiated by photosynthetic
pathway. We also know much less about the temperature
control of grass phenology than we know about woody
plants, where leaf onset and shedding tend to happen within
a well defined period. Therefore, we assign a much larger
uncertainty to T� and Tr for the two grass PFTs.
[54] The complete list of parameters and how they are

differentiated by PFT is shown in Table 4 together with their
prior means and uncertainties. Table 4 also represents the
technical implementation of the control parameters, which
differs from the model description in two cases: one is that
tL is replaced by kL = 1/tL, which avoids division by small
numbers in equation (12) and equation (13); and for tW, the
control parameter is the natural logarithm, which in turn
avoids negative numbers leading to negative LAI via
equation (23). As the prior PDF is always Gaussian in the
space of the control parameters, this transforms the prior
PDF of both tL and tW accordingly. The logarithmic
transformation has been described by Rayner et al. [2005].
[55] For the two parameters representing within‐pixel

variability of growth triggers, Tr, and tr, we only differen-
tiate Tr by PFT, with one control parameter for trees and
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shrubs and one for grass. Here, we assume a larger spatial
variability for the larger group containing trees and shrubs.
There is only a single control parameter for tr. Finally, L̂, the
structural LAI limit, is 5 as in the work of Knorr [2000], and
x is 0.5 d−1, which describes rapid leaf sprouting where 97%
of the maximum LAI has been reached after one week.
[56] We assign rather large uncertainties in the region of

30–50% to most of the new parameters, considering the
values of those parameters are known only approximately.
The remaining Parameters 1–24 were adopted from the pre-
vious version of CCDAS with prior values and uncertainties
taken from Scholze et al. [2007]. The most important ones in
the context of this study are those controlling Vmax (1–7), the
maximum capacity of the enzyme that fixes the atmospheric
CO2 and makes it available for further metabolism.

4.3. MERIS FAPAR and Input Data

[57] We assimilate daily data from the Level 2 FAPAR
land product derived from the Medium Resolution Imaging
Spectrometer (MERIS) of the European Space Agency
(ESA) at the operational resolution of 1.2 km for the period
June 2002 to September 2003. Square 15 by 15 pixel scenes
have been processed that are centered at the position of the
six sites previously introduced (see Table 6, except Aardhuis
which is contained within the Loobos scene). We have used
Google Earth imagery to identify areas of uniform cover
type around the centers of the scenes and have selected
rectangular subscenes of those original scenes, which were
then spatially averaged. The extent of those subscenes (in
km) and the number of valid daily data points after aver-
aging are listed in Table 5. The fraction of days with valid
data is highest in the tropics (32% for Maun) and lowest at

Table 4. Process Parameters and Their Initial and Optimized Values and Prior and Posterior Uncertaintiesa

Number PFTs Parameter
Prior
Value

Posterior
Value

Relative Change
(%)

Prior
Uncertainty

Posterior
Uncertainty

Uncertainty
Reduction

(%)

Physiology
1 1 Vmax

25 60 44 −133 12 11.1 6

2 2 Vmax
25 90 101.3 63 18 17.5 13

3 4 Vmax
25 35 33.3 −24 7 7 0

4 5 Vmax
25 29 29.2 3 5.8 5.8 0

5 8 Vmax
25 160 160 0 32 32 0

6 9 Vmax
25 42 47.8 69 8.4 7.7 8

7 10 Vmax
25 8 7.4 −38 1.6 1.6 0

8 1 aJ,V 1.96 1.97 10 0.098 0.098 0
9 2 aJ,V 1.99 2 10 0.0995 0.0995 0
10 4 aJ,V 2 2 0 0.1 0.1 0
11 5 aJ,V 1.79 1.79 0 0.0895 0.0895 0
12 8 aJ,V 1.66 1.66 0 0.083 0.083 0
13 9 aJ,V 1.9 1.9 0 0.095 0.095 0
14 10 k25 140 140 0 28 28 0
15 all ERd 45,000 45,027 1 2,250 2,250 0
16 all EVmax 58,520 56,735 −61 2,926 2,923 0
17 all exc. 10 EKO 35,948 35,807 −8 1,797 1,797 0
18 all exc. 10 EKC 59,356 60,611 42 2,967 2,965 0
19 10 Ek 50,967 50,964 0 2,548 2,548 0
20 all exc. 10 aq 0.28 0.292 86 0.014 0.014 1
21 10 ai 0.04 0.04 0 0.002 0.002 0
22 all exc. 10 KC

