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Flying the Satellite into Your Model

Thomas Kaminski and Pierre-Philippe Mathieu

Abstract

The vehicles that fly the satellite into a model of the Earth System are observation operators. They provide
the link between the quantities simulated by the model and quantities observed from space, either directly (spectral
radiance) or indirectly estimated through a retrieval scheme (bio-geophysical variables). By doing so, observation
operators enable modellers to properly compare, evaluate and constrain their models with the model-analogue of the
satellite observations. This paper provides the formalism and a few examples of how observation operators can be
used, in combination with data assimilation techniques, to better ingest satellite products in models in a dynamically
consistent manner. It describes communalities and potential synergies between assimilation and classical retrievals.
The paper explains how the combination of observation operators and their derivatives (linearisations) form powerful
research tools. It introduces a technique called automatic differentiation that greatly simplifies both development and

maintenance of derivative code.
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I. INTRODUCTION

Earth System Models (ESMs) are complex software capturing our knowledge of how the ocean, atmosphere,
land and ice operate and interact. ESMs provide scientists with powerful tools to better understand our global
environment, its evolution, and the potential impact of human activities (e.g. analyses of relevant processes, their
interaction and feedback mechanisms). ESM applications range from numerical weather prediction (NWP) over
seasonal forecasting [see, e.g., Stockdale et al., 2011] to climate projections on centennial scale [Solomon et al.,
2007] or longer [Jungclaus et al., 2010].

Before being used for predictions, ESMs and their components should be confronted with observations in order
to assure their realism (validation). Such validation procedures can be extended to standardised assessments of
model performance in so-called benchmarking systems [see, e.g., Blyth et al., 2011]. This involves the definition
of metrics that quantify the model performance through the fit to observations. A further step towards the rigorous
use of the observations is their ingestion in formal data assimilation procedures, e.g. to constrain the model’s initial

state (initialisation) or tunable parameters in the model’s process representations (calibration).
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Such confrontation with observations is hampered by the fact that observed and modelled quantities typically differ
in nature or scale. For example, a flask sample of the atmospheric carbon dioxide concentration provides a value at
a specific point in space and time, whereas an atmospheric tracer model operates in a discretised representation of
space and time, i.e. on values that refer to a box in the atmosphere and a particular period of time. Any comparison
of the two quantities (modelled and observed) must, hence, take the uncertainty arising from this representation
error into account [see, e.g., Heimann and Kaminski, 1999]. Another example is a vertical profile of the ocean
temperature and salinity provided by a floating buoy (ARGO, see http://www.argo.ucsd.edu). Again the spatial
scales of the observation and the model do not match (in the horizontal dimension). In addition, ocean models are
formulated in terms of potential temperature rather than temperature. Since we can only compare quantities of the
same nature, some form of transformation is required before any comparison can take place. Such a difference in
nature is intrinsic to observations from space, where the raw quantities measured by satellites, i.e. spectral radiance
(photon counts [Mathieu and O’Neill, 2008]) are by nature only indirectly (through radiative transfer processes)
related to the model quantities of interest.

The link from the model to the observations is provided through a set of relationships expressed in terms of
an observation operator. We can think of an observation operator as an arm, which enables the ESM to access
a particular type of observation (see Figure 1). Observation operators are ranging in complexity from a simple
interpolation or integral scheme up to a chain of sophisticated non-linear radiative transfer models.

The layout of the remainder of this paper is as follows. Section II introduces the concept of an observation operator
and presents examples. The role of observation operators in applications is presented in section III. Section IV
highlights the use of derivatives of observation operators and introduces automatic differentiation, a technique to

provide these derivatives. Finally, section V draws conclusions.

