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ABSTRACT
ESA’s Earth Explorer candidate mission A-SCOPE aims at observing CO2 from space
with an active LIDAR instrument. This study employs quantitative network design
techniques to investigate the benefit of A-SCOPE observations in a Carbon Cycle Data
Assimilation System. The system links the observations to the terrestrial vegetation
model BETHY via the fine resolution version of the atmospheric transport model
TM3. In the modeling process chain the observations are used to reduce uncertainties
in the values of BETHY’s process parameters, and then the uncertainty in the pro-
cess parameters is mapped forward to uncertainties in both in long-term net carbon
flux and net primary productivity over three regions. A-SCOPE yields considerably
better reductions in posterior uncertainties than the ground-based GLOBALVIEW
station network. This is true for assimilating monthly mean values and instantaneous
values, and it is true for two potential vertical weighting functions. The strength of
the constraint through A-SCOPE observations is high over the range of observational
uncertainties.

1 Introduction

CO2 is the most important anthropogenic greenhouse
gas, and the continued increase of atmospheric CO2 is ac-
cepted to be the major reason for present, observed global
warming. The increase of CO2 is clearly of anthropogenic
origin, but it is tempered by uptake from natural reser-
voirs. Therefore, understanding and predicting the cycling
of this gas through natural and human-controlled systems
is a matter of special importance. Despite considerable ad-
vances, major questions remain about the magnitude and
distribution of present sources and sinks of this gas as well
as their evolution, and their controlling mechanisms, espe-
cially their response to climate change. A clear requirement
is the development of monitoring tools to ascertain the cur-
rent sources and sinks and their changes. Such changes may
occur as a result of climate change or of deliberate miti-
gation strategies. Hence, the monitoring of CO2 and other
greenhouse gases is immensely important, both for funda-
mental Earth System Science (as a necessary complement
to global modeling), and for international climate policy.

A first awareness of global change began in the late
1950s when Charles David Keeling from the Scripps Insti-
tution of Oceanography, San Diego, developed a technique
precise enough to detect the rise in atmospheric CO2. Keel-
ing’s time series of atmospheric CO2 concentration measure-
ments from Mauna Loa (Keeling and Whorf, 2002) is an icon
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of contemporary environmental science. Major observational
programs were subsequently put in place by various institu-
tions from many different countries to create a global net-
work, providing spatial gradients of CO2 concentrations to
constrain location and strength of CO2 sources and sinks.

The current ground-based in-situ measurement network
is mostly based on flask samples which are collected weekly
to biweekly. The sampling stations are mainly located at
remote sites to sample the CO2 concentration of the ma-
rine boundary layer. A single flask measurement can be
done with a high accuracy (≈ 0.2 ppmv) such that a ho-
mogenized and gap-filled data product of this network like
GLOBALVIEW (GLOBALVIEW-CO2, 2004) reports un-
certainties of 0.5 to 1 ppmv depending on the station loca-
tion. However, the temporal (weekly to biweekly) and spa-
tial (large gaps for instance in the tropics) resolution is fairly
poor. Since the last few years new continuous atmospheric
CO2 observations have become available at some of these
remote measurement stations to overcome the limitation
in the temporal domain. Nevertheless, the network is still
too sparse to quantify CO2 sources and sinks on a regional
to continental scale. This reflects the underdetermined na-
ture of the inverse problem of inferring two-dimensional sur-
face flux fields from point measurements (Kaminski and
Heimann, 2001).

In addition to the ground-based flask and continuous
station measurement system, there are a number of tall
tower sites around the globe, which also provide in-situ con-
tinuous measurements of CO2. These towers supply mea-
surements of CO2 in the continental boundary layer rather
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representative for regional to continental scale fluxes. For
instance, NOAA is running around ten towers in the US,
and the EU’s CHIOTTO and then CarboEurope projects
have set up around ten towers in Europe and Siberia. It
is expected that this network will further expand in the
future. Furthermore, there is an ever expanding network
(see http://www.fluxnet.ornl.gov) providing local-scale di-
rect flux observations via eddy covariance techniques.

Remote sensing of atmospheric CO2 from space has the
potential to deliver the data needed to substantially reduce
the currently large uncertainties in the spatial and tempo-
ral distribution of CO2 sources and sinks. Several sensitivity
studies have evaluated the improvement in atmospheric in-
version simulations of CO2 that would be enabled by precise,
global space-based integrated column CO2 data. A pioneer-
ing study has been performed by Rayner and O’Brien (2001)
who established the required precision for column-integrated
CO2 concentration data to be useful in constraining sur-
face sources. Using an atmospheric synthesis inversion the
required precision of monthly averaged (uniform weighting
function) column data should be better than 2.5 ppmv (1.5
ppmv for oceanic coverage only) on a 8◦×10◦ footprint for
comparable performance with the existing surface network.
They also reported that space-based column CO2 observa-
tions with 1 ppmv precision were predicted to substantially
reduce inferred CO2 flux uncertainties of annual mean fluxes
from greater than 1.2 GtC region−1 year−1 to less than 0.5
GtC region−1 year−1 when averaged over the annual cycle
and for continent/ocean basin scale regions. Since then fur-
ther studies (Rayner et al., 2002; Pak and Prather, 2001;
Patra et al., 2003) have essentially confirmed the message
that the overall precision on the measurements, including
instrument uncertainties, noise, and uncertain atmospheric
properties, needs to be better than 1% (or 3.6 ppmv) to
provide a constraint on CO2 fluxes comparable with the
ground-based network.

More recently some studies have taken into account
the characteristics and therefore potential benefits of differ-
ent types of satellite instruments in synthetic inversion ap-
proaches. For example, Houweling et al. (2004) have distin-
guished between thermal infrared (AIRS) and near infrared
(SCIAMACHY, OCO) spectrometers. The thermal infrared
instrument AIRS has the advantage that it can measure the
entire globe independent of day light or surface albedo, and
thus has a relatively high number of measurements. Because
of AIRS’ independency on high surface albedo it is notably
better performing over the oceans than SCIAMACHY. In
contrast, OCO is able to measure in sun-glint mode over the
oceans. A crucial factor is the ability to measure at low alti-
tudes; therefore the near infrared instruments SCIAMACHY
and OCO will certainly be more favorable as the thermal
infrared instrument has a rather limited sensitivity to CO2

near the surface. Their overall conclusion is that OCO will
be the most promising satellite concept of those tested.

