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Assimilation and Network Design

Thomas Kaminski (FastOpt) and Peter J. Rayner (LSCE)

1.1 Introduction

Information on the carbon cycle comes from a variety of sources. The methods
described in this chapter provide a formalism for combining this information.
Without such a formalism we are left making ad hoc choices about how to im-
prove our understanding in the light of disagreements among various streams
of information. The introduction of such methods into carbon cycle research,
principally via the atmospheric studies of [ETFG93, ETF95] revolutionised
the field and laid the groundwork for most of the subsequent investigations.

The methods in question are fundamentally statistical. They hence pro-
vide estimates of the confidence we should have in quantitative statements
about the carbon cycle. These statements are usually couched as spreads of
probability distributions or as confidence intervals. We refer to them generally
as posterior uncertainties. These posterior uncertainties depend on the prior
uncertainties of the various data streams that feed the estimation process,
the method for combining these data streams (usually some kind of model)
and on the particular state of the system. Of course an important aim of
measurements is to reduce the posterior uncertainty.

The present chapter is concerned with quantitative network design, by
which we understand the optimisation of a measurement strategy via minimi-
sation of this posterior uncertainty for target quantities of particular interest.
Examples of such target quantities are the long-term global mean terrestrial
flux to the atmosphere over a period in the past or in the future. The com-
putational tool that transforms the information provided by an observational
network of the carbon cycle into an estimate of posterior uncertainty is a
Carbon Cycle Data Assimilation System (CCDAS). Hence, network design is
closely linked to assimilation both conceptually and computationally. Much
of the work reviewed in this chapter lies in a small subset of possible network
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design applications for the carbon cycle. In particular it uses a limited set of
types of observations. This is not an inherent limitation of the approach but
rather a limitation in modelling approaches that can combine many streams
of measurements. This is changing now. Hence, much of the chapter looks
forward to applications that combine different measurement approaches. It is
useful, therefore, to describe the problem in general even if most cited exam-
ples are from simpler cases.

The first part of the chapter presents the formalism of carbon cycle data
assimilation. It will describe the generation of posterior uncertainties for both
simple and more complex cases. Next we review applications of that method-
ology to the simpler case of atmospheric transport inversion along with the
presentation of important caveats. This is followed by a sketch of how net-
work design might look in a more comprehensive CCDAS. Finally we give
perspectives and recommendations.

1.2 Methodology

It is useful to look at a data assimilation system as a tool that combines
various sources of information to form a consistent picture of the underlying
system, which in our case is the global or regional carbon cycle. Among the
pieces of available information are the observational data we would like to
assimilate, estimates for various rate constants of the system and dynamical
equations describing the system’s evolution.

Fig. 1.1. Schematic overview on two-step procedure for inferring diagnosed and
prognosed target quantities from data. Rectangular boxes denote processes, and oval
boxes denote data. The diagonally hatched box includes the inversion (calibration)
step, the vertically hatched box the diagnostic step, and the horizontally hatched
box the prognostic step
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One usually has one or more target quantities that one is interested in, for
instance the terrestrial uptake of a continent such as Europe over a particular
time interval. As we typically cannot observe the target quantity itself, we
use a numerical model to link the target quantity to the observations. Of-
ten this is most conveniently achieved in the two-step procedure sketched in
figure 1.1. First a set of control variables (a combination of initial- and bound-
ary conditions and tuning parameters in the model equations) are nominated,
and the underlying numerical model is run in inverse mode. This means prior
information on the control variables, observational information and, if avail-
able, information from other sources are combined with the model to form
posterior information on the control variables. If the set of control variables
includes model parameters, this inversion process is also called calibration
of the model. In figure 1.1 the inversion step corresponds to the diagonally
hatched box.

In a second step the posterior information on the control variables is used
to infer information on the target quantities. Figure 1.1 distinguishes between
diagnosed and prognosed target quantities, i.e. between quantities computed
in a diagnostic/prognostic model run. A diagnostic run occurs within the same
domain (spatial or temporal) as the inversion step, whereas a prognostic run
is (at least in part) outside this domain.

When nominating the control variables, it is not important that they are
interesting in themselves. In the two-step approach they take the role of inter-
mediate quantities on the way to the target quantities. The nomination of the
control variables must rather attempt the minimisation of biases and other
errors in the inversion step.