II. OBSERVATION OPERATORS
A. Definition

Mathematically the observation operator is defined as a mapping H from the vector of state variables s onto the

vector of observed radiances d:
H:s—d (1)

The vector of state variables (state vector) defines the simulated system for a given time step at all points in space,
and the evolution of the system is described by a sequence of state vectors, forming a trajectory through the state
space. The state variables are also called prognostic variables, to contrast them with diagnostic variables, which are
computed from the state and evolve only indirectly through the evolution of the state. For example the albedo of the
land surface is diagnosed from the state of the vegetation-soil system. Hence, if we want to change the trajectory of
the model (e.g. to improve the fit to observations), we must arrange for a change of the state. The model will then

propagate this change of state forward in time. This means, to bring observational information into the model, we
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Fig. 1. Schematic of an ESM assessing several of data types via observation operators Hy, ..., Hy,.

must link the observations to the state: In other words the state vector constitutes the interface between the model
and the observation operator.

The solid path in Figure 2 sketches how an observation operator (/1) enables the comparison of simulated and
observed values at the sensor level, i.e. at the level of spectral radiances, typically referred to as level 1 data products
[Arvidson et al., 1986].

Another way to make EO data accessible to dynamical models is by feeding the satellite observations into a
retrieval algorithm and so derive a biophysical variable. Such EO products are usually called level 2 data products.
Internally, the retrieval algorithm also relies on a functional relationship that maps the biophysical variable(s) of
interest onto the spectral radiance. This mapping is similar, if not identical to the observation operator H1, although
the term used by the EO community is forward model. The retrieval can regarded as an inversion of H;. As the

examples below will illustrate, the retrieved level 2 product will typically not exactly coincide with a component
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Fig. 2. Model-Data Comparison at the sensor level (Level 1, solid arrows) and at the level of biophysical variables (Level 2, dotted arrows).

Ovals denote data, rectangulars some form of processing.

of the model state vector. Hence, the confrontation of level 2 data with the model (dotted path in figure 2) also

requires an observation operator (denoted by Ho).

B. Examples

Figure 3 attempts to sketch a generic observation operator H;, which links a model’s state vector to observed
spectral radiance. For the sake of clarity the figure focuses on processing steps that map one variable onto another
and omits further important steps that involve transformations in space and time, i.e. interpolation, averaging, or
orbit simulation.

The simulation of spectral radiances at the sensor level requires information from the atmosphere and the
land/ocean surface, including covers by ice or snow. Hence, the observation operator typically consists of various
modules. First, from the model state the relevant electromagnetic signatures are simulated. For example, for a
passive optical sensor observing the terrestrial vegetation this would be the reflected sun light, and it would be
computed by a model of the radiative transfer within the canopy, for examples see Pinty et al. [2006] or Knorr et al.
[2010]. For a passive microwave sensor that observes sea ice and snow, this would be the thermal emission, and it
would involve a model of the radiative transfer within the sea ice and snow pack [see, e.g., Wiesmann and Mditzler,
1999; Tonboe et al., 2006]. In the atmosphere this could be a model for the emissivity of clouds as a function of
the atmospheric state. The next step covers the path through the atmosphere from the observed components to the

sensor and requires a model of the radiative transfer through the atmosphere. Prime examples are the Radiative
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Fig. 3. Generic scheme of an observation operator for spectral radiance. Oval boxes denote data, rectangular boxes denote processing.

Transfer for Tiros Operational Vertical Sounder (RTTOV, [Eyre, 1991; Saunders et al., 1999]) for the microwave
and infra-red domain or 6S [Vermote et al., 1997] for the solar domain. The output of the radiative transfer model
can be compared with a level 1 product.

Each type of observation requires its own observation operator in order to be accessible to models. The complexity
of the observation operator typically reflects a compromise between the accuracy required for the application at hand
and the available computational resources. In a space mission, the observation operator depends on characteristics
such as the orbit of the platform or the measuring principle and, thus, spectral sensitivity of the sensor. The
observation operator also depends on the dynamical model. One aspect is the state space, which depends on the
model formulation. For example, an atmospheric model can either diagnose clouds or include them in the state

space [Chevallier et al., 2004]. In the former case the diagnostic cloud model is part of the observation operator
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in the latter it is not. Even though parts of an observation operator are usually model-dependent, it is desirable to
implement the observation operator in a modular form with carefully designed interfaces. This modularity maximises
the flexible use for assimilation and retrievals and the adaptation to new models or observations, i.e. it assures multi-
functionality.