Miller et al. (2007) and Chevallier et al. (2007) specifi-
cally looked at the contribution of OCO column integrated
CO2 retrievals (XCO2) to the reduction of uncertainties in
the estimation of CO2 sources and sinks. Both could show
that, given the estimated error characteristics of the OCO
instrument, OCO observations would significantly reduce
the uncertainties of CO2 surface fluxes, in the case of Cheval-
lier et al. (2007) even at weekly timescale and grid point

resolution of the underlying transport model (2.5◦×3.75◦)
over land (reduction of 15-40% of prior uncertainties) and
on monthly and basin-wide resolution over oceans (reduc-
tion of 20-40% of prior uncertainties). Two further recent
studies also addressed the assessment of the OCO mission
(Feng et al., 2009; Baker et al., 2008).

Unfortunately the launch of NASA’s OCO mission
in February 2009 failed. However, another satellite mis-
sion specifically aimed at measuring CO2 from space, the
GOSAT mission of the Japanese Aerospace Exploration
Agency, was successfully launched in January 2009. GOSAT
carries both a thermal and a near infrared spectrometer.
The thermal spectrum provides similar information to what
AIRS has been measuring, whereas the near infrared pro-
vides information about the total CO2 column, which is
more important for flux estimation. Chevallier et al. (2009)
have quantified the potential of GOSAT data in a sensi-
tivity study similar to the above mentioned studies. They
found that GOSAT should significantly reduce uncertain-
ties in CO2 flux estimations over terrestrial vegetated areas
at the scale of weeks and a few hundred kilometres, over the
oceans improvements are only seen over larger scales (e.g.
ocean basins and over a year).

The above mentioned approaches to convert atmo-
spheric CO2 concentrations into estimates of surface
CO2 fluxes are all based on ‘top-down’ inverse modeling of
atmospheric transport. While this approach yields insights
into the recent past and present, it cannot have predictive
ability for the future. Future predictions, in contrast, are
based on results from ‘bottom-up’ process-based model sim-
ulations. These simulations, however, lack the rigorous in-
clusion of the observational constraint.

An alternative method that is fully consistent with both
the philosophy of inverse modeling, and the approach of pre-
dictive modeling employs techniques from variational data
assimilation. In a first step both process parameters and
initial conditions are estimated with the best possible ac-
curacy using the best available observational constraints at
the appropriate scale of the problem. A second (prediction
or ‘prognostic’) step is then using not only standard mod-
eling techniques employing the optimized parameters and
initial conditions to arrive at a forecast, but also techniques
of uncertainty propagation to estimate uncertainty ranges
for the prediction (Scholze et al., 2007). This is a significant
advance over current modeling techniques.

The Carbon Cycle Data Assimilation System (CCDAS)
(Scholze, 2003; Rayner et al., 2005) is so far a unique exam-
ple of the above outlined approach. It builds upon the study
by Kaminski et al. (2002) who have used the seasonal cycle
of atmospheric CO2 to constrain a simplified terrestrial bio-
sphere model. In CCDAS this simplified model is replaced
by the more comprehensive, prognostic terrestrial biosphere
model BETHY (Knorr, 2000; Knorr and Heimann, 2001).
CCDAS uses a reduced version of BETHY which has no
phenology scheme and no water balance. Instead it uses pre-
optimized leaf area index (LAI) and plant available soil mois-
ture. Global vegetation is mapped onto 13 plant functional
types (PFT). 57 control parameters affect the photosynthe-
sis scheme, and both the autotrophic and heterotrophic res-
piration schemes. The assimilation of time series of atmo-
spheric CO2 flask data in CCDAS is controlled by a gradient
algorithm, which searches the parameter space by iterative
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Figure 1. CCDAS two step procedure: Inverse step followed by diagnostic or prognostic step.

evaluation of a cost function and its gradient with respect
to the parameters. The gradient information is provided ef-
ficiently by the model’s adjoint. At the cost function min-
imum, an uncertainty of the estimated parameter set that
is consistent with assumed observational and model uncer-
tainties is approximated by the inverse of the function’s full
Hessian matrix, evaluated for the optimal parameter set up
to machine precision. The calibration process, hence, deliv-
ers a set of optimized parameters, together with their un-
certainties (see Figure 1).

CCDAS makes considerable use of derivative code, i.e.
the adjoint code providing the gradient of the cost func-
tion, the Hessian code used to approximate parameter un-
certainties, and Jacobian code to propagate these uncertain-
ties forward. All derivative code is generated directly from
the model’s source code (Kaminski et al., 2003) by the auto-
matic differentiation tool Transformation of Algorithms in
Fortran (TAF, Giering and Kaminski (1998)). Since CCDAS
has only 57 parameters, the evaluation of the full Hessian
and the full Jacobian are computationally feasible.

In this study, we employ CCDAS to explore the benefit
of the concept for ESA’s Earth Explorer candidate mission
A-SCOPE, which differs from the above mentioned concepts
for observing CO2 from space (AIRS, OCO, and GOSAT) in
that it relies on an active LIDAR instrument. NASA is pur-
suing a similar concept with the ASCENDS mission (Micha-
lak et al., 2008). The advantages of an active mission are that
it does not require the sun as a light source, and can there-
fore provide both day and night, all-seasons and all latitude
measurements and thus will provide an increase in the num-
ber of observations by a factor of two to three compared
to passive missions. But more importantly, such an active
mission concept provides a direct measurement of the at-
mospheric path and thus can assure the observation of the
entire atmospheric column. This is an advantage over the
OCO and GOSAT concept, which are particularly sensitive
to the presence of aerosols, leading to potentially large gaps
in regions with relatively persistent high levels of aerosols,
such as some tropical regions (e.g. India), Southeast-Asia,

or the Sahara. Two potential wavelengths, namely 1.6 mi-
cron and 2.0 micron, have been identified because of their
high signal-to-noise ratio and favorable, near-uniform verti-
cal weighting functions (see ESA (2008) for details on the
A-SCOPE mission concept).