It is convenient to quantify the state of information on a specific physical
quantity by a probability density function (PDF): the prior information is
quantified by a PDF in the space of control variables, the observational in-
formation by a PDF in the space of observations, etc... [Tar87] describes the
probabilistic framework in detail and provides examples. When the input to
the inverse problem can be characterised by Gaussian PDFs, the model is lin-
ear, and the model error is Gaussian as well, [Tar87] shows that the posterior
information is also quantified by a Gaussian PDF. The mean of that PDF is
given by:

x = x0 + [MTC(d)−1M + C(x0)
−1]−1MTC(d)−1(d − Mx0) , (1.1)

and the covariance of its uncertainty is given by:

C(x)−1 = MTC(d)−1M + C(x0)
−1 , (1.2)

where M denotes (the Jacobian matrix of) the model (that links control vari-
ables to observations), x0 and C(x0) the mean and covariance of the prior
information’s PDF. On the observations’ side, d and C(d) denote the mean
and the covariance of uncertainty. In the inversion procedure the correspond-
ing PDF has to reflect errors in both the observational process and our ability
to correctly model the observations. We achieve this via
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C(d) = C(dobs) + C(dmod) (1.3)

and by subtracting the mean model and observational errors from Mx0 and
d, respectively.

We also note that with a little linear algebra (1.2) can be reformulated to:

C(x) = C(x0) − C(x0)M
T (C(d) + MC(x0)M

T )−1MTC(x0) (1.4)

One can easily verify that x (from (1.1)) also minimises the cost function
(the exponent of the Gaussian posterior PDF)

J(x̃) = 1

2
[(Mx̃ − d)T C(d)−1(Mx̃− d)

+(x̃ − x0)T C(x0)
−1(x̃ − x0)] (1.5)

and that the Hessian matrix H(x̃) of J , i.e. the matrix composed of its second

partial derivatives ∂2J
∂xi∂xj

, is constant and given by

C(x)−1 = H(x̃) . (1.6)

If the model is non linear or any of the PDFs of the inputs are non Gaus-
sian, the Gaussian PDF with the minimum of (1.5) as mean and covariance
given by (1.6) is an approximation of the posterior PDF.

For the second step, i.e. the estimation of a diagnostic or prognostic target
quantity y, its PDF can be approximated by a Gaussian with mean

y = N(x) (1.7)

and the covariance

C(y) = D(N)C(x)D(N)
T

+ C(ymod) , (1.8)

where N is the model (in figure 1.1 denoted as diagnostic/prognostic
model) that maps the control variables onto the target quantity, D(N) is its
linearisation around the mean of the posterior PDF of the control variables,
also denoted as the Jacobian matrix of N, and C(ymod) is the uncertainty in
the model result from errors in the model. Only if y coincides with one of the
observations used in the inversion step, this uncertainty is already accounted
for in C(x), and we omit the C(ymod) contribution. If N is linear and the
posterior PDF of the control variables Gaussian, then the PDF of the target
quantity is Gaussian as well, and completely described by (1.7) and (1.8).

1.3 Transport inversion

This section demonstrates network design for atmospheric transport inversion
before addressing network design in an entire CCDAS. The setup for atmo-
spheric transport inversion as introduced by [ETF95] uses a set of atmospheric
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CO2 observations provided by a regional or global sampling network to con-
strain surface fluxes. Adding this intermediate step before addressing network
design in an entire CCDAS is useful for a number of reasons:

• Transport inversions allow us to introduce the main network design con-
cepts for a single component of the carbon cycle.

• From the methodological point of view it is convenient that, at least for the
typical time scales of interest (from diurnal to decadal), the atmospheric
transport of CO2 is modeled as linear.

• Transport inversions often use only a single data stream.
• There have been successful applications of network design concepts.
• Finally, transport inversion has been a typical and, hence, familiar starting

point into CCDAS for many colleagues (and the authors).

In transport inversions the PDFs for priors and data are usually assumed
Gaussian, i.e. the posterior PDF is given by (1.1) and (1.2), where M denotes
the transport model, x and d the surface fluxes and data, respectively. [Ent02]
provides details on transport inversion and an exhaustive list of examples and
references.

As soon as the pioneering paper of [ETF95] introduced the calculation
of posterior uncertainties into the atmospheric inversion problem, it became
clear that they were disturbingly large. As a more recent example, the poste-
rior estimates in Fig.2 of [GLD+02] show that even for Europe, a relatively
well-sampled region, the posterior uncertainties are very large. Indeed there
were large areas of the world where, according to that study, the atmospheric
data added little information. In the optimistic case of the ocean this partly
indicated the tight prior constraint. Here the atmosphere is really a consis-
tency check. For many terrestrial regions the position is reversed. Even with
large prior uncertainties, which imply enhanced sensitivity of the posterior
flux to data, there is little reduction in uncertainty between the prior and
posterior fluxes. Clearly more measurements are needed.