25 460 462 9 23 23 0
23 all exc. 10 KO

25 0.33 0.3303 2 0.0165 0.0165 0
24 all exc. 10 aG,T 1.7 1.66 −47 0.085 0.008 0

Phenology
25 All ~L 5 4.2 −320 0.25 0.24 5
26 4, 5 T� 10 9.21 −158 0.5 0.29 41
27 8 T� 8 8.02 4 0.5 0.5 0
28 9, 10 T� 3 1.92 −36 3 0.23 54
29 1, 2, 4, 5, 8 Tr 2 2.04 40 0.1 0.1 1
30 9, 10 Tr 2 0.3 −85 2 0.05 50
31 4, 5, 8 tc 10.5 13.37 574 0.5 0.31 38
32 4, 5, 8 tr 0.5 0.48 −20 0.1 0.1 1
33 all x 0.5 0.37 −130 0.1 0.09 8
34 all exc. 5 kL 0.1 0.07 −60 0.05 0.012 75
35 5 kL 3 × 10−3 1.3 × 10−4 191 1.5 × 10−3 8.9 × 10−4 41
36 1 tW(*) 360 1073 269 180 172 63
37 2 tW(*) 50 114 203 25 17 65
38 9, 10 tW(*) 50 23 −192 25 5 48

aRelative change is posterior minus prior divided by prior uncertainty. Units of physiology parameters are Vmax, mmol(CO2)m
−2 s−1; k, mmol(air)m−2 s−1;

aG,T, mmol(CO2)mol(air)−1°C−1; KC in mmol(CO2)mol(air)−1; KO in mol(O2)mol(air)−1; activation energies E in J mol−1; others unitless. Uncertainties
represent one standard deviation, except for the lognormally distributed parameters denoted by (*), for which relative change in log‐space and the
analogous difference between mean and upper 67th percentile is given.
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the northern boreal site of Sodankylä (17%). We use an
uncorrelated data uncertainty of 0.1 irrespective of how
many pixels where used in the spatial averaging of the
FAPAR pixels [Gobron et al., 2008]. Thus, Cd in equation
(1) contains only diagonal elements with values of either
0.12, or ∞ if no data are available for the day and site
concerned (in practice set to a very large value).
[58] As described elsewhere [Knorr, 2000], the model is

run with daily precipitation, minimum and maximum tem-
peratures and incoming solar radiation. The data were
generated through a combination of available monthly
gridded and daily station data (R. Schnur, personal commu-
nication, 2010) by a method by Nijssen et al. [2001], using
gridded data from the Summary of the Day Observations
(Global CEAS), National Climatic Data Center and the latest
updates of gridded data by Jones et al. [2001] and Chen et al.
[2002] and using the available data nearest to the site. Input
data related to soil and vegetation characteristics have already
been described in section 4.2.

5. Results

5.1. Calibration and Uncertainties

[59] In the setup described in section 4.3, the minimiza-
tion of equation (1) is carried out three times from three
different starting points, and the procedure is repeated on
two different computers. All six minimization procedures
converge to the same minimum. The minimization starting
from the prior value takes 30 iterations to reduce the cost
function J from 822.4 to 468.3 and the norm of its gradient
by more than seven orders of magnitude from 209.8 to 1.76 ×
10−5. The FAPARobservations lead to a substantial reduction
of uncertainty (by 10% or more) in ten directions in parameter
space (Table 4).