As a measure for the performance of A-SCOPE data we
use the posterior uncertainty on regionally aggregated sur-
face fluxes. Methodologically we are addressing a network
design problem in a quantitative way. Quantitative network
design was introduced to biogeochemistry by Rayner et al.
(1996), who used an inverse model of the atmospheric trans-
port to design surface networks, and it was also Rayner and
O’Brien (2001) who first applied the approach to mission
design. Kaminski et al. (2002) demonstrated the applica-
tion of quantitative network design techniques for assimi-
lating a synthetic flux measurement together with global
atmospheric CO2 samples and vegetation greenness approx-
imated by AVHRR observations.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces quantitative network design methods and
the extensions of CCDAS that were necessary to conduct
the study. Section 3 describes and discusses the experiments
that have been performed. Section 4 summarizes the main
findings and draws conclusions.

2 Methodology

Methodologically, assessing the potential of a particular
data stream in terms of quantifying a target quantity be-
longs to the class of so-called network design problems. This
section gives a brief introduction to the mathematical for-
malism for quantitative network design, and then describes
the extensions of CCDAS that were required to conduct the
study.
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2.1 Brief introduction to quantitative network design

Quantitative network design uses data assimilation sys-
tems and is, thus, closely linked to data assimilation. Hence,
our introduction (following Kaminski and Rayner (2008))
starts off with the formalism behind Figure 1. In the for-
mulation of the inverse problem it is convenient to quan-
tify the state of information on a specific physical quantity
by a probability density function (PDF): the prior informa-
tion is quantified by a PDF in the space of control variables
(here, process parameters of BETHY and the initial con-
centration), the observational information by a PDF in the
space of observations, and so on. Tarantola (1987) describes
this probabilistic framework in detail and provides exam-
ples. Enting (2002) introduces the same framework with an
exhaustive overview on applications to biogeochemistry.

If the input to the inverse problem can be characterized
by Gaussian PDFs, the model that links control variables to
observations is linear, and the model error follows a Gaussian
PDF as well, then the posterior information is also quantified
by a Gaussian PDF (see Tarantola (1987)). The mean of that
PDF is given by:

x = x0+[MT C(d)−1M+C(x0)
−1]−1MT C(d)−1(d−Mx0)(1)

and the covariance of its uncertainty is given by:

C(x)−1 = MT C(d)−1M + C(x0)
−1 , (2)

where M denotes the Jacobian matrix of the model, x0 and
C(x0) the mean and covariance of the prior information’s
PDF. d and C(d) denote the mean and the covariance of
uncertainty of the observations. In the inversion procedure
the corresponding PDF has to reflect errors in both the ob-
servational process and our ability to correctly model the
observations. We achieve this via

C(d) = C(dobs) + C(dmod) (3)

and by subtracting the mean model and observational errors
from Mx0 and d, respectively. Note that, in practice, these
mean errors are usually difficult to assess.

It is easy to verify that x (from eq. (1)) minimizes the
cost function (the exponent of the Gaussian posterior PDF)

J(x̃) =
1

2
[(Mx̃− d)T C(d)−1(Mx̃− d)

+(x̃− x0)
T C(x0)

−1(x̃− x0)] (4)

and that the Hessian matrix H(x̃) of J , i.e. the matrix com-

posed of its second partial derivatives ∂2J
∂xi∂xj

, is constant

and given by

C(x)−1 = H(x) . (5)

If the model is non linear or any of the PDFs of the
inputs are non Gaussian, eq. (1) and eq. (2) do not hold
anymore. But we can still approximate the posterior PDF
by a Gaussian with mean x given by the minimum of eq. (4)
(with the matrix M generalized to the non linear model
M(x̃)) and covariance given by eq. (5).

In practice, any variational data assimilation system,
e.g. in operational numerical weather prediction or oceanog-
raphy, is based on eq. (4). The optimization mode of CCDAS
uses an iterative procedure to minimize the cost function of
eq. (4), which yields x, and computes C(x) via eq. (5). As
long as the uncertainties in the individual data streams are

independent, the contribution of each of them to the right
hand side of eq. (4), and, hence, also to eq. (5), can be quan-
tified by a separate term in the sum. In this formalism, the
contribution of a synthetic data set (e.g. synthetic A-SCOPE
observations) is to be handled as follows:

• The mean value is generated with the model itself, i.e. the
equation d = M(x) is applied, where x is the best possible
parameter value, taken from a minimization of eq. (4) for
the existing observational network.
• The covariance of uncertainties (eq. (3)) is specified such
as to reflect the expected characteristics of the observational
products generated by the instrument and our ability to
simulate them.

By construction of the synthetic data, their cost func-
tion contribution (eq. (4)) at the optimum, x, is zero but
positive in the neighborhood of x. This means the synthetic
data increase the curvature of the cost function. In mathe-
matical terms, the curvature is expressed by the Hessian in
eq. (5), which takes full account of the specified uncertainty
in the synthetic data and their sensitivity to the model pa-
rameters. The effect of the synthetic data is a reduction of
posterior parameter uncertainty.

The second step in Figure 1 is the estimation of a di-
agnostic or prognostic target quantity y, in our case some
spatio-temporal mean carbon flux. The target quantity’s
PDF can be approximated by a Gaussian with mean

y = N(x) (6)

and the covariance

C(y) = D′C(x)D′T + C(ymod) , (7)

where N is the model (in Figure 1 denoted as diagnos-
tic/prognostic model) that maps the control variables onto
the target quantity, D′ is its linearization around the mean
of the posterior PDF of the control variables, also denoted
as the Jacobian matrix of N , and C(ymod) is the uncertainty
in the model result from errors in the model. Only if y co-
incides with one of the observations used in the inversion
step, this uncertainty is already accounted for in C(x), and
we omit the C(ymod) contribution. If N is linear and the pos-
terior PDF of the control variables Gaussian, then the PDF
of the target quantity is Gaussian as well, and completely
described by eq. (6) and eq. (7).