Such measurements are expensive and difficult. Either they require devel-
opment and deployment of expensive instruments or the painstaking analysis
of flasks returned to central measurement facilities. It would be helpful if
augmentation of the network was guided so as to produce maximal return.
We exploit the important property of (1.2) that, for linear systems and a
given C(d), the posterior uncertainty depends only on prior uncertainty and
the Jacobian. Thus we can predict the information content of a measurement
without actually making it. We can use this property to study optimal de-
ployment of measurements.

Like much else in the basic theory of atmospheric inversions, this idea was
imported from solid geophysics. [HS92] (later published as [HS94]) optimised
various quality measures of a seismographic network using station locations
as parameters. This is a conventional minimisation problem but of a highly
nonlinear function. They used the procedure of simulated annealing for the
optimisation. The algorithm mimics the “shaking down” of ions into a crystal
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on a sufficiently gradual phase transition. Put briefly, a function is calculated
for a given vector of parameter values. The parameters are perturbed and the
function recalculated. If the new function value is lower the new vector will be
retained. There is also a finite probability that a higher value will be retained,
avoiding the algorithm being stuck in a local minimum. The perturbations
are proportional to a “temperature” and the probability of retension of higher
values is based on a Boltzmann factor (a negative exponent of ”temperature”).
The ”temperature” is reduced sufficiently gradually that the algorithm may
find a global minimum. As the ”temperature” is reduced, the probability of
retaining suboptimal values is also reduced so that the iterations of the system
converge.

[RET96] applied the same technique to atmospheric inversions using CO2

and δ13C measurements. The parameters were the longitude and latitude of
the observing sites. They chose two objective functions 1, reflecting different
selections of target quantities. The first target quantity was the total ocean
uptake, and the corresponding objective function is given by (

∑
C(Soc))

0.5

where the subscript indicates the submatrix containing only ocean sources.
The sum is over all elements of the submatrix. The second objective function
uses actually a set of target quantities, namely the regional ocean uptakes.
It expresses the uncertainty of regional ocean uptake summed over all ocean
regions and is given by (trace(C(Soc))

0.5
). The difference between the two

objective functions is the inclusion or exclusion of covariances.
The upper panel of figure 1.2 shows a plot of the first objective function

along with the locations for adding up to three new stations to the network
of [ETF95] as chosen by the optimisation algorithm. We see first that the
simulated annealing algorithm performs well in finding the minimum in the
function. Further, the positions of more than one station can also be predicted
from the function map; for example the optimum locations for two stations
are the two deepest minima on the map. The finding that the position of one
new station does not distort the map sufficiently to influence the next choice
greatly simplifies the problem if we are concerned with only small additions
to the network. It allows us to optimise incrementally. The approach has been
used by [PM02] and [LRW04].

The second striking thing about the upper panel of figure 1.2 is the prefer-
ence for land sites, despite the target quantity being ocean uptake. This arises
from the propagation of information in the presence of global constraints. In
the formulation of [ETF95] the global growth-rate is specified and given a
fairly small uncertainty. The land and ocean uptakes must sum to this figure.
Thus an improvement in knowledge of one of these gives a corresponding im-
provement in knowledge of the other. Such an improvement is best achieved

1 In network design, we are dealing with a nested optimisation problem. The in-
verse problem of solving the cost function of (1.5) is nested into the problem of
optimising the network quality. This quality is expressed by a second function,
which we will call objective function in order to avoid confusion with (1.5)
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by constraining the flux with the highest posterior uncertainty in the current
set-up. That is the Amazonian region and so this is chosen. The next favourite
region is also over land. This coupling of regions was the major conclusion of
the study.

The final thing to note about figure 1.2 is the radical difference between the
two objective functions. Unsurprisingly, when asked to optimise the summed
regional uncertainty (second objective function) rather than uncertainty of the
total ocean uptake (first objective function), the algorithm chooses to improve
estimates for the least constrained ocean regions. This is quite a different net-
work to the first example. It is clear that quantitative network design requires
precisely formulated questions. Requirements like “the best knowledge of bio-
sphere function in a region” will produce very different networks depending
on how they are mathematically formulated. It is also obvious that the net-
work depends on the prior uncertainties in use. If, for example, some external
information greatly reduced the prior uncertainty on the Amazon region, the
posterior uncertainty would (according to (1.2)) also decrease and possibly
eliminate the region from the favoured list. The influence of the prior cannot
be circumvented by using an objective function such as the uncertainty re-
duction (ratio of posterior to prior uncertainty). Here one has the opposite
problem so that a very weak prior will yield a more dramatic reduction with
the addition of further stations.