The crucial role of observation operators is reflected in comparison exercises such as the radiation transfer model
intercomparison (RAMI) initiative for the transfer of radiation in plant canopies and over soil surfaces [Pinty
et al., 2001; Widlowski et al., 2007]. A similar activity for the atmosphere is the international Intercomparison
of 3D Radiation Codes (I3RC) project [Cahalan et al., 2005]. The I3RC focuses on the interaction of solar
and thermal radiation with cloudy atmospheres. Another activity in this domain is the Cloud Feedback Model
Intercomparison Project (CFMIP) which has set up the CFMIP Observation Simulator Package (COSP) [Bodas-
Salcedo, 2011]: The modular package includes a set of observation operators that map model output consisting
of “vertical profiles of temperature, humidity, hydrometeor (clouds and precipitation) mixing ratios, cloud optical
thickness and emissivity, along with surface temperature and emissivity” onto a set of level 2 products retrieved
from “the following instruments: CloudSat radar, CALIPSO lidar, ISCCP, the MISR, and the Moderate Resolution
Imaging Spectroradiometer (MODIS)”. The above-mentioned “fast radiative transfer code RTTOV can also be linked
to COSP to produce clear-sky brightness temperatures for many different channels of past and current infrared and
passive microwave radiometers.” Not only does COSP greatly simplify the comparison of model output with EO
products. Using standardised interfaces it allows to compare multiple models through the same observation operators
with the same EO data, and thus facilitates the attribution of a model-data mismatch to aspects of the model, the

observation operator, or the observations.

III. APPLICATIONS OF OBSERVATION OPERATORS

This section starts with an introduction of the formalism behind advanced data assimilation and retrieval schemes.
The details of the formalism are useful to understand the application examples in this section and the need for

derivative information that is discussed in section IV.

A. Formalism of Data Assimilation and Retrieval

Data assimilation is a procedure to combine the information from observations with the information in a dynamical
model. There is a range of data assimilation techniques with varying degree of sophistication. The simplest techniques
try and replace the model state by the observed state, or, more precisely, some average of the two. More advanced
approaches can assimilate observations d which are linked to the state through an observation operator H. H can be
an observation operator for in situ data or for EO data, for example the operators H; and H» introduced in section II
(see equation (1) and figure 3)). The assimilation problem is typically formalised as a minimisation problem for a

misfit function

(= 2pr)" Cxpr ' (2 — 2pr) )
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where we introduce the symbol x for the vector of unknowns instead of reusing the above defined symbol for the
state, s. This is more convenient for later use where x is more general than the state.

The function J(z) is composed of two terms. The first term quantifies the misfit between the observations and
their simulated counterpart (observational term). The second term quantifies the deviation of the model state from
the prior information x,, (prior term often also called background). Both terms are weighted in inverse proportion
to the respective uncertainties, i.e. the combined uncertainty in the observations and observation operator, Cq4, and
the uncertainty in the prior information, Cxpr. The superscript 17" denotes the transposed. Note that the equation
does not require the observations to be provided in the space time grid of the model. The observations can come
in any spatio-temporal distribution, e.g. the above mentioned point measurements or orbits, as long as we can
formulate the appropriate observation operator.

Equation (2) formalises what in numerical weather prediction is called three dimensional variational assimilation
(3D-Var) [Courtier et al., 1998], more precisely its analysis step, which is then followed by a forecast step.
Operationally the assimilation scheme is run in cycling mode through these two steps. In such a cyclic assimilation
scheme, the prior information is provided by the previous forecast, i.e. it is consistent with the dynamical information
from the model, and at the same time suffers from errors in the model.

The model dynamics are even more emphasised when the scheme of equation (2) is extended to contain

observations d; at different time steps (¢ =, 1...,n) to constrain the initial state so = x through:

I@)= 5 3 (Hlsiw) - d)" Ca,™ (H(si(w) — o)
—|—% (x — a:pr)T Cxpfl (x — zpy) 3)

This is the setup of the analysis step in four dimensional variational assimilation (4D-Var) schemes, where the

dynamical model M is used as a constraint that links the states at all observation times via
siv1 = M(s;) “)

to the initial state so = x. For convenience the notation suppresses the time dependent nature of H and M, and
it also assumes that the data uncertainties at different time steps are uncorrelated. While 4D-Var solves a single
minimisation problem to find a (dynamically consistent) model trajectory, 3D-Var is a sequential approach, i.e. it
solves a sequence of minimisation problems, which yield a dynamically inconsistent sequence of model states.