[60] Not surprisingly, most of the uncertainty reduction
goes to parameters of the leaf phenology, namely: inverse
leaf longevity (kL, Parameters 34 and 35), the parameter
describing adaptation to the expected length of dry periods
(tW, Parameters 36 to 38), the temperature threshold for leaf
onset (T�, Parameter 26 and 28), the spatial variability for
grasses (Tr, Parameter 30) and the critical photoperiod (tc,
Parameter 31).
[61] Except for grasses, parameters describing the spatial

distribution of leaf onset or shedding are not or negligibly
constrained (Parameters 29, 32), and so is the leaf growth
parameter, x. We do not gain information on the phenology
of understorey shrubs either (Parameter 27). The maximum
leaf area index (Parameter 25) is also relatively little con-
strained. At high LAI, changes in LAI of the order of one or
two can have little impact on FAPAR because FAPAR has
already reached a value approaching its theoretical maximum
(close to one). As a result, the uncertainty of the satellite‐
derived FAPAR is too large to resolve LAI values in the range
of 4 to 5 [Gobron et al., 1997].
[62] Finally, a considerable reduction in uncertainty (by

>10%) is only found for one physiology parameter, namely
Vmax
25 for PFT 2, which only occurs at Maun. We note that

Maun also has the largest number of valid data points (see
Table 5).

5.2. Fit to Observations

[63] After assimilation, we found overall good agreement
between data and observations considering the assumed data
uncertainty (Figures 2 and 3). There are, however, a number
of issues that remain to be addressed: the model over-
estimates the growing season length of the two grassland
sites, the agreement for Manaus is less satisfactory, and
there are frequent outliers in the data, notably around days

Table 5. List of Sites for Assimilation With Central Coordinatesa

Site Country Latitude Longitude Elevation (m) N‐S (km) E‐W (km) n

Sodankylä Finland 67.3619°N 26.6378°E 180 1.2 1.2 80
Zotino Russia 60.8008°N 89.2657°E 116 1.2 1.2 101
Aardhuis Netherlands 52.2381°N 5.8672°E 7 1.2 1.2 91
Loobos Netherlands 52.1679°N 5.7440°E 25 1.2 1.2 103
Hainich forest site Germany 51.0793°N 10.4520°E 430 1.2 1.2 106
Manaus Brazil 2.5892°S 60.1311°W 80 18.0 14.4 146
Maun Botswana 19.9155°S 23.5605°E 940 3.6 3.6 154
Hainich grass site Germany 51.0199°N 10.4348°E 302 2.4 1.2 119

aN‐S and E‐W are extent of the rectangular satellite scenes, and n is the number of daily data points after spatial averaging. The site in the last row has
been included for validation only.

Table 6. Site Descriptions and Site‐Specific Parametersa

Site Description

PFT Fraction

Ws,max Soil ClassFirst Second Third First Second Third

Sodankylä boreal evergreen forest 5 4 ‐ 15 10 ‐ 156 medium
Zotino boreal mixed forest 5 4 ‐ 20 15 ‐ 105 medium
Aardhuis C3 grassland 9 4 ‐ 60 20 ‐ 101 medium
Loobos temperate pine forest 5 8 9 20 15 5 101 medium
Hainich forest temperate deciduous forest 4 9 ‐ 80 10 ‐ 101 dark
Manaus tropical rainforest 1 10 ‐ 70 10 ‐ 800 medium
Maun tropical savanna 2 10 ‐ 20 10 ‐ 150 medium
Hainich grass C3 grassland 9 4 ‐ 80 5 ‐ 50.5 dark

