Quantitative Design of Observational Networks

T. Kaminski (http://FastOpt.com) R. Giering, E. Koffi P. Rayner, M. Scholze, and M. Voßbeck

S4D WS, Paris, October 2007

Motivation

Questionnaire

The intention of this questionnaire is to stimulate the discussion during the meeting.

4. Observational Network design and modelling

a) Are state-of-the-art Arctic models able to assist in the design of observational networks. If not, what is needed?

Motivation

Can construct a machinery that, for a given network and a given target quantity, can approximate the uncertainty with which the value of the target quantity is constrained by the observations

Outline

- Motivation
- Method
- •Demo
- •Which assumptions?
- Links to further information
- Discussion
- -> Any potential show stoppers for application to Arctic?

Model and Observational Uncertainties

- •No observation/no model is perfect.
- It is convenient to quantify observations and their model counterpart by probability density functions PDFs.
- •The simplest assumption is that they are Gaussian.

$$\sigma_d^2 = \sigma_{obs}^2 + \sigma_{mod}^2$$

total uncertainty

uncertainty from model error

• If the observation refers to a point in space and time, there is a representation error because the counterpart simulated by the model refers to a box in space and time.

• The corresponding uncertainty must be accounted for either by the observational or by the model contribution to total uncertainty.

Posterior Uncertainty

If the model was linear:

$$J(\tilde{\mathbf{x}}) = \frac{1}{2} \left[(\mathbf{M}\tilde{\mathbf{x}} - \mathbf{d})^T \mathbf{C}(d)^{-1} (\mathbf{M}\tilde{\mathbf{x}} - \mathbf{d}) + (\tilde{\mathbf{x}} - \mathbf{x_0})^T \mathbf{C}(x_0)^{-1} (\tilde{\mathbf{x}} - \mathbf{x_0}) \right]$$
and data + priors have Gaussian PDF, then the posterior PDF is also Gaussian:

$$\rho(x) \sim e^{J(x)}$$
with mean value:

$$\mathbf{x} = \mathbf{x}_0 + [\mathbf{M}^T \mathbf{C}(d)^{-1} \mathbf{M} + \mathbf{C}(x_0)^{-1}]^{-1} \mathbf{M}^T \mathbf{C}(d)^{-1} (\mathbf{d} - \mathbf{M} \mathbf{x}_0)$$

and uncertainty:

$$\mathbf{C}(x)^{-1} = \mathbf{M}^T \mathbf{C}(d)^{-1} \mathbf{M} + \mathbf{C}(x_0)^{-1}$$

which are related to the Hessian of the cost function:

$$\mathbf{C}(x)^{-1} = \mathbf{H} \underbrace{\frac{\partial^2 J}{\partial x_i \partial x_j}}$$

For a non-linear model, this is an approximation

0

Uncertainty for target in 2 steps

- x: Parameters
- x_{pr} : Priors
- C_{pr} : Uncertainties
- M(x): Model
- d: Observations
- C_d : Their uncertainties
- σ_{d_i} : Uncorrelated!
- J(x): Cost function
- $\frac{d^2 J(x)}{dx^2}$: Hessian
- x_{po} : Posterior parameters
- C_{po} : Posterior uncertainties
- y(x): Target quantity
- σ_y : Its uncertainty

Derivative information can be efficiently provided by compiler tool TAF

$$J(x) = \frac{1}{2} (x - x_{pr})^T C_{pr}^{-1} (x - x_{pr}) + \frac{1}{2} \sum_{i=1,nd} \left(\frac{M_i(x) - d_i}{\sigma_{d_i}}\right)^2$$
$$\frac{d^2 J(x)}{dx^2} = C_{pr}^{-1} + \sum_{i=1,nd} \frac{1}{\sigma_{d_i}^2} \frac{d^2}{dx^2} (M_i(x) - d_i)^2$$

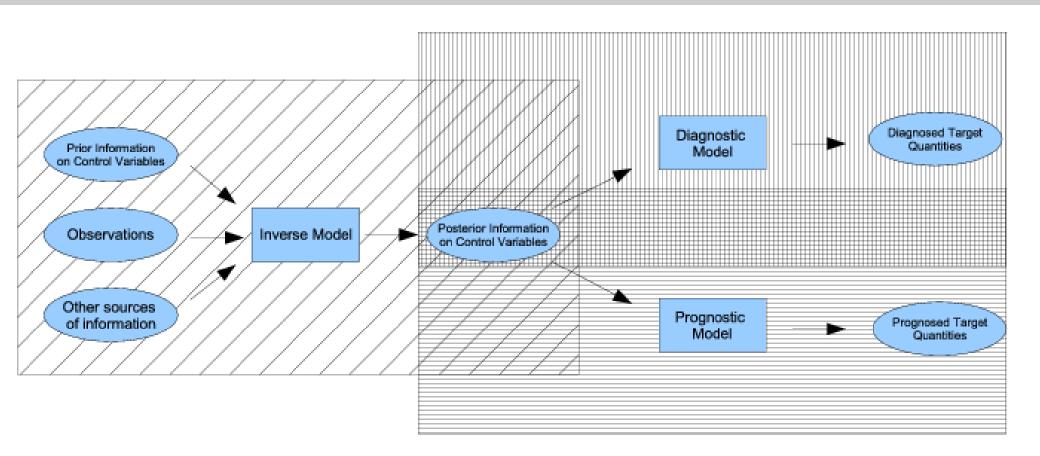
- Hessian independent of x for linear model
- For synthetic data use d = M(x).
- Decomposes nicely, can precompute model contribution