In the 4D-Var approach, the vector of unknowns x can be extended from the initial state to boundary values and
process parameters (model calibration). Since these are external controls to the dynamical system, z is also called
control vector, a term taken from control theory [Lions, 1971]. We usually try to select the control vector such that
it comprises the fundamental unknowns of the system at hand.

The Kalman Filter is another sequential approach. Its analysis step solves a slightly simplified form of equation
(2), in which H is replaced by its linearisation H’ (Jacobian matrix) around the prior. This allows an analytic

solution z,,, of equation (2):

Tpo = Tpr — CxpoH'TCa ™ (H'xpy — d;) (3)
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the evaluation of which involves the inversion of the (typically high dimensional) matrix
Cxpo = (H/Tcd_lH/ + Cxpr_l)_1 (6)

which expresses the uncertainty range in x,, that is consistent with uncertainty ranges in the data and the prior
values.

In case of linear H and Gaussian probability densities for the prior and the data, the solution of equation (2) is
Gaussian as well, and completely described by its mean (equation (5)) and covariance (equation (6)). This formalism
is, for example, applied in inverse modelling of the atmospheric transport of carbon dioxide, where an atmospheric
transport model takes the role of H, and the space-time distribution of the surface fluxes takes the role of z. Note

that the cost function’s second derivative (Hessian matrix) J” is related to Cxpo through:
Cixpo =J"(2)7! (7)

In the non-linear case we cannot solve equation (2) or equation (3) analytically, but via the cost function’s Hessian
we can use equation (7) to approximate Cxpo. Via a linearisation N’ of the model that links the control variables

to model outputs of interest f we can approximate the uncertainty range of these model outputs Cg by:
Cr = N'CypoN'T (8)

The alternative to the above assimilation approaches are ensemble methods such as Markov Chain Monte Carlo
[see, e.g., Metropolis et al., 1953] or Ensemble Kalman Filter [Evensen, 2003] techniques, which rely on forward
simulations to sample the control space. The feasible ensemble size is limited by the computational demands which
essentially reflect the complexity of the underlying model.

We used equation (2) to introduce the formalism of data assimilation. The same equation also plays a central
role in retrievals. Minimisation of equation (2) describes a retrieval algorithm for the entire state. The prior term
regularises what is otherwise an underdetermined inverse problem: Several of the unknown variables that influence
the observed signal vary continuously with altitude (continuous vertical profiles). Even though we formulate our
observation operators on a vertical grid, there are typically fewer measurements than unknowns. Consequently there
are many sets of unknown variables that yield an equal fit to the observations. The prior term provides additional
information on every unknown and helps the retrieval algorithm to find a unique solution. Further equation (6) or
equation (7) are used to furnish the retrievals with uncertainty ranges.

Another perspective on the assimilation of level 1 data is to regard it as an advanced form of retrieval, and the
assimilation system as an advanced retrieval algorithm that optimally combines the information from remote sensing,
radiative transfer and dynamical model. The other point to note is that H is usually not constant in space and time.
For instance the radiative transfer in the optical domain is affected by atmospheric water vapour and aerosols. A
retrieval of, say, a land surface variable requires information on clouds and aerosols. In a coupled atmosphere-land
model these are available in a form that is dynamically consistent with the state of the land surface but, on the

other hand, also affected by errors in the model.
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B. Data Assimilation examples

The prime example of an atmospheric 4D-Var system is the one operated at the European Centre of Medium-
Range Weather Forecasts (ECMWF) [Rabier et al., 2000]. Currently about 98% of the assimilated observations
are remotely sensed, and their majority are level 1 data [IFS, 2010]. Sensors include ATOVS, AIRS, IASI, SSMI,
and AMSR-E as well as geostationary water vapour clear-sky and rain affected SSMI radiances, together with the
appropriate observation operators [IFS, 2010]. The system is used with a 12 hour assimilation window to initialise
the operational forecast. Several other weather services (including those of Canada, France, and the UK) are running
similar 4D-Var systems.