After these caveats one is left with robust general findings about the be-
haviour of optimal networks. For example [RET96] did show that the exis-
tence of global constraints couples information from disparate regions. Thus
improvements in knowledge of Amazonian fluxes improves knowledge of both
total land and ocean fluxes. A corollary is that the “hot-spot” strategy of
choosing the least known region for improved observations is globally efficient.

[RET96] also touched on the impact of different descriptions of data uncer-
tainty on network design. Rather than the uniform data uncertainty used to
generate figure 1.2 they used an uncertainty proportional to the atmospheric
signature of the terrestrial biospheric flux, meant to approximate the model
error contribution C(dmod) to the over-all uncertainty in (1.3). The different
choice did not overturn the main findings but the choice of scaling for the new
error term was arbitrary. [GFPS00] greatly expanded this aspect of the study
and produced networks that compromised between the strongest possible ob-
servations of a region (often gained by placing a station in the centre) and
large data uncertainty.

[GFPS00] made an interesting contrast with the earlier study of [RET96].
First they rejected the use of prior information at all. As such they required
larger numbers of stations (around 150) to saturate the information needed for
their inversion. They also studied a wider range of sampling strategies than
[RET96], especially aerial profiles and upper tropospheric transects. Again
it is the generalities of the study rather than specific information on place-
ment that will endure. Particularly (and controversially) they noted that the
“fence post” strategy of surrounding a target region with measurement sites
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was less effective than sampling of the concentration gradients among neigh-
bouring regions by placing stations near their centres. They also noted that
aerial profiles were more useful than airborne transects since measurements
in the upper troposphere were only weakly connected to surface sources by
atmospheric transport.

These early studies were made in the context of inversion configurations
common at the time. In particular they solved for a relatively small number
of regions and used data taken as monthly or annual averages. Both of these
have since changed and require some revising of earlier results. The use of large
regions in these early inversions gave measurements an unnaturally large in-
fluence since a measurement could constrain parts of the large region that
might never be connected to it by atmospheric transport. [KRHE01] noted
the dangers of this for biasing inversions and current practice is to increase
the number of regions, preferably to the full spatial resolution of the trans-
port model. This must have implications for network design. A hint of this
was given by [PMB+03] who noted that the range of preferred sites in their
network optimisation expanded as they increased the number of regions in
their inversion. They performed an incremental inversion in which sites were
added one at a time and the optimal site list for n sites was used for the place-
ment of site n + 1. In general, the approach suggested by the optimisation is
to place a site in each region. Obviously this is impossible in the context of
inversions at the resolution of the transport model. And even that resolution
can only provide a discrete approximation of the actual two-dimensional flux
field. Much of the underdetermined nature of the inverse problem is, thus,
hidden by suppressing most of its degrees of freedom [KH01]. It is unclear yet
how this affects the optimal network.

The other major change in inversion formulation since the initial network
design studies is the trend towards using data at higher time resolutions. In
the context of formal inversions this was pioneered by [LRSE02, LRSE03].
They showed that the differential sampling afforded by synoptic variations
in advection could act as a more precise regional constraint than the highly
diffusive monthly mean responses. Further, provided the biases due to the use
of large regions could be avoided, the estimates were usefully accurate, that is
errors were consistent with their uncertainties. This work still used the “large
region” approach although with considerably higher spatial resolution in the
source space than was traditional. [PRB+05] has since demonstrated inver-
sions of such high-frequency data in combination with the transport model
resolution of sources.

In a network design context, [LRSE03] investigated a network of high-
frequency monitoring stations intended to elucidate the regional patterns of
carbon flux within Australia. They use 12 regions over Australia, still much
coarser resolution than the transport model but unusually high for the large-
region approach. They used incremental optimisation to design the network.
They noted again the tendency to place a station in each region.
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Another application field for network design is the evaluation of space-
borne sensors providing integrals of carbon dioxide over vertical columns.
This type of application does not require an optimisation algorithm. It was
pioneered by [RO01], who estimated the sensor precision required by a trans-
port inversion to achieve a specified minimim posterior uncertainty for surface
flux field. A more recent example of this approach is provided by [HBA+04],
who evaluated the performance of a set of existing and planned satellite in-
struments.