2.2 Including A-SCOPE data in CCDAS

One of the objectives of this study is to assess the data
uncertainty for A-SCOPE that is required to achieve a given
posterior uncertainty in a scalar target quantity σy. Since we
will use a diagonal C(d), with only two different entries for
data over ocean and land, respectively denoted by σ2

d,O and
σ2

d,L, this can be done in a particularly efficient way.
Denoting the diagonal entries of C(d) by σ2

d,i, and the
corresponding components of (the vector valued function)
M and d respectively by Mi and di, we rewrite the first
term of eq. (4) in least squares form:

J(x̃) =
1

2
[
∑

i

(Mi(x̃)− di)
2

σ2
d,i

+ (x̃− x0)
T C(x0)

−1(x̃− x0)]. (8)

Taking second derivatives (one with respect to x̃k and one
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Figure 2. Modelling chain within CCDAS extended to include an A-SCOPE observation operator.

with respect to x̃l) yields

Hk,l(x̃) =
1

2

∑
i

1

σ2
d,i

d2(Mi(x̃)− di)
2

dx̃kdx̃l
+ Ck,l(x0)

−1 . (9)

Accumulating all summands for data over ocean and all sum-
mands for data over land, inserting into eq. (5) yields:

C(x)−1 =
1

σ2
d,O

HA,O +
1

σ2
d,L

HA,L + H0 (10)

where the Hessian contribution of the prior is denoted by H0

and the contribution by A-SCOPE is decomposed into two
terms HA,O and HA,L determined by model characteristics
and two factors depending on the data uncertainties over
ocean and land.

Inserting in eq. (7) yields

σ2
y = D′(

1

σ2
d,O

HA,O +
1

σ2
d,L

HA,L + H0)
−1D′T + σ2

y,mod (11)

where, with our scalar target quantity, the Jacobian D′ takes
the form of a row vector. Thanks to this decomposition we
can precompute HA,O and HA,L, such that a plot of σy over
σd can be produced by pure matrix algebra without further
CCDAS simulations.

For assessing the effect of A-SCOPE as an extension of
the ground-based network, we can repeat the above algebra
but starting from a cost function that has in addition to
eq. (8) a third term representing the fit to the ground-based
network. This situation is also covered by eq. (11), if we
generalize the meaning of H0 to represent the Hessians of
all cost function contributions except the A-SCOPE term. In
other words, in this situation H0 denotes the Hessian when
inverting against data from the ground-based network only.

In summary, the simulations require code for the com-

putation of H0, HA,O, HA,L and D′. The computation of
HA,O and HA,L requires the extension of CCDAS by the
observation operator for A-SCOPE. Figure 2 shows the for-
ward modelling chain of the extended CCDAS. The Bio-
sphere Energy Transfer HYdrology scheme (BETHY, Knorr
(2000); Knorr and Heimann (2001)) is used to simulate the
surface fluxes of CO2 from the terrestrial vegetation.

2.3 Representation of atmospheric transport

Atmospheric CO2 concentrations are modeled by the
atmospheric transport model TM3 (Heimann and Körner,
2003), in its fine 4◦× 5◦ horizontal resolution, with 19 ver-
tical σ levels. As in Houweling et al. (2004), the model uses
meteorological driving fields for the year 2000 as provided
by Kalnay et al. (1996). Owing to the linearity of the atmo-
spheric transport of CO2, the vector c of the changes in the
total column CO2 (XCO2) at each observational location and
time in response to a given flux field f can be represented
by its Jacobian matrix A:

c = Af . (12)

The flux field f is represented in the full 4◦× 5◦ reso-
lution of the transport model and monthly temporal res-
olution. To compute one column of the Jacobian matrix
corresponding to a given surface grid cell and month, the
model is run with a unit emission in that grid cell and
month (Enting, 2002). For each component of c, the sim-
ulated XCO2 value corresponding to the observational loca-
tion and time is recorded.

The above procedure would require one model run per
grid cell and month in the period from the start of the CC-
DAS integration until the month in which the last XCO2 ob-
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servation takes place. To reduce the number of required
model runs, we make two simplifications:

• For fluxes more than 4 years prior to a given XCO2 observa-
tion we assume that their CO2 emission is completely mixed
within the global atmosphere. This means all columns in A
corresponding to fluxes more than 4 years ago contain a con-
stant a that quantifies the response in a completely mixed
atmosphere (i.e. in a one box model).
• For fluxes less than 4 years prior to a given XCO2 observa-
tion but not in the same month or the two months before,
we assume that their CO2 emission has the same effect as all
other fluxes emitted in the same latitude band. This means
all columns in A corresponding to fluxes for a given month
in said time span and in a given latitude band have the same
response. Here, we use 8 latitude bands.

This means to simulate c the response to the fluxes of
three months ff is represented in full spatial resolution (full
Jacobian) Af , the response of the fluxes of 4 years (actually
minus three months) fl is represented in latitudinal band
resolution (latitudinal Jacobian) Al, and the response to all
previous years fg by a single number (global Jacobian) Ag,
i.e.

c ≈ Afff + Alfl + Agfg . (13)

Figure 3 illustrates how the Jacobian is composed by
blocks for full, latitudinal, and global Jacobians. The first
row of blocks belongs to the earliest observations and the last
row to the last observations. The first column belongs to the
earliest fluxes and the last column to the last fluxes. Each
block represents the impact of a particular month of fluxes
on a particular month of concentrations. Concentrations are
column integrated, taking the spectral weighting function
and the orbit parameters into account.

We illustrate the computational savings through the
matrix approximation in a sample calculation with 20 years
of fluxes and observations in the last year, the set up used
for this study. To provide the full Jacobian, Af , we perform
12 sets of runs over three months each. The first covers the
period from January to March, the second the period from
February to April, etc. Each set consists of as many runs
as we have grid cells, i.e. 72 × 46 (excluding the poles).
We record the concentrations over the three months. The
annual periodicity of the transport model’s meteorological
driving data is exploited in the following way: The simu-
lation starting in December provides the response at the
last concentration month (i.e. December) to fluxes in the
same month, but it is also used to provide the response at
the first concentration month (January) to fluxes one month
prior. Without the periodicity we would need two additional
sets of runs, for November and December in the year before
the observations start. On the other hand, the sets of runs
starting in November and December of the last year can be
restricted to an integration period of two and one months,
respectively. In total the computation of Af requires 39744
runs over three months each, i.e. 9936 years of transport
model simulation. To provide the latitudinal Jacobian, Al,
we perform 12 sets of runs over 48 months each, where each
set consists of as many runs as we use latitudinal bands in
which all fluxes produce the same response, in our case 8. In
total the computation of Al requires 96 runs over 48 months
each, i.e. 384 years of transport model simulation. Finally,

the global Jacobian, Ag, requires a single run over, say, five
years. By contrast, without the approximation we would re-
quire 244 sets of runs, with integrations periods decreasing
from 244 months to 1 month. Each set would consist of as
many runs as we have grid cells, i.e. 72 × 46. This would
produce a total of about 8.2 million years of transport model
simulation.