A prominent example of a variational ocean assimilation system was set up by the ECCO consortium (see
http://www.ecco-group.org) around the MITgem [Marshall et al., 1997]. The system [Stammer et al., 2002] uses a
combination of in-situ observations and level 2 remote sensing products (including sea surface height, sea surface
temperature, wind-stress, and geoid) for decadal-scale assimilation windows [Wunsch and Heimbach, 2006]. Owing
to these long assimilation windows the prescribed exchange fluxes with the atmosphere are a major source of
uncertainty in their model trajectory. Hence, this boundary condition is included in the control vector along with
the initial state. Various applications of the assimilation product require closed property budgets over the entire
assimilation period which are achieved via variational approaches in contrast to sequential approaches. Examples
are mechanistic or diagnostic studies of climate variability or oceanic tracer transport problems [Wunsch et al.,
2009].

A recent example of a regional variational assimilation system for the coupled ocean sea-ice system in the
Northern latitudes was developed by Kauker et al. [2009]. This system is operated for assimilation windows from a
few months to a few years. Their control vector combines (depending on the application) the initial state, boundary
conditions and process parameters. The system is constrained by in-situ observations and level 1 products of sea
ice concentration, thickness, and displacement.

An example for the global terrestrial vegetation is provided by the Carbon Cycle Data Assimilation System
(CCDAS). Initially set up for the assimilation of in-situ observations of the atmospheric carbon dioxide concentration
[Rayner et al., 2005], the system was extended with observation operators for two types of level 2 products, namely
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) products [Knorr et al., 2010] and for the
column-integrated atmospheric carbon dioxide concentration (XCO2) [Kaminski et al., 2010b]. The observation
operator for FAPAR was a considerable extension to the previous system, because it required modules for the
simulation of vegetation phenology and of hydrology, which were previously provided by an off-line calculation.
The observation operator for XCO2 consists of a model of the atmospheric transport that solves the continuity
equation for carbon dioxide [Heimann and Korner, 2003]. The assimilation window ranges from years to decades.
Considering uncertain values of the parameters (constants) in process formulations as the major source of uncertainty
in the model trajectory, the control vector is composed of (depending on the setup) in the order of 50-100 (in

extreme cases up to 1000) process parameter values. This type of application is called parameter estimation or
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model calibration.

C. Retrieval Examples

The integrated retrieval of Toudal [1994] or Melsheimer et al. [2009] solves simultaneously for biophysical
variables (level 2 data) of the atmosphere (wind speed, total water vapour, cloud liquid water) the ocean (sea surface
temperature) and the sea ice (ice surface temperature, total sea ice concentration, multi-year ice fraction). Technically
they use equation (5) in an iterative procedure (x,, from one step is provided as x,, to the subsequent step), which
recomputes H’ by linearisation around the current x,,. Upon convergence they deliver posterior uncertainties via
equation (6). Their input are radiances (brightness temperatures) observed by the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E). Their prior values are taken from a range of sources including analysis data
provided by an NWP assimilation system, or separate univariate retrievals. This integrated retrieval is performed
individually for each observed point in space and time, at 12.5 km horizontal resolution. Though the use of the
same level 1 data in an assimilation system (assuring dynamical consistency between the atmosphere, ocean and
sea ice components) appears desirable, it is highly challenging in various respects: From a software development
perspective, because it would require an assimilation system built around a coupled atmosphere, ocean and sea
ice model. From a computational perspective, because a single run of the coupled model at 12.5 km resolution is
already computationally expensive, let alone an iterative assimilation scheme.