aFirst to third PFT in order of most to least dominant, “fraction” is the associated fraction of surface area in percent, and Ws,max is maximum plant‐
available soil moisture in milimeters. Soil class refers to the brightness of the soil.
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200 and 350 for Loobos. We suspect that the poor match at
Manaus and the outliers are both due to remaining con-
tamination by clouds not captured by the MERIS FAPAR
algorithm, in particular cloud shadows, which are more
difficult to detect than clouds themselves. We also note that
the satellite data indicate an early spring greening at the
Hainich forest site that is not captured by the model, even
though the deviation is only slightly beyond the uncertainty
range of the data. For the grass sites, it is interesting to note
that the fit is better at Hainich (not included in the assimi-
lation, root‐mean‐squared deviation of 0.165 at optimum)
than at Aardhuis (deviation 0.267 at optimum), which was
included. At Hainich, the model captures the summer
drought in 2003 very well, better indeed than for the forest
site, where the decline in FAPAR is less pronounced in both
FAPAR and model. At both grass sites the algorithm
overestimates the length of the growing season.
[64] The data assimilation itself has led to an improvement

of the fit at all sites, including the one where FAPAR data
were not assimilated. The smallest improvement is found (in
this order) for Loobos, Sodankylä and Zotino. In these
cases, simulated FAPAR changes only slightly from prior to
posterior, and prior agreement with the data is already good.
[65] Table 4 shows both the prior and posterior parameter

values, and the change in each parameter after optimization

relative to the prior uncertainty. This relative change gives a
measure of the extent to which the optimization has
accepted our prior parameter estimates. A range of this value
between −200% and +200% corresponds to a change within
a ≈95% confidence interval and indicates agreement
between model and prior estimate, while a value clearly
outside this range indicates disagreement.
[66] We observe that three parameters change by consid-

erably more than two standard deviations of the prior PDF.
These are Parameters 25 (maximum LAI, L̂), 31 (critical
photoperiod, tc) and 36 (the water‐use strategy parameter,
tW, for tropical evergreen trees). For Parameters 25 and 31,
we might have been too optimistic with our rather tight prior
error margins.
[67] For Parameter 36, however, the result suggests an

extremely conservative strategy for evergreen tropical veg-
etation, apparently anticipating extremely long drought
periods of almost three years. Examination of Figure 3
(Manaus site) shows that even though FAPAR reaches
very high values of >0.8, a large number of data points are
below 0.5. This suggests that contamination by clouds and
cloud shadows might be a serious problem at this site with
its year‐round humid climate. Obvious outliers to low
FAPAR values were earlier identified for the Loobos site.
Increasing tW during optimization had the effect of lowering

Figure 2. Observed (crosses with uncertainty ranges) and modeled prior (dotted) and posterior (solid
line) FAPAR for Sodankylä, Zotino, Aardhuis, and Loobos from north to south. Numbers are root‐
mean‐squared deviation between model and satellite data for the prior (gray) and posterior (black) case.
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LW and thus improving the fit to the data. The optimal value
for tW at Manaus must therefore be considered unrealistic.
For the warm‐deciduous trees at Maun, however, the
expected drought period is just over three months (tW =
112 days), consistent with the length of the dry season at
the site (150 days).
[68] The problem with cloud contamination of FAPAR at

Manaus also explains why Parameters 1 (Vmax
25 for PFT 1)

and 25 (L̂) were significantly downsized. The problem
could have been reflected in a larger error bar for the sat-
ellite FAPAR, which would have resulted in a larger weight
given to the priors and thus in less change in the parameters.
[69] For all sites we find that the vegetation period in cold

climates is too long in the prior case. As a consequence, the
optimization reduces T� for all PFTs, except for understorey
shrubs (PFT 8), and tc is increased to 13.4 h by the opti-
mization. Oleksyn et al. [1992] show even larger length‐of‐
day thresholds in their study (14 h and more), but referring
to cessation of growth and not to the start of decline in LAI
as it is the case with tc. The latter implies that tc needs to be
less than the values they cite. Taken together, tc seems
consistent with independent ecophysiological data.
[70] There is also a large reduction in Parameter 35 (kL for

PFT 5), which affects the three northernmost sites. As the

deciduous vegetation dominates the seasonal amplitude, we
expect that this parameter is more affected by the FAPAR
observations outside the growing season. Such observations,
however, are mainly available for Loobos. The prior value
amounts to a significant drop in simulated FAPAR
throughout the winter, while the posterior value predicts a
much greater longevity of needles with little change in LAI
throughout the winter. It appears that the adjustment toward
an earlier end of the growing season by changing tc upward
required a more constant LAI through the year. The poste-
rior value is still smaller than the value reported by
Niinemets and Lukjanova [2003] for the rate of decline in
pine shoots (3.8 × 10−4), but it is of the same order of
magnitude.