The transport Jacobian is computed in two versions.
The first version (instantaneous Jacobian) uses instanta-
neous samples at days 7, 14, 21, 28 of each month, and at
0.00 and 12.00 GMT. Note that for our assessment the mod-
eled Jacobian does not need to match the exact date of the
observation but only a meteorological situation typical for
that time of the year. We can then assign every XCO2 ob-
servation to the closest date in the record. The alternative
version of the Jacobian uses monthly mean concentrations.

2.4 Uncertainties in observations and model

For both Jacobian versions the specification of the data
uncertainty is complicated by the fact that the simulated
and observed quantities differ. The observed quantity is
XCO2 for a short interval in time and space (almost a point
measurement) whereas the simulated quantity is a mean
XCO2 value. The monthly mean Jacobian simulates a mean
over a horizontal grid cell and one month, whereas the in-
stantaneous Jacobian simulates the mean over a horizontal
grid cell and the model time step of 30 minutes.

Computing the difference between observed and simu-
lated quantities brings in an additional source of uncertainty
reflecting the error we make when transforming one quantity
into the other. This error is called representation error (see,
e.g, Heimann and Kaminski (1999)). We take this uncer-
tainty into account by including an additional term C(drep)
in eq. (3) :

C(d) = C(dobs) + C(drep) + C(dmod) (14)

C(drep) is hard to specify. We use a diagonal matrix,
with the square of a constant σrep on the diagonal. We de-
rive a value based on the conservative assumption of n point
samples of a Gaussian distributed XCO2 within the grid cell
with standard deviation σhet (‘het’ standing for heterogene-
ity):

σ2
rep =

σ2
het

n
(15)

σhet can, in principle, be observed. We use a conserva-
tive value of 3 ppmv for the total column, to reflect the fact
that we also sample downstream of large fossil fuel emissions
or over forests in the growing season. For the monthly mean
Jacobian we use n = 30, which is about the (temporally
and spatially varying) average sample size per horizontal
grid cell and month, as derived from orbit simulations using
MODIS cloud cover (Breon et al., 2009). For the instanta-
neous Jacobian n = 1, because we use each sample indi-
vidually. A potential correlation between cloud cover and
XCO2 could be taken into account by a methodological re-
finement. First, C(drep) would not be diagonal (uncertainty
correlation across grid cells). Second, eq. (15) is too opti-
mistic, because it is based on uncorrelated uncertainties of
samples within the same grid cell. None of this is addressed
in this study.
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[t]

Figure 3. Structure of the Jacobian transport matrix.

For our base case with a vertical weighting function
based on the 1.6 micron band (Ehret et al., 2008) we use
observational uncertainties of 0.5 ppm over land and 1.5
ppm over the ocean respectively denoted σobs,L and σobs,O.
This corresponds to the target and threshold requirements
of the A-SCOPE mission as given in the A-SCOPE Report
for Assessment (ESA, 2008). For the 2.0 micron band we
increase the observational uncertainties by a factor of two.
Here again we are slightly optimistic by neglecting corre-
lations in the observational uncertainties, i.e. by assuming
only random errors. This is not too severe, because the A-
SCOPE Report for Assessment (ESA, 2008), assumes only
10% of the observational uncertainty to be systematic. Also,
calibration against ground measurements may help to build
a model of the systematic error, e.g. with a uniform mean
value (bias) plus a random component. The mean value can
then be subtracted from the observations prior to assimi-
lation. Only the random component then translates into a
correlated uncertainty.

The uncertainty due to model error is also hard to spec-
ify. For the monthly mean Jacobian we use a diagonal form,
with the square of a constant σmod of 0.5 ppmv on the di-
agonal. This is probably conservative given that value we
specify here has to be characteristic for the performance of
a state-of-the-art model with a resolution of 4◦× 5◦. For
the instantaneous Jacobian we also use a diagonal form but
with a σmod of 1.5 ppmv. We use this larger value for two
reasons. First, the model error is larger for instantaneous
values than for monthly mean values, where a fraction of
the error cancels out. Second, the approximation of diago-
nal uncertainties is better for the monthly mean values than
for instantaneous values, where correlated uncertainty from
model error may play a larger role. Correlated uncertainties
among a number of observations have the following effect on
the cost function: They reduce the weight in the direction
of the sum (average) of the observations and increase the
weight in the direction of their differences. In our diagonal
formulation we mimic the effect on the average by inflating
the uncertainty. It is important to note that at this point
we address only the residual model error for perfect param-

eter values and without any representation error, because
the former is addressed by our method and the latter is ac-
counted for by a separate term in eq. (14). Also, the positive
correlations are partly compensated by processes involving
mass conservation (e.g. within a carbon pool), which tend
to create negative correlations among uncertainties.

For plotting the target uncertainty σy over the obser-
vational uncertainty σobs we introduce a scaling factor k
for the observational uncertainty and combine eq. (11) with
eq. (14):

σ2
y = D′(

1

kσ2
obs,O + σ2

rep + σ2
mod

HA,O

+
1

kσ2
obs,L + σ2

rep + σ2
mod

HA,L + H0)
−1D′T + σ2

y,mod . (16)