Another example is the Joint Research Centre-Twostream Inversion Package (JRC-TIP) [Pinty et al., 2007],
which solves equation (2) for model parameters controlling the radiation transfer regime in vegetation canopies,
namely the effective Leaf Area Index (LAI) and the spectral scattering properties of the vegetation and the soil. The
latter information is then used to estimate the spectral fluxes scattered by, absorbed in and transmitted through the
vegetation layer as well the fluxes absorbed in the background (radiant fluxes). Further the system uses equation (7)
to infer the uncertainty in the retrieved parameters and equation (8) to propagate these forward to uncertainties in
the simulated radiant fluxes. In its typical setup the system uses observed albedos in two broad wavebands (visible
and near infrared) [Pinty et al., 2007, 2011a, b].

The JRC-TIP is constructed around a one dimensional two stream model, which takes three-dimensional radiative
transport effects into account [Pinty et al., 2006]. As a consequence the retrieved vegetation parameters are effective
parameters (i.e. their values are only meaningful within this model) and are determined such that the radiant fluxes
are simulated as accurately as possible. This illustrates a crucial point when confronting retrieved level 2 variables
with their ESM counterparts: One has to make sure that the variables have the same meaning in the forward model
that is used for the retrieval and the observation operator that is used for its assimilation. For the JRC-TIP products
this is the case for the radiant fluxes and soil parameters, for the effective vegetation parameters it requires the use
of the same two-stream model in the observation operator.

A serious practical difficulty in data assimilation is the specification of Cq. In the case of level 2 data Cgy
is the posterior uncertainty of the retrieval. Since the retrieval is typically carried out point by point, uncertainty

correlations in space and time are difficult to assess. Another issue is the data volume required by the uncertainty
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information: For a product of a retrieved biophysical variable at n points in space and time Cq contains (taking its
symmetry into account) n* (n+1)/2 different values, a volume that is usually prohibitive in real world applications.
The challenge is to develop ways of providing (approximations of) Cq that retain the essential information in a
minimal data volume. The contribution by the observational uncertainty Cq is certainly easier to specify in the
case of level 1 data. Their direct assimilation automatically propagates, through the observation operator H;, the

full information content of Cg4 into the model.

D. Observing System Simulation Experiments and Quantitative Network Design

Observing System Simulation Experiments (OSSEs) and Quantitative Network Design (QND) are two method-
ologies that rely on assimilation systems. By an observing system or observational network we understand the
superset of all observations that are made available to an assimilation system.

An OSSE (for an overview see Bottger et al. [2004]) uses a model plus observation operators to simulate model
analogues of observations that would be collected by a potential observing system (often the current observing
system extended by a potential new data stream). The model is also used to simulate a surrogate of reality, i.e. a
reference trajectory over the period of investigation. Then an assimilation/forecast system (often built around the
same model) is used to evaluate some measure of the performance of the potential observing system and its sub-
systems. In NWP, the performance of an observing system is usually quantified by the quality (skill) of a forecast
from the initial value that was constraint by the observation system. Via this procedure one can, for example, assess
the added value of a planned mission in terms of an increment in forecast skill.

QND (for an overview see Kaminski and Rayner [2008]) relies on the ability of an assimilation system to evaluate
posterior uncertainties on target quantities of interest via equation (7) and equation (8). For a linear model, this
propagation of uncertainty is independent of the observational value, it just depends (via equation (7) and equation
(3)) on the data and prior uncertainties, the sensitivity of the observations with respect to the control variables and
(via equation (8)) on the sensitivity of the target quantity to the control variables. A first application to mission
design was presented by Rayner and O’Brien [2001], who ran an inversion system built around a linear model of
the atmospheric transport of carbon dioxide in QND mode. They assessed the utility of remotely sensed carbon
dioxide in constraining its surface fluxes. Their benchmark was the in-situ flask sampling network. Kaminski et al.
[2010b] generalised the method to the above mentioned CCDAS, and assessed the utility of XCO2 observations
by an active LIDAR instrument. The performance of the observing system is quantified by posterior uncertainty
of surface fluxes and compared to the performance of the in-situ network. Kaminski et al. [2010a] use CCDAS to
assess the performance of potential optical sensor configurations in constraining the vegetation’s carbon and water
fluxes. Their benchmark was the MERIS sensor.

