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ABSTRACT

The current and future strength of the terrestrial car-
bon sink has a crucial influence on the expected climate
warming on Earth. Usually, Earth Observation (EO) by
its very nature focusses on diagnosing the current state of
the planet. However, it is possible to use EO products in
data assimilation systems to improve not only the diag-
nosis of the current state, but also the accuracy of future
predictions.

This contribution reports from an on-going Eurpean
Space Agency (ESA) funded study in which the MERIS
FAPAR product is assimilated into a terrestrial biosphere
model within the global Carbon Cycle Data Assimilation
System (CCDAS). Results are presented from a range of
selected sites spanning the major biomes of the globe,
and show how the inclusion of MERIS land products re-
sults in improved accuracy of the site carbon flux esti-
mates. They also show the uncertainty in the predicted
carbon sink of those sites for selected climate scenarios
until 2039.

Key words: Global carbon cycle; MERIS; FAPAR; eval-
uation of sensor concepts, mission design, OSSE.

1. INTRODUCTION

During the coming decades, the continuing rise of green-
house gases (GHG) in the atmosphere is expected to lead
to more and more pronounced climate warming. Of those
GHGs, carbon dioxide is the most important one as its
lifetime in the atmosphere is almost infinite. If nothing is
done to drastically curb GHG emissions, severe disrup-
tions of current weather patterns, ice shelves, river flows
and coastal ecosystems will become a possibility [1].

As the European Union has committed itself to avoid dan-
gerous levels of climate warming and is starting to set
itself stringent reduction targets beyond the Kyoto Proto-
col, European researchers are called upon to better inves-
tigate the role of the global carbon cycle. This is because
terrestrial vegetation emits and absorbs carbon at five to
ten times the rate of the anthropogenic CO2 emissions.

As a result, changes in the activity of terrestrial plants can
have a large impact on the predicted levels of CO2 for a
given emissions scenario. The main tools for investigat-
ing the relationships between emissions, climate change
and the carbon cycle are now comprehensive Earth Sys-
tem Models (ESMs).

The scientific information required to quantify the rela-
tionship between CO2 emissions and atmospheric con-
centrations is presently insufficient due to major uncer-
tainties in the terrestrial climate-carbon cycle feedback
that are still inherent the current generation of ESMs
[2, 3, 4]. This calls for quantitative methods that are
able to reduce the large margins of uncertainty for both
the strength of the current carbon sink in the terrestrial
biosphere and for its evolution into the future. For this
reason, CCDAS have been developed that are able to as-
similate additional observational information into ESMs.
Such assimilation systems will allow for improving the
prediction accuracy of the carbon sink strength of the ter-
restrial biosphere.

The sources of information assimilated into ESMs should
ideally be of global, uniform coverage. An example
of an ideal product for carbon cycle data assimilation
at the global scale is the Fraction of Absorbed Photo-
synthetically Active Radiation (FAPAR) product from
ESA’s MERIS sensor on-board Envisat [5]. It docu-
ments the presence of vigorously photosynthesising veg-
etation at the global scale using a purely radiometric def-
inition [6]. The Biosphere Energy-Transfer-HYdrology
(BETHY) model [7] uses a two-stream radiative trans-
fer model to compute light absorption within the canopy
and explicitly simulates FAPAR. Thus, both the satellite
product and the biosphere model can reproduce the same
physical quantity FAPAR, which opens the possibility for
assimilating FAPAR into BETHY using the techniques
developed in Section 2.

A method that is fully consistent with both the phi-
losophy of inverse modelling and the general approach
used when doing climate predictions is implemented
in the Carbon Cycle Data Assimilation System (see
http://www.CCDAS.org [8, 9, 10]) As shown in Fig-
ure 1, the system employs techniques from variational
data assimilation: here, the current state of the system
is estimated with the best possible accuracy using the



Figure 1. CCDAS two-step procedure: Inverse step followed by diagnostic or prognostic step.

best available observational constraints at the appropri-
ate scale of the problem. This first step is used to estimate
both process parameters and initial conditions for the sub-
sequent prediction. For example, state variable estima-
tion is important for the slowly evolving carbon pools,
whose turnover time (parameter) and concentration at the
beginning of the forecast (intitial condition) must be esti-
mated with confidence [11]. The prediction or prognos-
tic step then uses not only standard modelling techniques
to arrive at a forecast but also techniques of uncertainty
propagation to estimate uncertainty ranges for the predic-
tion [10]. This latter is a significant advance over current
modelling techniques.