What has not yet been tried is the network design problem with inver-
sions at the transport model resolution and high-frequency data. The problem
appears computationally challenging as the transport model Jacobian M in
(1.1) and (1.2) is large. Here the alternative formulation (1.4) helps. In the
case where we wish to optimise the constraint on an integrated flux we can
use (1.8), where N is a linear operator. Further we note that in the network
optimisation calculations only M and C(d) change as the network changes.
Substituting (1.4) into (1.8) we note that most terms like D(N)C(x0) can be
precomputed. If we are considering additions to a fixed network we can also
replace C(x0) by the posterior covariance from that network so most of the
term MC(x0)M

T is also precomputed. We are then left inverting matrices
of the dimension corresponding to the additional observations, which may be
feasible for diurnal or even hourly data.

An accurate specification of the uncertainty contribution from model er-
ror in (1.3) is notoriously difficult. Quantifying the impact of differences in
modelled transport is, however, less difficult and provides a popular surro-
gate for model error. An ideal environment for this task is provided by the
TRANSCOM project (see http://www.purdue.edu/transcom) of the Inter-
national Geosphere-Biosphere Programme (IGBP), which compares forward
simulations and inverse simulations of a set of transport models. [GLD+02]
describe the TRANSCOM inversion experiment, in which sixteen different
transport models are used with all other inputs to the inversion held con-
stant. They reported two uncertainty expressions as covariance matrices

CB
j,k =

1

16

16∑

i=1

(Si
j − Sj)(S

i
k − Sk) (1.9)

and
CW

j,k = Cj,k (1.10)

where i counts the sixteen models, j and k their 22 source regions. The overbar
denotes the ensemble average across the models and the superscripts B and
W stand for between-uncertainty and within-uncertainty, respectively. (1.9)
expresses the uncertainty in actual estimates from the inversion while (1.10)
expresses the average posterior uncertainty.

[PMB+03] used the above-sketched incremental optimisation approach to
extend the [GLD+02] network iteratively. A site was added to the current
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network when it performed best at reducing the average posterior uncertainty
over all source regions for any of the models or the within uncertainty (1.10).

[Ray04] also based a network design study on the [GLD+02] setup (with
one additional model, as described by [GLD+03]). He defined the sum of the
between (1.9) and within (1.10) uncertainties as total uncertainty and used
that as an additional objective function. The inclusion of the variance of ac-
tual estimates from (1.9) immediately circumscribes the study since one must
have real data to calculate these. One is, hence, left choosing networks from
a discrete list of stations. [Ray04] used the list of 110 compiled by [GLD+02]
from which they chose the 76 used in that study. The use of discrete lists also
demands a change in algorithm since simulated annealing requires continuous
fields. [Ray04] used the techniques of genetic algorithms. Briefly these main-
tain populations of potential solutions which are allowed to “breed”, “mutate”
and “compete”. The iterations of the scheme can be compared to generations
of a population and we hope that the overall fitness of the population will
improve. See http://csep1.phy.ornl.gov/CSEP/MO/MO.html and references
therein for more details.

[Ray04] optimised networks of 76 (like TRANSCOM) and 110 stations
and with the within-uncertainty or total-uncertainty objective functions. Fig-
ure 1.3 shows the cases for 76 stations. One might expect that the networks
for total-uncertainty would be smaller than for within-uncertainty as the op-
timisation rejected stations with large model-model differences. In fact the
opposite is the case, the networks generally dispersed in the presence of model-
model difference. It appears that we should consider model-model difference
like a small-scale heterogeneity. For example two models may place the max-
imum response to a flux at each of two neighbouring stations. A network
designed to reduce the impact of model-model difference will average across
this heterogeneity. If we optimise only for within-uncertainty we risk large
between-uncertainty and ultimately large total-uncertainty. The need for real
data limits the use of this approach, however. [Ray04] noted that stations with
highly variable (among models) responses to input fluxes would be penalised
in an optimisation of total uncertainty. This generality seems likely to survive
beyond the details of the study.
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Fig. 1.2. Each panel shows a separate objective function of the location of one
additional station to the current network. The station measures the same species
with the same uncertainties as the existing station at Cape Grim, Tasmania. The
upper panel’s objective function is the standard deviation (in GTC) of global ocean
uptake, and the lower panel’s objective function is the square root of the sum of the
variance of individual oceanic source components (in GTC), which provides a sepa-
rate constraint for each ocean region. The upper panel has a contour interval of 0.02
and the lower panel of 0.04. Contouring is curtailed at 80o to avoid problems arising
from multi-valued responses at the poles. The upper panel indicates by crosses the
optimal locations of three additional stations, and the lower panel uses the numbers
1 and 3 to indicate optimal locations of 1 or 3 more stations. Both figures taken
from [RET96].
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Fig. 1.3. Optimised networks for within-model (a) and total (b) uncertainty for a
76-site network. Numbers indicate the number of times the site is included. Figure
taken from [Ray04].
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1.4 CCDAS