5.3. Simulated Net Primary Production

[71] In order to assess to what extent the MERIS FAPAR
data have helped to constrain simulations of the net primary
production (NPP) of vegetation, we select annual mean NPP
at each site as target quantities (i.e., as y in equation (4)),
including the site for which no FAPAR data were assimi-
lated. The period chosen for those prognostic simulations is
January 2001 to December 2003, which is almost twice as
long as the period for which FAPAR data are available.

Figure 3. As in Figure 2, but for the Hainich forest site, Manaus, Maun, and the Hainich grass site. The
Hainich grass site is shown for validation and not included in the assimilation.
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Inferring information for outside the “diagnostic” period is a
major strength of the process‐based data assimilation tech-
nique, as demonstrated before by Knorr and Kattge [2005]
and Scholze et al. [2007].
[72] The computed prior and posterior means and un-

certainties of annual NPP are shown in Table 7. Relative
change in NPP is again shown as a fraction of the prior
uncertainty, which is computed at the optimal parameter
point. The lowest NPP is found at the far northern sites, a
rather low value also for Loobos, owing to the low value of
Vmax
25 for PFT 5, and for the semiarid Maun site, intermediate

values for the temperate sites at Hainich and Aardhuis, and
high values for the evergreen tropical site at Manaus. Prior
uncertainties are considerable for Sodankylä, and moderate
for the remaining ones.
[73] The only site where there is a large relative change

(around 200%) in the simulated NPP is Manaus. We suspect
that with either larger uncertainties for FAPAR or a more
conservative screening algorithm, the posterior NPP would
be closer to the prior value. This would also mean much less
error reduction for Manaus, which here is shown as 34%.
The other sites where we find a considerable uncertainty
reduction (by more than 10%) are Aardhuis, a grass site,
Hainich forest, and Hainich grass, the latter not included in
the data assimilation. This is consistent with a large reduc-
tion in uncertainty of T� and Tr for grasses. Analyzing the
model’s Jacobian at the posterior parameter point (see
equation (4)), we also find that the NPP at Hainich forest has
by far the highest sensitivity to Parameter 26 (T� for PFT
4,5). This explains its relatively large uncertainty reduction
(13%) partly as a result of the uncertainty reduction in this
parameter (41%).

6. Discussion

[74] The results of this study have shown that with less
than two years of FAPAR data, we are able to constrain
most of the parameters of a generic model of leaf phenol-
ogy. With the optimized parameters, the model is able to
reproduce the satellite‐based FAPAR observations from
MERIS within the uncertainty range of the data for three out
of the seven sites for which data were assimilated. Agree-
ment was somewhat less satisfactory for the deciduous
forest site and for grassland, but agreement still increased
substantially after data assimilation. The same was true for a
grassland site for which no satellite data were assimilated.

[75] We further expect that the reduction in parameter
uncertainty will increase if longer time series are used. We
can approximate the effect of doubling the length of the time
series on posterior parameter uncertainties by assuming
similar values in the first (data) term of equation (1) for the
additional half of the time series, assuming zero correlation
with the uncertainties of the first half of the time series. As a
result, the part of the cost function containing the (FAPAR)
data is increased by about a factor of two, and the Hessian,
which as the cost function can also be written as the sum of
a data and parameter driven part, also has its data driven part
increased by approximately a factor of two. It is this data
driven part of the Hessian that produces the reduction in
parameter uncertainty.
[76] The main conclusion of this study is that FAPAR data