$$C_{po} \approx \frac{d^2 J(x_{po})}{dx^2}^{-1}$$

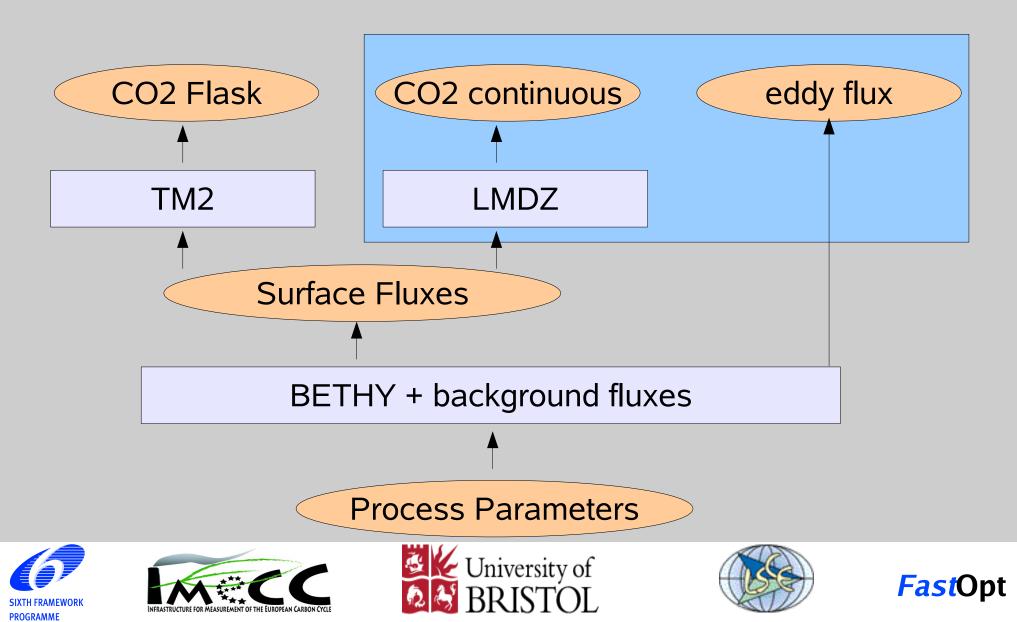
$$\sigma_y \approx \frac{dy(x_{po})}{dx} C_{po} \frac{dy(x_{po})}{dx}^T \approx \frac{dy(x_{po})}{dx} \frac{d^2 J(x_{po})}{dx^2}^{-1} \frac{dy(x_{po})}{dx}^T$$

FastOpt

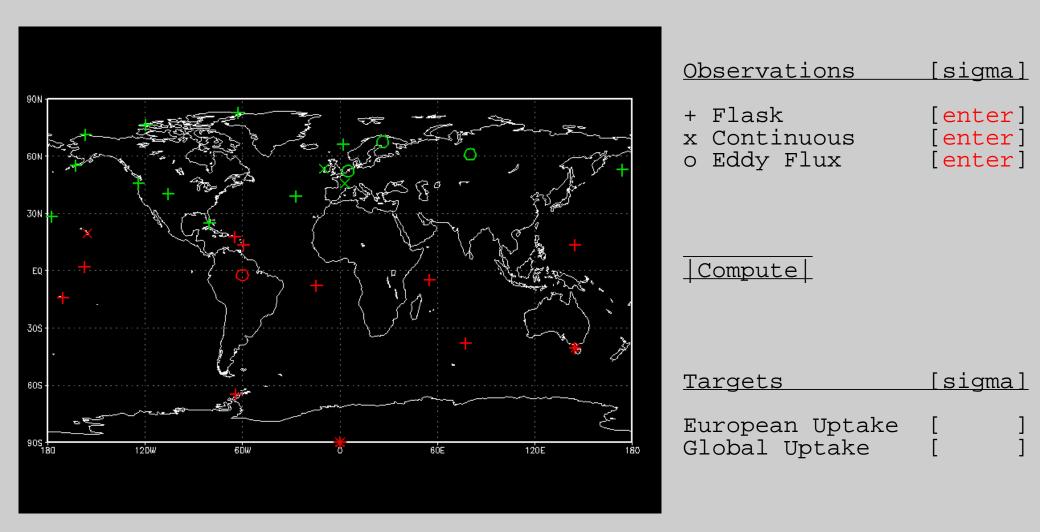
CCDAS scheme



Carbon Cycle Data Assimilation System (CCDAS) Forward Modelling Chain



Sketch of Network Designer



Assumptions and Ingredients

Assumptions:

•Gaussian uncertainties on priors, observations, and from model error (or function of Gaussian, e.g. lognormal)

Model not too non linear

•What else?

Ingredients:

•Ability to estimate uncertainties for priors, observations and due to model error; requires expertise of observationalists and modellers

•Assimilation system that can (efficiently) propagate uncertainties; helpful: adjoint, Hessian, and Jacobian codes, NAOSIMDAS could be the core

•Need to take logistic constraints into account

FastOpt

Further Information

Terrestrial assimilation system applications and papers: http://CCDAS.org

The corresponding network design project:

http://IMECC.CCDAS.org

with link to paper on network design (Kaminski and Rayner, in press)

Assimilation in the Arctic:

http://www.damocles-eu.org

More assimilation systems, applications and papers:

http://FastOpt.com

Thomas.Kaminski@FastOpt.com