The previous section has demonstrated network design concepts for the special
case of atmospheric transport inversions. Transport inversions deliver poste-
rior information on the exchange fluxes at the Earth’s surface over the at-
mospheric sampling period. Information on the processes behind the fluxes
can only enter the inversion via the priors, for instance by using the out-
put of a process-based model as a prior flux field. The transport inversion,
however, has no means of conserving the process dynamics. Thus the poste-
rior flux field will generally be inconsistent with the output of process-based
models. The second significant restriction of transport inversions consists in
the fact that possible target quantities (for use in (1.7) and (1.8)) can only
be diagnostic. Extending the modelling system by a process model that can
prognose the process dynamics avoids these two restrictions. The correspond-
ing inverse model is usually termed a carbon cycle data assimilation system
(CCDAS). Another benefit of including a process model is that it enables the
access to additional observations (see examples below). The CCDAS control
variables can be initial or boundary conditions as well as parameters in the
formulation of the processes. The capability of estimating process parameters
provides a means to directly improve our process understanding. The present
section generalises the design concepts that the previous section introduced
and illustrated for transport inversions to the design of networks that provide
observations to a CCDAS.

[KKRH02] present an early CCDAS version built around the Simple Di-
agnostic Biosphere Model (SDBM, [KH95]) coupled to the atmospheric trans-
port model TM2 ([Hei95]). CCDAS was later upgraded [KGS+03, Sch03,
RSK+05] by replacing SDBM with the Biosphere Energy Transfer HYdrol-
ogy Scheme (BETHY, [Kno97, Kno00]). In contrast to the diagnostic SDBM,
which is driven by observed vegetation index data, BETHY is a prognostic
model that uses a set of meteorological driving data to integrate the model
state forward in time.

Adding the terrestrial component to the transport model renders the com-
posite model non-linear. Hence, we must now use equations (1.5) and (1.6) to
infer posterior information on the control variables of a CCDAS. While the
CCDAS built around SDBM has 24 control variables, the one around BETHY
has 57 to about 1000, depending on the setup. For a control space of that size,
(1.5) is most efficiently minimised via an iterative gradient algorithm. At the
minimum of the cost function, CCDAS evaluates the cost function’s Hessian
to approximate the posterior uncertainties via (1.6). Typical CCDAS target
quantities are regional and global means of fluxes such as NEP, averaged over
diagnostic or prognostic integration periods. The target quantities’ posterior
uncertainties are derived via (1.8). The Jacobian matrix N is the derivative of
the target quantities with respect to the control variables. Efficient derivative
code providing the gradient (adjoint model), the Hessian and the Jacobian
are generated automatically from BETHY’s source code via the automatic
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differentiation tool TAF ([GK98]). This automation has proven useful, as it
allows quick updates of CCDAS after modifications of BETHY.

The above-cited CCDAS applications run globally and assimilate atmo-
spheric carbon dioxide flask samples provided by a global network and (in
a less formal pre-step) remotely sensed vegetation index data. There are a
number of assimilation systems that differ from CCDAS in the assimilation
approach or in the type of data that are assimilated. For instance, the system
of [Pak04] uses the same approach but assimilates eddy flux measurements of
heat and carbon into a one point version of the CSIRO Atmosphere Biosphere
Land Exchange (CABLE) model. [VBS01] also minimised (1.5) by a gradient
method, using the adjoint of their k-model to provide the gradient of J with
respect 16 parameters. They assimilated atmospheric temperature and carbon
dioxide but did not calculate posterior uncertainties.

Lacking the adjoint, gradient information is usually approximated by finite
differences. This means each component of the control vector is perturbed in
turn, and the perturbation’s impact on the cost function is evaluated in a
separate model run. This impact may be dominated by higher order effects,
if the perturbation is too large. If it is too small, the impact is dominated
by numerical noise. The approximate gradient usually slows down the conver-
gence of the gradient algorithm. The computational cost of the approximation
typically limits the complexity of the model, its spatial resolution, or the num-
ber of control variables that can be treated. [WLCC01] used finite difference
approximations for the gradient and Hessian (actually via Jacobians) with re-
spect to up to 7 model parameters for assimilation of eddy flux measurements
into a one point version of the CSIRO Biospheric Model (CBM). [SPVC03]
applied the same strategy to estimate 5 parameters of a one point version
of their model ORCHIDEE from eddy flux measurements. [WSL+05] use an
ensemble Kalman filter embedded in a finite difference gradient algorithm to
estimate 14 control variables of a box model from eddy flux and carbon stock
measurements.