For both approaches, the importance of suitable observation operators is obvious. A disadvantage is that the result
depends on the model in the assimilation system. Both techniques require the specification of data uncertainties for

the hypothetical data streams to be evaluated.
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IV. DERIVATIVES OF OBSERVATION OPERATORS

This section first summarises how the capability to evaluate derivatives of the observation operator is used
in efficient schemes for retrieval, assimilation or QND and then introduces a technique for providing derivative
information.

In variational assimilation, equation (2) or equation (3) are typically minimised in an iterative procedure that
varies x. To do this efficiently so-called gradient algorithms are employed. They rely on the capability of evaluating
the gradient of J with respect to x to define a search direction in a (usually) high-dimensional space of unknowns.
The gradient is useful, because it yields the direction of steepest ascent. For equation (2) the gradient takes the

form
VJ(z) =H'(2)"Cq ™" (H(z) — d) + Cxpr ' (T — zpy), 9)

and we see that its evaluation requires the capability to multiply the transposed of H’ with a vector. The uncertainty
estimation via equation (7) based on J” requires, in addition, second derivative information on H. This second
derivative expresses the curvature of (the components) of H, i.e. the change of its linearisation corresponding to a
unit change of z.

Likewise the Kalman filter requires derivatives of H: In equation (5) it multiplies the matrix H' and its transposed
with vectors, and for the evaluation of equation (6) it needs to invert a matrix that contains H’ and its transposed.
One can do this inversion by precomputing H' or by so-called matrix-free methods that repeatedly multiply H’
and its transposed with vectors.

As mentioned, advanced retrieval algorithms are based on the same equations, i.e. they typically solve equation
(2) either via gradient methods, or via equation (5), and use either equation (7) or its approximation equation (6)
to derive uncertainties. Hence, they benefit in the same way on derivatives of H as data assimilation systems. The
same holds for QND schemes which also rely on uncertainties via equation (7) or its approximation, equation (6).

Traditionally derivatives were approximated by multiple forward runs (finite difference approximation) [see, e.g.,
Toudal, 1994; Melsheimer et al., 2009]. This discretised procedure has two disadvantages: The first is the limited
accuracy which degrades the performance of the above listed algorithms. For example, incorrect gradient information
will slow down or prematurely stop the iterative minimisation of J. The other disadvantage is that the computational
cost of this approximation grows linearly with the length of the control vector.

Both disadvantages can be avoided by Automatic differentiation (AD [Griewank, 1989]). AD is a procedure
which generates source code for evaluation of derivatives from the code of the underlying function. In the current
case this function is the observation operator mapping the state variables onto remote sensing products. The function
code is decomposed into elementary functions (such as +, —,sin(-)), for which the derivative (local Jacobian) is
straightforward to derive. The derivative of the composite function is then constructed via the chain rule as the
product of all local Jacobians. According to the associative law, this multiple matrix product can be evaluated in
arbitrary order without changing the result. The tangent linear code (or just tangent code) does this evaluation in

the same order as the function is evaluated, which is called forward mode of automatic differentiation. The adjoint
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code uses exactly the opposite order, which is called reverse mode of automatic differentiation. Even though both
modes yield the same derivative, depending on the dimensions of the function to be differentiated, there may be
large differences in their computational efficiency: The CPU time required by tangent code is proportional to the
number of the function’s input variables but independent on the number of output variables. By contrast, the CPU
time required by the adjoint code is proportional to the number of output variables and independent of the number
of input variables. Both the tangent and adjoint codes use values from the function evaluation (required values,
see Giering and Kaminski [1998]). Providing required values to the adjoint code is more complicated than to the
tangent code. Being an application of the chain rule, AD provides derivatives that are accurate up to rounding error.