σy,mod refers to the uncertainty due to errors in the ter-
restrial model, and the first term specifies the uncertainty
in case we had a perfect model for y. σy,mod is, of course,
strongly dependent on the model and difficult to assess. In
order not to mask the assessment of A-SCOPE through a
rather arbitrary assumption on σy,mod, we don’t include it
in the default computation of σy. We do this consistently
throughout all experiments, i. e. our A-SCOPE assessment
and our benchmark, the ground-based station network. For
both the A-SCOPE assessment and the benchmark exactly
the same model error is to be used in eq. (16). Owing to
the simple dependency of σy on σy,mod, one can easily com-
bine it with the uncertainties we provide. We show, however,
an example calculation that estimates the model error from
an ensemble of terrestrial biosphere models. Cramer et al.
(2001) (Fig. 5) compare NPP and NEP simulated by six
terrestrial biosphere models. Both quantities depend on the
process representations in the individual models. For the
1990s the global NPP of the six models spans a range of
about 15 GtC per year, while NEP spans a range of about
1.5 GtC, and with one outlier removed below 0.5 GtC. For
the definition of relative ranges it makes sense to refer to
global NPP also for the NEP range, because NEP is the
difference between two large fluxes. The ranges relative to
60 GtC (a typical value for global NPP, our model’s global
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NPP is 64.9 GtC) are then 25 % for NPP and 2.5 % for
NEP. For our three regions the 25 % of NPP are conserva-
tive: The global map in Fig 2. of Cramer et al. (1999) shows
a lower relative range (in this study for the 16 models of
the Potsdam NPP intercomparison) over these regions, but
a larger relative range over Africa. This is also confirmed by
Fig. 1 of Kicklighter et al. (1999) who show the NPP range
spanned by 90% of the same models over latitude. Over our
twenty year integration period the long-term NPP average
per year is 2.6 GtC over Europe, 6.5 GtC over Russia, and
6.1 GtC over Brazil. Associating the above derived relative
ranges with a +/- one standard deviation interval (again a
conservative assumption), yields respectively for the three
regions per year 0.3 GtC, 0.8 GtC, 0.8 GtC for NPP and
0.03 GtC, 0.08 GtC, 0.08 GtC for NEP. Our computational
example is based on spreads in model simulations represent-
ing the state-of-the-art around the year 2000. We can hope
that these spreads decrease with progress in terrestrial mod-
elling, and with systematic model calibration against obser-
vations. Our example is also conservative in that the spreads
include the parametric uncertainty (caused by wrong values
of the process parameters), a source of uncertainty that we
explicitly specify in eq. (16).

3 Experiments

This section describes the four experiments that are per-
formed with the extended CCDAS. All experiments are run
with the CCDAS configuration determined by the optimized
parameter values (see Table 1) from Scholze et al. (2007),
who use 41 sampling sites from the (GLOBALVIEW-CO2,
2004) network. The total data uncertainty σd is 1.08 ppmv
per observation on average. For a detailed description of the
parameters we refer to Rayner et al. (2005). The simula-
tion period covers 20 years with the ground-based network
sampling over the entire period and A-SCOPE only in the
final year. The Hessian for the ground-based network (H0 in
eq. (10), eq. (11), and eq. (16)) is taken from Scholze et al.
(2007). The same holds for the Jacobian mapping param-
eter uncertainty onto flux uncertainty (D′ in eq. (11) and
eq. (16)). The experiments use the following seven target
quantities: net carbon flux (NEP) and net primary produc-
tivity (NPP) over Europe, Russia, and Brazil, as well as
global NEP for consistency checks.

The experimental setups are as follows:

1) Base experiment: This experiment applies vertical
weighting for the 1.6 micron band (see Table 2) to the trans-
port Jacobian with monthly mean concentrations and as-
sumes global coverage with observational uncertainties of 0.5
ppmv over land and 1.5 ppmv over ocean plus an uncertainty
of 0.5 ppmv reflecting model error. The first simulation
(Case 1) uses both the ground-based flask sampling network
and A-SCOPE, the second simulation (Case 2, base case)
runs without the ground-based flask station network and
only A-SCOPE sampling, and the third simulation (Case
3) with the ground-based station network only. This exper-
iment allows us to assess the benefit of A-SCOPE and the
ground-based flask sampling network separately and in con-
junction. Cases 2* and 2** illustrate the effect of including
the uncertainty due to model error (σy,mod term in eq. (16)).

Table 1. CCDAS parameter values used for the experiments.

Units are Vmax: µmol(CO2)m−2s−1, aJ,T : (deg C)−1, aΓ,T :
µmol(CO2)mol(air)−1(deg C)−1, activation energies E: J/mol,

τf : years, offset: ppm, all others unit-less. Uncertainties are in per-

centage except for log-normally distributed parameters for which
a range is given. Uncertainties represent one standard deviation.

Number Parameter value uncertainty

1 V 25
max(TrEv) 57.6 20

2 V 25
max(TrDec) 108.5 20

3 V 25
max(TmpEv) 40.7 20

4 V 25
max(TmpDec) 51.2 20

5 V 25
max(EvCn) 26.0 20

6 V 25
max(DecCn) 119.1 20

7 V 25
max(EvShr) 130.4 20

8 V 25
max(DecShr) 137.0 20

9 V 25
max(C3Gr) 11.4 20

10 V 25
max(C4Gr) 0.4 20

11 V 25
max(Tund) 35.6 20

12 V 25
max(Wetl) 19.2 20

13 V 25
max(Crop) 95.6 20

14 aJ,V(TrEv) 1.92 5

15 aJ,V(TrDec) 1.99 5

16 aJ,V(TmpEv) 2.0 5
17 aJ,V(TmpDec) 2.0 5

18 aJ,V(EvCn) 1.79 5

19 aJ,V(DecCn) 1.82 5
20 aJ,V(EvShr) 1.97 5

21 aJ,V(DecShr) 1.66 5

22 aJ,V(C3Gr) 1.88 5
23 aJ,V(C4Gr) 9.9 5

24 aJ,V(Tund) 1.86 5
25 aJ,V(Wetl) 1.84 5

26 aJ,V(Crop) 1.92 5

27 αq 0.34 5
28 αi 0.04 5

29 K25
C 445×10−6 5

30 K25
O 0.33 5

31 aΓ,T 1.45 5

32 EKO 36218 5

33 EKC 58637 5
34 EVmax 62045 5

35 Ek 50592 5

36 ERd 42023 5
37 fR,leaf 0.26 25

38 fR,growth 1.12 5

39 fS 0.43 -0.1; +0.2
40 κ 0.59 -0.9; +9.0

41 Q10,f 2.00 -0.5; +0.75
42 Q10,s 1.31 -0.5; +0.75

43 τf 6.8 -1.0; +3.0
44 β(TrEv) 1.33 25
45 β(TrDec) 1.01 25

46 β(TmpEv) 1.23 25

47 β(TmpDec) 2.55 25
48 β(EvCn) 0.74 25

49 β(DecCn) 1.77 25
50 β(EvShr) 1.21 25
51 β(DecShr) 0.20 25

52 β(C3Gr) 0.77 25

53 β(C4Gr) 0.76 25
54 β(Tund) 1.14 25

55 β(Wetl) 0.56 25
56 β(Crop) 3.26 25

57 offset 336.3 0.3
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Table 2. Input quantities for vertical weighting for calculation

of XCO2 concentration on TM3 fine grid configuration with 19 σ
levels.