The CCDAS approach finds the most likely value for the control param-
eters by maximising the posterior PDF. This is possible for a large variety
of distributions. However the identification of the inverse Hessian with the
covariance, key to the network design application, requires the assumption of
a Gaussian posterior. [RSB+02] avoid such assumptions by directly sampling
a three parameter posterior PDF which quantifies the fit of their coupled
biosphere-transport model to flask samples of atmospheric carbon and its iso-
topic composition. The model domain are the northern high-latitudes, and in
complexity the model is similar to the above-mentioned SDBM. [KK05] ap-
ply a guided Monte Carlo sampling method ([MRR+53]) of the 14 (C4) and
23 (C3) posterior parameter PDFs, for one point setups of BETHY. Their
posterior PDFs are generally close to Gaussian.

[Bar02] used a genetic algorithm to estimate 22 parameters of the con-
ceptual VAST model from measurements of NPP and carbon pool sizes over
Australia but did not calculate posterior uncertainties.
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The Optimisation InterComparison project (OptIC, see
http://www.globalcarbonproject.org/ACTIVITIES/OptIC.htm) evaluates dif-
ferent optimisation techniques for estimating four parameters of a simple ter-
restrial biosphere model.

Fig. 1.4. Evaluating a network control vector in terms of the posterior uncertainty of
the target quantity. Oval boxes denote data, and rectangular boxes denote processing

In a CCDAS context, the network design problem can be tackled very much
in the same manner as for a pure atmospheric transport inversion. The basis
is again the specification of a target quantity (see figure 1.4). The CCDAS
can then quantify the quality of a given network via (1.6) and (1.8) by the
target quantity’s posterior uncertainty. In contrast to the case of transport
inversion, this target quantity can also be a prognostic one, i.e. a network can
be optimised in order to reduce the uncertainty in a particular aspect of the
model prediction.

Next, a set of candidate networks needs to be defined. The methodological
framework of section 1.2 requires the network to provide its observations in
the form of a mean value and a covariance matrix of uncertainties. Now, one of
the major tasks of network design is to explore and evaluate not yet existing,
fictive networks. This means for many candidate networks only a fraction of
the observations is real and the remainder fictive. The most convenient way of
accounting for fictive observations is to ignore them in (1.5) and then assume
in (1.6) that the observed value equals the value that the model simulates from
the posterior mean. The inclusion of a fictive observation then only affects
the posterior uncertainty and not the posterior mean value. This means, for
each candidate network, we need to extend the real observations’ covariance of
uncertainty (1.3) by the components corresponding to the fictive observations.

The strategy for solving the network design problem will usually be se-
lected according to the set of candidate networks. If it comprises only a few
elements, the posterior uncertainty of the target quantity can be evaluated for
each of them and the networks be ranked accordingly. As an example imagine
the extension of an existing network for budgeting the Amazon rain forest by
a flux tower. It is likely that logistic and political constraints limit the set of
candidate networks to just a few.

Larger sets of candidate networks have to be searched by an algorithm
that is more efficient than testing candidate by candidate. Such search (or
optimisation) algorithms typically operate on a subset of Rn. Hence, the set
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of candidate networks is to be parametrised, i.e. it is represented as the range
of a function of a vector of network 2 control variables. For instance, when
the network design problem consists in adding a fixed number of atmospheric
sampling sites to a given network, these control variables can be the vector
of the station’s coordinates on the globe. The control vector could also have
components with a discrete domain, e.g. when the set of candidate networks
contains elements that differ by a data stream that can be switched on or off.

Fig. 1.5. Flow diagram for an iterative optimisation algorithm. Oval boxes denote
data, and rectangular boxes denote processing. figure 1.4 details box “parametrisa-
tion + CCDAS”.

The task of the optimisation algorithm is to search the domain of the con-
trol vector for an element such that the corresponding network minimises the
target quantity’s posterior uncertainty. Section 1.3 provides examples for ap-
plications of optimisation algorithms to network design. [RET96] and [Ray04]
demonstrated use of simulated annealing and a genetic algorithm. Another
important class of optimisation algorithms are the powerful gradient algo-
rithms [GMW81]. The principal functioning of these optimisation algorithms

2 To avoid confusion we prepend the term ’network’ and thus distinguish the control
variables determining the network from those determining the behaviour of the
model inside CCDAS (denoted by x in (1.5)).
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is sketched in figure 1.5. Starting by a first guess of the control vector, the
algorithms work iteratively through the following loop:

1. Perform at least one evaluation of the target quantity’s posterior uncer-
tainty as a function of the control vector (as depicted in figure 1.4). This
evaluation involves the composition of the network from the network con-
trol vector and then a CCDAS run for that network. Gradient algorithms
require, in addition, at least one evaluation of the gradient of the posterior
uncertainty with respect to the control vector.