A crucial aspect of CCDAS is the use of process param-
eters to bridge gaps in spatial and temporal scales. The
use of generic, process-oriented models of carbon fluxes
allows both the extrapolation in space (from sites to the
globe) and across time (from the current observations to
future predictions) [12]. The assumption of scale inde-
pendence and universality of process parameters is at the
core of mechanistic presentations of Earth system pro-
cesses.

The present paper reports on a study that includes MERIS
observations at site and global scale into the set of ob-
servations that are assimilated by CCDAS. Furthermore,
the study demonstrates the applicaton of quantitative net-
work design methods, also called Observing System Sim-
ulation Experiment (OSSE), to evaluate potential sensor
concepts in support of the design of future EO missions.
Section 2 introduces the formalism for assimilation and
network design as employed in CCDAS. Section 3 shows
results from simultaneous assimilation of different ob-
servables at six sites and Section 4 demonstrates potential
sensor evaluation. Section 5 presents conclusions and an
outlook.

2. CCDAS METHODOLOGY

This section gives a brief introduction into the formalism
underlying Figure 1 and shows the fundamental equa-
tions. The presentation of the methodology closely fol-
lows previously published work [13].

It is convenient to formulate the inverse problem of quan-
tifying the state of information on a specific physical
quantity by a probability density function (PDF): the
prior information is quantified by a PDF in the space of
control variables (here: process parameters of BETHY
and the initial concentration), and the observational in-
formation by a PDF in the space of observations. This
probabilistic framework is described in detail by [14]; an
introduction of the same framework with an exhaustive
overview on applications to biogeochemistry is given by
[15].

For the case of a linear model where the input to the in-
verse problem can be characterised by Gaussian PDFs
and the model error is Gaussian as well, the posterior in-
formation can be shown to be characterised by a Gaussian
PDF (see [14]). The mean of this PDF is given by:

x = x0+[MT C(d)−1M+C(x0)−1]−1MT C(d)−1(d−Mx0) ,
(1)

and the covariance of its uncertainty is given by:

C(x)−1 = MT C(d)−1M + C(x0)−1 , (2)

where M denotes the Jacobian matrix of the model (link-
ing control variables to observations), x0 and C(x0) the
mean and covariance of the prior information’s PDF. d
and C(d) denote the mean and the covariance of uncer-
tainty of the observations.

In the inversion procedure, the corresponding PDF has to
reflect errors in both the observational process and our
ability to correctly model the observations. We achieve
this via

C(d) = C(dobs) + C(dmod) (3)



and by subtracting the mean model and observational er-
rors from Mx0 and d, respectively.

We also note that Eq. (2) can be reformulated to:

C(x) = C(x0)−C(x0)MT (C(d)+MC(x0)MT )−1MT C(x0) .
(4)

One can easily verify that x also minimises the cost func-
tion (the exponent of the Gaussian posterior PDF) Eq. (1)

J(x̃) = 1
2 [(Mx̃− d)T C(d)−1(Mx̃− d)

+(x̃− x0)T C(x0)−1(x̃− x0)] (5)

and that the Hessian matrix H(x̃) of J , i.e. the matrix
composed of its second partial derivatives ∂2J

∂xi∂xj
, is con-

stant and given by

C(x)−1 = H(x̃) . (6)

If the model (denoted by M(x̃)) is not linear or any of the
PDFs of the inputs are non Gaussian, an approximation of
the posterior PDF is constructed via the minimum of the
cost function J , which is

J(x̃) = 1
2 [(M(x̃)− d)T C(d)−1(M(x̃)− d)

+(x̃− x0)T C(x0)−1(x̃− x0)] (7)

The posterior PDF is now characterised by an estimated
mean given by the minimum of J , and an uncertainty
given by the covariance matrix C calculated via Eq. (6)
is .

Any variational data assimilation system, be it in opera-
tional numerical weather prediction or oceanography, is
based on Eq. (7). The optimisation mode of CCDAS uses
an iterative procedure to minimise the cost function of
Eq. (7), which yields x, and computes C(x) via Eq. (6).

As long as the uncertainties in the individual data streams
are independent, the contribution of each of them to the
right hand side of Eq. (7), and, hence, to Eq. (6), can
be quantified by a separate term in the sum. In this for-
malism the contribution of a synthetic data set is to be
handled as follows:

• The mean value is generated with the model itself,
i.e. the equation d = M(x) is applied.