level press (Pa) weight 1.6 micron weight 2.0 micron

1 97908.00 0.050 0.107
2 96637.70 0.051 0.106

3 94895.50 0.051 0.105

4 92748.40 0.052 0.103
5 88410.40 0.054 0.100

6 80892.20 0.057 0.094

7 70973.50 0.062 0.085
8 59045.40 0.068 0.073

9 46180.60 0.075 0.058

10 33827.50 0.079 0.043
11 25439.80 0.077 0.031

12 20697.90 0.071 0.025

13 16579.90 0.062 0.019
14 13072.40 0.052 0.015

15 10134.70 0.043 0.012
16 7708.66 0.035 0.009

17 5728.36 0.028 0.007

18 3556.67 0.021 0.005
19 1136.03 0.012 0.003

2) Sensitivity to temporal and horizontal sampling:
This experiment repeats Experiment 1, Case 2, but with dif-
ferent sampling. Based on the above-mentioned A-SCOPE
orbit specification by Breon et al. (2009) it assumes sam-
pling of instantaneous concentrations, for which the sensi-
tivity uses the nearest location, day and time of day in the
instantaneous transport Jacobian.

3) Sensitivity to vertical weighting: This experiment re-
peats Experiment 1, Case 2, but with the 2.0 micron band
vertical weighting (see Table 2) instead of the 1.6 micron
band weighting and with observational uncertainties in-
creased by a factor of two.

4) Sensitivity to data uncertainties: This experiment re-
peats Experiment 1, Case 2 with a joint scaling factor for
the two observational uncertainties over land and ocean in
eq. (10) and samples 25 values of this scaling factor.

Table 3 lists the prior and posterior uncertainties for
Experiments 1 to 3. In Experiment 1, Case 2, which is our
base case, the posterior uncertainties are strongly reduced
compared to the prior uncertainties. This is the case for
both NPP and NEP over all three regions. The strongest
reduction occurs for global NEP, with a posterior uncer-
tainty of 0.013 GtC per year. For a consistency check we
can calculate a lower bound for that value by thinking of
a well-mixed atmosphere that is sampled at the end of the
integration period by all A-SCOPE observations. The num-
ber of observations on the 72 by 48 grid over 12 months
is about 40000, and the average data uncertainty about 1
ppmv, which yields an uncertainty of 0.005 ppmv. We can
infer, as a single unknown, a 20 year global mean NEP by in-
verting the box model. This is particularly easy if we assume
that the initial concentration (parameter 57) is known and
neglect the contribution of the prior uncertainty in eq. (2).
Using a conversion factor of 20 · 0.5 year ppmv per GtC, we
end up with a value of 0.0005 GtC per year. This is consis-
tent with the experiment’s posterior uncertainty of 0.013 for
global NEP, which is well above this lower bound.

Note that posterior uncertainties for A-SCOPE derived

Figure 4. Uncertainty reduction (relative to prior uncertainty)
for A-SCOPE only in blue (case 2). For comparison red bars show

uncertainty reduction for case 1

by CCDAS are generally lower than those of assessments for
the OCO mission by classical transport inversions (Miller
et al., 2007; Chevallier et al., 2007; Baker et al., 2008) or
Kalman filters (Feng et al., 2009). Their values, however, re-
fer to considerably shorter temporal averaging periods than
our twenty years. Extending the averaging period typically
reduces the uncertainties owing to negative correlations in
uncertainties along the temporal axis. This is well known
in flux inversions but also holds in CCDAS (Scholze et al.,
2007). A detailed attribution of the differences in posterior
uncertainties to factors such as the averaging period, the
additional constraint through our terrestrial model, and the
mission concept is far beyond the scope of the present study.

The benefit from the observational constraint is limited
by the uncertainty from errors in the terrestrial model. The
two bottom rows of Table 3 (labeled Experiment 1, Cases
2* and 2**) illustrate the effect of including a σy,mod term
in eq. (16) for the calculation of Experiment 1, Case 2. For
Case 2* we use the values for the example calculation for
σy,mod based on model spread representing the state-of-the-
art around the year 2000 (see section 2.2). Note that this
calculation produces the total uncertainty in model output,
i.e. it also includes the parametric uncertainty, which our
method already accounts for. Hence, assigning this total un-
certainty to σy,mod (the fraction of uncertainty in model
output that is not produced by parametric uncertainty) is
extremely cautious. This is also indicated by the large uncer-
tainties produced by the prior parameter uncertainties (row
1). Meanwhile a number of benchmarking activities (e.g.,
Randerson et al. (2009); Cadule et al. (2010)) are aiming at
separating realistic from unrealistic process formulations in
terrestrial biosphere models. Such activities will drastically
narrow down σy,mod: To reflect the anticipated progress,
Case 2** uses a σy,mod of 10% of the above-calculated total
uncertainty.

The reduction of uncertainty relative to the prior uncer-
tainty quantifies the strength of the observational constraint
on the respective target quantity. It is shown for all target
quantities in Figure 4. For each of the regions, NEP is better
observed than NPP. The comparison between Cases 2 (black
bars) and 1 (grey bars) shows that adding the station net-
work yields only slight improvement. The constraint by the
station network alone is about a factor 20-40 weaker than
the constraint by A-SCOPE.

Uncertainty reductions for Experiments 2 and 3 are in
the same range as for Case 2 of Experiment 1. This means
the good performance of A-SCOPE is robust against the
horizontal and temporal averaging in the Jacobian and a

c© 0000 Tellus, 000, 000–000



10 KAMINSKI ET AL.

Table 3. Prior and posterior uncertainties for all experiments in GtC/year.