2. Check for convergence and exit in case of convergence. A suitable con-
vergence criterion might be a threshold for the target quantity’s posterior
uncertainty. Gradient algorithms typically use a threshold for the gradient,
which approaches zero as the posterior uncertainty reaches a minimum.

3. Propose new network control vector.

The outputs of the optimisation algorithm are the optimal network control
vector, and thus the optimal network, plus the corresponding posterior uncer-
tainty of the target quantity.

A first demonstration of network design in a CCDAS context is provided
by the above-sketched study of [KKRH02]. They did, however, not enter into
an optimisation loop but tested just two candidate networks. Both networks
differ by a flux measurement in the model’s broadleaf evergreen (BE) biome.
The study did not select a particular target quantity, but looked instead at the
posterior uncertainties of the control variables. Figure 1.6 shows the posterior
values and uncertainties of the soil model parameter Q10 for both networks.

The above approach can be easily extended to network design problems
where more than one target quantity are to be considered. The network can
then be optimised for a function, e.g. a weighted sum, of the posterior uncer-
tainties of the individual uncertainties. Recall the above-mentioned example
of [RET96] who chose the regional ocean fluxes a target quantities and the
sum of squares as weighting function. This means they optimised their atmo-
spheric network to minimise the sum of squares of the regional ocean fluxes
posterior uncertainties.

1.5 Perspective and Recommendations

The previous section has made clear that a CCDAS constitutes an ideal tool
for network design, as it is able to rigorously quantify the performance of
an observational network in terms of the posterior uncertainty in specified
target quantities. These target quantities may be regional or global net fluxes
integrated over present or future periods, as required by policy makers as
a basis for their decisions. Alternative target quantities more relevant for
model developers may be fluxes resulting from particular processes such as
photosynthesis or heterotrophic respiration integrated over the distribution of
plant functional types.
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Fig. 1.6. Impact of a fictive flux measurement with uncertainty of 10 gC/m2/year
in the broadleaf evergreen (BE) biome onto the posterior uncertainty in the soil
respiration parameter Q10 as quantified by a CCDAS based on the Simple Diagnostic
Biosphere Model ([KH95]) and using atmospheric carbon dioxide samples. Upper
panel: Without fictive measurement. Lower panel: With fictive measurement. Figure
taken from [KKRH02].

The previous section has, however, also made clear that there are hardly
any CCDAS applications to network design. The primary reason is that as yet
only few of these systems exist, and none of them can yet handle all available
streams of observations relevant to the carbon cycle. Our first recommendation
is, hence, to upgrade the existing CCDASs (or build new ones) so as to handle
the available data streams.

Restricting the focus to the atmospheric component of the carbon cycle,
the situation is fortunately much better. There are a number of atmospheric
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transport inversion systems in operation, and some of them have been applied
in design studies for atmospheric networks, including air- and space-borne
instrumentation. Most of our insights are, hence, based on the experience from
these studies, and the following remarks generalise these insights to CCDAS-
based network design.

One of these generalised findings is that the optimal network usually de-
pends strongly on how one chooses the target quantity, that formalises the
quality of the network: For instance, it is likely that reducing uncertainties in
the 21st century’s terrestrial net flux either over Europe or globally requires
significantly different networks. When no decision can be made between com-
peting target functions, it may be useful to optimise for a weighting function
of their posterior uncertainties, or use a multi-criteria optimisation.

Also, the optimal network depends on the model underlying the CCDAS.
This has an interesting implication. Assume a network is to be constructed
to provide observations for assimilation into a particular CCDAS. We then
recommend to use that very CCDAS for the network design, because optimal-
ity of the network is only guaranteed with respect to the CCDAS it has been
designed with. Of course continual improvements in modelling and delays in
building network infrastructure mean that the optimal network will always
be slightly out of date. This is another reason why general properties of the
optimal network are more reliable than specific choices.

The reason for the dependency of the optimal network on the model is that
each model can only approximate the truth, i.e. there is model error. Another
generalisation from transport inversion systems is that incorporating model
error into CCDAS will impact the optimal network. A further recommendation
is, hence, first to quantify this uncertainty most accurately and second to
reduce it by improving the models underlying the CCDASs. Both is simplified
by keeping the CCDAS flexible with respect to the process formulations in
the model. Future studies must also pay more careful regard to the statistical
coherence of the modelling systems we use.
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