• The covariance of uncertainties is specified such as
to reflect the expected characteristics of the observa-
tional products generated by the instrument.

Consequently, the minimum of the cost function of
Eq. (7) is independent of the synthetic data: Two experi-
ments, one with and one without synthetic data, will yield
the same x. Eq. (6), however, takes full account of the
specified uncertainty in the synthetic data. The effect of
the synthetic data will show up as a reduction of posterior
parameter uncertainty.

For the second step (cf. Figure 1), i.e. the estimation of a
diagnostic or prognostic target quantity y, its PDF can be
approximated by a Gaussian with mean

y = N(x) (8)

and covariance

C(y) = D(N)C(x)D(N)T + C(ymod) , (9)

where N is the model (in Figure 1 denoted by diagnos-
tic/prognostic model) which maps the control variables
onto the target quantity, D(N) is its linearisation around
the mean of the posterior PDF of the control variables,
also denoted by the Jacobian matrix of N, and C(ymod)
is the uncertainty in the model result resulting from errors
in the model. Only if y coincides with one of the observa-
tions used in the inversion step, this uncertainty is already
accounted for in C(x), and we omit the C(ymod) contri-
bution. If N is linear and the posterior PDF of the control
variables Gaussian, then the PDF of the target quantity
is Gaussian as well and completely described by Eq. (8)
and Eq. (9).

Following the formalisms developed above, it can be seen
that the essential information about the value of the syn-
thetic data that are used to evaluate new data streams is
contained in the covariance matrix of uncertainties. Mean
values do not enter Eq. (6). Once the synthetic data can
be replaced by real data, the only modification is that this
resulting additional data term may shift x, and thus mod-
ify the linearisation D(N) and the curvature of J , i.e. the
Hessian, in Eq. (6).

3. ASSIMILATION OF MERIS MEDIUM RESO-
LUTION PRODUCT OVER SIX SITES

We assimilate FAPAR data from the MERIS medium res-
olution product at the sites listed in Table 1. The satellite
scenes with a resolution of approximately 1.2 km encom-
pass 15 by 15 pixels, i.e. have a scene size of around
18 by 18 km2. Approximate plant functional type (PFT)
distributions were estimated for the scenes based on in-
formation from the sites combined with images obtained
from Google Earth. These estimates were used as priors
within CCDAS.

The study’s base experiment consists of the assimilation
of the MERIS reduced-resolution FAPAR product. The
assimilation procedure minimises Eq. (5). To specify the
data uncertainty, Cd, we use an uncorrelated data uncer-
tainty of 0.1 representing the combined effect of observa-
tional error and error in the terrestrial biosphere model.
Prior values of process parameters and their uncertainties
are taken from [10].



Table 1. List of sites for assimilation.

Site Latitude Longitude Description
Sodankylä (Finland) 67◦ 21’ N 26◦ 38’ E Boreal evergreen forest
Zotino (Russia) 60◦ 45’ N 89◦ 38’ E Boreal mixed forest
Loobos (Netherlands) 52◦ 10’ N 5◦ 44’ E Temperate pine forest
Hainich (Germany) 51◦ 06’ N 10◦ 54’ E Temperate deciduous forest
Manaus (Brazil) 2◦ 35’ S 60◦ 06’ W Tropical rainforest, largely undisturbed
Maun (Botswana) 19◦ 54’ S 23◦ 33’ E Tropical savanna

Figure 2. Uncertainty reduction for diagnostic NPP for
6 sites with MERIS FAPAR (blue), MERIS FAPAR + CO2

fluxes (red), and MERIS FAPAR + CO2 and water fluxes
(yellow).

Figure 3. Prognostic NEP in gram carbon per m2 and
year (negative values are terrestrial uptake) including un-
certainties for 6 sites with MERIS FAPAR only.

During the minimisation procedure, the cost function re-
duces to less than 10% of its prior value. The calibrated
model, i.e. the model with the optimised parameters, can
now be used to compute biosphere atmosphere exchange
fluxes.

Applying Eq. (9) to the posterior parameter uncertainties
yields diagnostic net primary productivity (NPP) for the
years 2000 to 2003 on an annual basis (Figure 2), and
prognostic net ecosystem productivity (NEP) from 2000
to 2039, averaged for each decade (Figure 3).