For variational assimilation we require the derivative of the scalar-valued cost function J(z) of equation (2) or
equation (3) with respect to a usually high-dimensional vector x. For a state-of-the-art model, only the adjoint
can provide this derivative with sufficient efficiency. A product H'v of H' with a vector v yields the directional
derivative of H' in the direction defined by v, i.e. the derivative of the function H(x + tv) of a scalar unknown
t. Hence, this type of product is evaluated most efficiently in forward mode, i.e. by the tangent linear code of H.
By contrast a product of the form H’ T is the (transposed of the) derivative of the scalar valued function v* H(z),
which is evaluated most efficiently in reverse mode, i.e. by the adjoint of H. The scalar forward and reverse modes
required for efficient evaluation of the above Jacobian-vector products are the standard forms of derivative code.
The scalar mode is contrasted by the vector mode. In forward mode the vector mode simultaneously computes the
sensitivities with respect to multiple input quantities, and in reverse mode simultaneously the sensitivity of multiple
output quantities. Experience shows that the vector mode is considerably more efficient than multiple runs in scalar
mode [see, e.g., Kaminski et al., 2003]. We use the vector mode for applications that require the entire Jacobian,
H'. Here the sensible choice between forward and reverse modes depends on the relative dimensions of state and
observation spaces.

A particular advantage of AD is that it can guarantee readability and locality [Talagrand, 1991], i.e. every
statement in the derivative code belongs to a particular statement in the function code. As a consequence, if the
function code is modular, the same modularity is preserved in the derivative code. Another distinct advantage of
the AD approach is that it simplifies the maintenance of the derivative code, because is can be quickly updated
after any modification of the function code.

Since an AD tool operates at the code level, it is restricted to a particular programming language. Luckily there
are AD tools for the most frequently used programming languages in Earth System Science, namely Fortran and
C. It is a considerable effort to develop and maintain an AD tool up to a level robust enough for relevant scientific
applications. Over the last decade, tool development has made good progress and there is a long list of successful
AD applications to component models of the Earth System. Meanwhile AD can generate a highly efficient adjoint
of a general circulation model [Heimbach et al., 2005] with more than 100.000 code lines (excluding comments)
in less than a minute. The capability of running on parallel architectures is preserved [see, e.g., Heimbach et al.,
2005; Giering et al., 2005].

The AD process can be mimicked by hand [see, e.g., Rabier et al., 2000; Weaver et al., 2003; Moore et al., 2004;
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Kleespies et al., 2004; O’Dell et al., 2006; Barrett and Renzullo, 2009], i.e. a human transforms the function code
line by line into derivative code following the same recipes [Giering and Kaminski, 1998] that are implemented
in AD tools. The advantage of hand-coding derivatives is that a human can be more flexible than a software tool.
On the other hand the hand-coding approach is tedious and error prone. As a consequence this approach suffers
from a considerable development and maintenance effort, and is restricted to first derivatives. The large assimilation
systems in the above list [Rabier et al., 2000; Weaver et al., 2003; Moore et al., 2004] were set up before AD tools

were mature enough to handle the respective function codes.

V. CONCLUSIONS

EO products are only accessible to Earth System models via suitable observation operators. There are overlaps
between observation operators used to confront dynamical models with EO data (validation, benchmarking, assim-
ilation) and forward models used for retrievals of biophysical products. To allow a most flexible use, observation
operators should be designed in modular form with carefully constructed interfaces. Both advanced retrieval
algorithms and advanced assimilation techniques (Kalman Filter, 3D-Var, and 4D-Var) rely on first derivatives
(linearisations) of the observation operators, i.e. their tangent and adjoint versions. Assessment of uncertainties
and quantitative network design in addition require second derivatives of observation operators. To maximise
their application range, these derivative codes should be developed and maintained together with their underlying
observation operators. This procedure is, for example, applied at the European Centre for Medium range Weather
Forecasting. Automatic Differentiation (AD) provides a means to minimise the development and maintenance effort
for these derivative codes. There is an ever-increasing list of successful AD applications to large-scale Earth sciences
codes, including many observation operators. Meanwhile there is a tendency among code developers to achieve and
preserve compliance with an automatic differentiation tool and thus enhance the functionality of their modelling
system through the availability of derivative information [see, e.g., Heimbach et al., 2005; Kaminski et al., 2003;
Pinty et al., 2007; Kauker et al., 2009; Lewis et al., 2011]. To maximise sustainability of such a modelling system,
it is essential that the automatic differentiation tool is permanently maintained and adapted to user needs by an
experienced development team.
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