appear to add significant constraints on those model para-
meters that control the phenological cycle, namely start,
duration and maximum LAI during the growing season. It is
also encouraging that some of the posterior parameter values
could be shown to agree with independent ecophysiological
studies. At the same time, we find that comparatively low
FAPAR values at the Manaus site affect several parameters
in unexpected ways. Both the Manaus and Hainich sites are
known to be dense forests, and the reason why Hainich has
somewhat higher FAPAR than Manaus in the summer may
be a result of some residual contamination of FAPAR, in
particular by cloud shadows. For future studies, we might
consider insuring the functioning of the data assimilation
system by increasing the error bars in such cases, once an
appropriate indicator has been identified.
[77] Another important result of this study is that simu-

lations of the phenological cycle and NPP seem largely
decoupled, causing much less reduction in uncertainty for
NPP than for phenological parameters. This was not expected,
since FAPAR controls the number of photons available for
photosynthesis and net primary production. The result might
have been different had we considered control of leaf phe-
nology via the carbon balance [Kikuzawa, 1995]. Instead,
soil moisture and temperature were chosen as the control
state variables of the phenology scheme. We therefore
expect that FAPAR would put more constraint on simulated
soil moisture than on NPP, something that could be the
subject of further investigations.
[78] The moderate to small change in the uncertainty of

NPP has consequences for the use of light‐use efficiency
approaches in models and remote‐sensing products men-
tioned in the introduction. For example, the standard
MODIS NPP and GPP products [Zhao et al., 2005] rely on
LAI and FAPAR data derived from MODIS reflectances,
climate data, and land use information. This study hints that
climate data, land use information combined with the proper
parameterization of the algorithm are sufficient sources of
information to derive NPP and GPP. The main advantage of
using satellite‐derived LAI or FAPAR information is that
the algorithm used for those products does not require a
phenology model, which can certainly be an advantage for
purely diagnostic studies.
[79] Another use of remote sensing data was demonstrated

by Sims et al. [2008], who used remotely sensed land sur-
face temperature in addition to vegetation index data to
improve the climatic information entering the GPP algo-
rithm. In this case again, the information is not necessary but

Table 7. Mean Annual Prior and Posterior NPP for the Period
2000–2003 (Inclusive) With Uncertainty, Change Relative to Prior
Uncertainty, and Relative Uncertainty Reductiona

Site
Prior
NPP

Posterior
NPP

Relative
Change
(%)

Prior
Uncertainty

Posterior
Uncertainty

Uncertainty
Reduction

(%)

Sodankylä 137 151 68 112 98 5
Zotino 201 216 54 28 28 0
Aardhuis 853 842 −7 164 101 38
Loobos 449 424 −40 62 59 5
Hainich forest 689 657 −29 112 98 13
Manaus 1465 964 −196 255 168 34
Maun 350 346 −10 50 46 8
Hainich grass 619 786 97 172 89 48

aUnits are in gC m−2 yr−1 or percentage when stated.
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additional, if a prognostic model is used (i.e., one that does
not require observations to run). This conclusion also ap-
plies to the use of light‐use efficiency approaches in global
vegetation models [Field et al., 1998; Zhao et al., 2005;
Turner et al., 2009].
[80] The alternative to the diagnostic modeling approach

used in those products and models is data assimilation in the
way presented here, only extended to larger scales. The
advantages are that such an approach makes it explicit
which information is used for the final end product, that
parameters can be used to create a link between observations
across space and time, leading to better constraint target
quantities (such as NPP or GPP), and that the assimilation
system can also be used to make predictions or be run in
situations where no observations are available.
[81] We expect that increasing the amount of FAPAR data

used in the assimilation will further increase the constraint
on NPP. This is because of the specific approach pursued in
CCDAS: common parameters that occur at several sites or
grid cells are constrained simultaneously. In this way,
remotely sensed data from many locations is used to con-
strain a limited set of parameters. In this case, the data will
deliver considerably more constraint on the parameters, and
in all likelihood also on NPP.
[82] Therefore, the answer to the question whether FAPAR

data products are a useful source of information for carbon
fluxes is a qualified yes. They do, provided that the data are
used in a way that process knowledge represented by uni-
versal parameters is increased. If, however, the data assimi-
lation is carried out at each pixel independently, we would
expect only amoderate to small reduction in NPP uncertainty.
[83] This is also important in the light of a recent study by