Experiment Case NEP Eur NEP Rus NEP Bra NPP Eur NPP Rus NPP Bra NEP gobal

prior 0.4500 1.5000 1.1000 0.6600 1.1000 4.9000 52.0000
1 1 0.0052 0.0054 0.0072 0.0100 0.0220 0.0850 0.0092

1 2 0.0054 0.0057 0.0081 0.0100 0.0230 0.0880 0.0130

1 3 0.1700 0.1100 0.2800 0.3300 0.4900 1.2000 0.1200
2 0.0059 0.0050 0.0090 0.0100 0.0220 0.1100 0.0100

3 0.0042 0.0042 0.0060 0.0082 0.0190 0.0750 0.0130
1 2 * 0.0329 0.0814 0.0767 0.3252 0.8128 0.7676 0.8114

1 2 ** 0.0063 0.0099 0.0111 0.0340 0.0844 0.1164 0.0822

change of the spectral band with the associated change in
weighting function and observational uncertainty. In Experi-
ment 2 the inflated uncertainty for σmod in eq. (14) meant to
compensate for challenges in modelling instantaneous sam-
ples as well as possible correlations in uncertainties due to
model error did not degrade the performance of A-SCOPE.

Experiment 4 enables us to plot the posterior uncer-
tainty in all seven target quantities over the scaling factor.
Figure 5 shows a modest sensitivity of the target uncertainty
to the scaling. This is because the scaling is deliberately re-
stricted to the observational uncertainty while uncertainties
reflecting model and representation error are kept constant.

4 Conclusions

The present study investigated the benefit of A-SCOPE
observations in a CCDAS that links the terrestrial vegeta-
tion model BETHY (Knorr, 1997; 2000) to observations of
CO2 total column content via the fine resolution version
of the atmospheric transport model TM3 (Heimann and
Körner, 2003). In the modelling process chain the obser-
vations are used to reduce uncertainties in the values of
BETHY’s process parameters, and then the uncertainty in
the process parameters is mapped forward to uncertainties
in both net carbon fluxes (NEP) and net primary productiv-
ity (NPP) over three regions. Note that traditional transport
inversions cannot handle target quantities other than NEP.

For the assessment, other sources of carbon dioxide (the
so-called background fluxes) such as fossil fuel emissions,
land use change fluxes and exchange fluxes with the ocean
were prescribed to fixed values without uncertainty. We are
thus likely to over estimate the A-SCOPE constraint on the
terrestrial process parameters and, hence, also on the calcu-
lated fluxes.

A-SCOPE yields considerably better reductions in pos-
terior uncertainties than the ground-based GLOBALVIEW
station network used by Scholze et al. (2007). This is true
for assimilating monthly mean values and instantaneous val-
ues, and it is true for both the 1.6 micron band and the 2.0
micron band vertical weighting function. The strength of
the constraint through A-SCOPE observations is high over
the range of observational uncertainties from 0.05 to 1.25
ppmv over land and from 0.15 to 3.75 ppmv over ocean. A
potential A-SCOPE mission would, thus, have a major im-
pact on our understanding of the global carbon cycle and
narrow down the currently large uncertainties in future cli-
mate simulations owing to the climate-carbon cycle feedback
(Friedlingstein et al., 2006).

The reasons for the strong constraint lie in the real
global coverage and the much larger number of observations

compared to the GLOBALVIEW station network. In con-
trast to pure transport inversions, the CCDAS approach
exploits the powerful constraint provided by the terres-
trial process formulations within the vegetation model. The
model classifies global vegetation into 13 plant functional
types (PFTs) grouped according to the plants’ morphol-
ogy, physiology, phenology as well as bioclimatic limits. Each
PFT has its own set of process parameters and provides a
strong link between the various regions of occurrence. Hence,
an observation over one region can help to constrain fluxes
over another region. For a model with more PFTs, or spa-
tially varying parameter values, the observational constraint
would be weaker.

Similar to pure transport inversions our study results
also depend on the assumptions on uncertainties that reflect
model and representation errors. This study neglected cor-
related uncertainties for the observations and for the sam-
pling of the horizontal mean XCO2 concentrations over a
TM3 grid cell. The A-SCOPE Report for Assessment (ESA,
2008) specifies a systematic error contribution of as low as
10% to the total observational uncertainty. It is desirable to
stay with a mission design that assures a low and uniform
systematic error. This is because calibration against ground
measurements may help to build a model of the system-
atic error, e.g. with a uniform mean value plus a random
component. The mean value can then be subtracted from
the observations prior to assimilation and only the random
component enters the inversion in the form of a correlated
uncertainty.

Our estimate of the uncertainty that reflects repre-
sentation error is based on independent sampling of the
XCO2 concentration within a horizontal transport model
grid cell of 4◦× 5◦ and an ad hoc assumed variability of
3 ppmv. This yields a relatively low representation error. It
would be desirable to derive an improved estimate reflect-
ing observed small-scale variability. Traditional transport in-
versions would also benefit in the same way from a better
quantification of representation error.

Any comparison based on published work with classi-
cal transport inversions is difficult, because differences in
posterior flux uncertainties are affected by a number of fac-
tors such as the constraint through the terrestrial model as
mentioned above, but also through differences in averaging
periods and regions, transport model, and mission concepts.

This study has quantified the benefit of A-SCOPE in
conjunction with the ground-based flask sampling network
only. Both observational types are similar in that they con-
strain the net flux of carbon dioxide via the atmospheric
concentration. There are or will be, however, further remote
sensing data streams available from optical sensors (e.g.
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Figure 5. Posterior uncertainty for A-SCOPE only as a function of observational uncertainty.

MERIS) or microwave sensors (e.g. SMOS). Such instru-
ments provide direct constraints on vegetation phenology
(MERIS) or hydrology (SMOS), which are tightly coupled
to the terrestrial carbon cycle. It is expected that such data
streams provide constraints complementary to A-SCOPE.
It is highly desirable to set up a system that can benefit of
this multiple constraint in terms of uncertainty reduction in
carbon fluxes. Since standard transport inversions lack any
process representation of terrestrial phenology and hydrol-
ogy, such a quantitative assessment has to be performed in
the framework of a CCDAS.
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