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Motivation

 Land uptake - C4MIP results (Friedlingstein et al. 2006)
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Objective

General Objective:

Exploit observational information to reduce uncertainty in terrestrial model simulation 
on climate time scales, through data assimilation

Specific Objective:

Quantify the benefit of particular data streams, including hypothetical observations; 
here: FAPAR and (in-situ) atmospheric CO2

Uncertainty in a terrestrial model simulation from:

Driving data

Relevant processes and their implementation (structural)  

Process parameters (parametric)

Initial state
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Flow of Information in forward sense 

71 terrestrial parameters plus 
1 atmospheric parameter
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Carbon Cycle Data Assimilation System

• Iterative minimisation of J(x)  

J(x) = ½ [ (x-xpr)TCpr -1(x-xpr) + (M(x)-d)TCd-1(M(x)-d) ]

• Uses gradient of J with respect to parameters
• Second derivatives (Hessian) at minimum xpo

provide approximation of parameter uncertainties 
(error bars)

Cpo-1 = ∂2J(xpo) / ∂x2

• Uncertainties on current of future target quantities 
(e.g. net flux, NEP) via linearisation of model 
(Jacobian matrix)

CNEP = ∂M/ ∂x Cpo ∂M/ ∂xT

• All derivatives provided via automatic differentiation 
of model code (TAF), see Kaminski et al. (2003)

• Figure taken from Tarantola (1987)

Model extended by 'smooth' phenology module (Knorr et al., 2010)
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CCDAS scheme

Scholze et al. (2007)Scholze et al. (2007)
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Mission Benefit Analysis Tool

uncertainty
in observations 
AND model

Kaminski and Rayner (2008)
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Implementation

Uses pre-computed model sensitivities, coarse global resolution (8 x 10 deg.)

Just need linear algebra, can be fast, interactive

Can vary:

–  Data uncertainty for FAPAR

–  In/Exclusion of atmospheric CO2 (two sites: MLO and SPO)

–  Mission length

Provides

– Uncertainties in target quanties: NEP, NPP, evapotranspiration, plant 
available soil moisture, 5 year average annual mean values per region

– Uncertainties reflect uncertainty in process parameters, other sources of 
uncertainty are neglected (e.g. driving data, process formulation) 
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Benefit per data stream: Carbon Cycle
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Benefit per data stream: Hydrological Cycle
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Benefit from FAPAR: MERIS (Unc. 0.1) 
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Benefit from FAPAR: Ideal (Unc. 0.001)  



FastOpt

Benefit from FAPAR: Impact of product unc.
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Impact of mission length
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Summary

●Constructed and demonstrated MBA tool

●Can evaluate indirect constraints of observations on simulated fluxes

●Fast: suited to support decisions within meetings

●FAPAR most useful to constrain hydrological fluxes, in some regions adding CO2 
yields considerable improvement

●Atmospheric CO2 most useful to constrain carbon fluxes, adding FAPAR yields only 
minor improvements

●Extending mission from 3 to 14 years yields only small improvement

●Concept can be extended to include further (also multiple) sensor concepts, also 
beyond optical

●Acknowledgement: Study supported by ESA

●More info: http://rs.ccdas.org

●Kaminski et al., BG, in press

http://rs.ccdas.org/
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