The procedure just described is applied to the before-
mentioned base case, in which only MERIS FAPAR data
are assimilated, and to two more cases with additional
data provided by eddy covariance measurements of CO2

and water vapour fluxes. Figure 2 shows that for all
sites except Manaus, most of the uncertainty reduction
is already achieved with FAPAR data, information that
is available from space continuously and over large ar-
eas. By contrast, eddy covariance data is only available
locally at specific sites.

4. POTENTIAL SENSOR EVALUATION

This section describes two experiments used to evaluate
different sensor concepts. The first sensor concept is that
of a synthetic sensor with higher spatial resolution than
the base case (see Section 3). The second is a synthetic
sensor with ideal resolution, meaning that the spatial res-
olution is high enough to separate out and identify each
vegetation type (PFT) within the scene.

Since such sensors do not exist, we follow the methodol-
ogy described in Section 2 for the evaluation of synthetic
data. As pseudo-data we use the MERIS FAPAR data set
from our base case, while changing the data uncertainty
given by Cd. We characterise the sensor with higher res-
olution by a reduction of the data uncertainty for FAPAR,
which is assumed to go from 0.1 to 0.05. For the sen-
sor with ideal resolution, we additionally assume that it
provides the information necessary to fully constrain the
relative fractions of plant functional types (PFT) within
the scene. These PFT fractions therefore do not need to
be optimised, nor do they longer enter the calculation of



Figure 4. Reduction in uncertainty in diagnostic mean
NPP from 2000-2003 for the base case (blue), the higher
resolution sensor (red) and the ideal resolution sensor
(yellow).

uncertainties. We reflect this in our inversion setup by
excluding the PFT fractions from the list of unknown pa-
rameters. The constraint provided by the FAPAR obser-
vations can then act in a reduced parameter space and,
thus, achieve a better reduction of uncertainty. From the
parameter uncertainties, we compute uncertainty reduc-
tions for diagnostic mean NPP from 2000 to 2003 for the
base case (blue), the higher resolution sensor (red) and
the ideal resolution sensor (yellow) (see Figure 4).

5. CONCLUSIONS AND OUTLOOK

We have extended CCDAS in such a way that it is capa-
ble of performing simulations for a wide range of scenes
at the lcoal scale. First, we have included the assimila-
tion and uncertainty propagation of FAPAR data into the
CCDAS core. We have then included the assimilation of
synthetic (pseudo-)fluxes of CO2 and latent heat (water
vapour) at the site scale.

The extended system has been used to simultaneously as-
similate the 1.2 km MERIS FAPAR product over six sites.
This observational constraint yields a remarkable reduc-
tion in the uncertainty in process parameters. Projecting
this uncertainty to CO2 fluxes to the atmosphere, the ob-
servational constraint achieves an uncertainty reduction
of up to 80%. The uncertainty reduction is not much im-
proved by adding monthly averaged eddy flux observa-
tions of the carbon and water balance to the assimilation
data stream.

We have further demonstrated the concept of potential
sensor evaluation through data assimilation systems us-
ing, as examples, two hypothetical sensors: one with
higher resolution, and one with an ideal resolution that
makes it capable of unequivocally identifying the distri-
bution of plant functional types.

The next step will be to include a global version of

BETHY into the data assimilation system, which will
allow extending the range of observations to be assimi-
lated to two major data sets: The GLOBALVIEW [16]
database of atmospheric CO2 concentrations, and the
MERIS FAPAR product at the full global scale. This
will further allow to demonstrate the effect of the simul-
taneous assimilation of both of these global data sets in
terms of ucnertainty reduction in target quantities of in-
terest. Furthermore, this study will allow the evaluation
of global-coverage synthetic sensor concepts as demon-
strated for the local scale in Section 4. The methodology
developed in this study is implemented within an Interac-
tive Uncertainty Evaluation Tool for easy and rapid eval-
uation of new sensor concepts targeting the carbon cycle.

In conclusion, data assimilation offers exciting prospects
for semi-automated sensor design evaluation and OSSE
procedures for designated target quantities that may be of
interest to certain costumers of EO products. The present
study applies this concept to the broad field of land sur-
face processes, and could as such be extended with ease
to other sensors providing information on the state of
the land surface. Ideal candidates are land surface skin
temperature products from (A)ATSR, and skin layer soil
moisture from SMOS.
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