Medvigy et al. [2009] that constrains terrestrial biosphere
models with multiple observations, including satellite‐
derived LAI estimates, albeit by adjusting a smaller number
of dedicated parameters. The results indicate better agree-
ment of simulated carbon fluxes after data constraint. Given
the results of that and the present study, we suspect that the
main potential of satellite‐derived FAPAR data to improve
carbon flux simulations lies in the simultaneous use with
other constraints, such as eddy covariance and CO2 data.
This would also address the problem of validating the model
in areas of high cloud contamination, such as evergreen
rainforests.
[84] The results presented here are certainly dependent on

the model and on the choice of prior parameters and their
uncertainties, so that further application of the approach will
be needed to confirm them. However, the study shows that
much of the information contained in the FAPAR signal can
be reproduced by the model, while the cause for some
deviation between modeled and observed FAPAR still needs
to be investigated. This is important for the perspective of
using FAPAR in a data assimilation mode with a fully
prognostic model that is able to simulate the observed signal
without the use of observations. It is one of the requirements
of data assimilation that the simulated and observed signals
are similar and the model is in principle able to reproduce
the observed signal [Tarantola, 1987]. We also note that
other studies such as the one by Turner et al. [2009] have
assimilated FAPAR data into an ecosystem model, but no
study known to the authors has done so using a fully

prognostic model that is able to simulate leaf phenology
from climatic, vegetation type and soils information alone.

7. Conclusions and Outlook

[85] We have presented a further development of the
Carbon Cycle Data Assimilation in the direction of assimi-
lating remotely sensed information using the same varia-
tional approach as previously for the atmospheric carbon
dioxide observations. The assimilation is done simulta-
neously at several sites representing the major biomes of the
earth with a common set of parameters. The algorithm
converges rapidly and effectively by highly efficient adjoint
model code to a final gradient extremely close to zero.
[86] As such, the study is in principle a global one, only

that the number of sample points is kept low. Increasing this
number to a global grid is therefore straightforward and is
planned to be the subject of a further study. Increasing the
number of sites or grid points, as well as the length of the
observation period, is also needed to further validate the new
generic phenology scheme and to further investigate the
causes for some notable deviations between optimal model
and observations for grassland and deciduous forest sites.
[87] The study has shown that given the right setup where

data are assimilated into a process model that has universal
parameters, the method can be used in principle to simul-
taneously constrain parameters of a phenology model, and
model‐based estimates of carbon fluxes. The approach
presented relies on input data of land cover in the form of
PFT fractions, soil characteristics in the form of maximum
plant available soil moisture, and climate data.
[88] If enough FAPAR data are used to constrain the

parameters of the phenology model, it may be possible to
constrain in addition the PFT fractions at each site. This
would open the perspective of fully automatic, model based
land cover mapping complete with characterization of
uncertainty ranges. The same applies to the inclusion of
maximum plant available soil moisture into the assimilation
scheme; such properties cannot be inferred directly from
space observations. Applications directed at water resources
might require the assimilation of further remotely sensed
information, for example from ESA’s recently launched
SMOS mission.

Notation

[89] We use a notation very similar to that of Scholze et al.
[2007].

x vector of control variables.
x0 prior values of control variables.
C0 covariance of the associated uncertainty.
d observations.

Cd covariance of the associated uncertainty.
xpost optimal (posterior) values of control variables.
Cpost covariance of the associated uncertainty.

y diagnostic/prognostic quantity of interest (target quan-
tity), e.g., a net flux.

Cy covariance of the associated uncertainty.
M(x) model operated as a mapping from control variables

onto counterparts of observations.
N(x) model operated as a mapping from control variables

onto target quantity.
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N′ its linearization around xpost.
J(x) cost function.
H(x) Hessian of J, i.e., the matrix composed of its second

partial derivatives.
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