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Motivation

Questionnaire

The intention of this questionnaire is to stimulate the discussion 
during the meeting.

...

4. Observational Network design and modelling

a) Are state-of-the-art Arctic models able to assist in the design 
of observational networks. If not, what is needed?
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Motivation

Can construct a machinery that, 
for a given network and a given target quantity, 
can approximate the uncertainty 
with which the value of the target quantity is constrained by the 
observations
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Outline

•Motivation

•Method

•Demo

•Which assumptions?

•Links to further information

•Discussion 
-> Any potential show stoppers for application to Arctic? 
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Model and Observational Uncertainties
No observation/no model is perfect.

It is convenient to quantify observations and their model counterpart by 
probability density functions PDFs.

The simplest assumption is that they are Gaussian.

If the observation refers to a point in space and time, there is a representation 
error because the counterpart simulated by the model refers to a box in space 
and time.

The corresponding uncertainty must be accounted for either by the 
observational or by the model contribution to total uncertainty.

total uncertainty uncertainty from model error

uncertainty from observational error
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Posterior Uncertainty

If the model was linear:

and data + priors have Gaussian PDF, then the posterior PDF is also Gaussian:

with mean value:

and uncertainty: 

which are related to the Hessian of the cost function:

For a non-linear model, this is an approximation

-
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Uncertainty for target in 2 steps

Derivative information can be efficiently 
provided by compiler tool TAF
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CCDAS scheme
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Carbon Cycle Data Assimilation System (CCDAS)
Forward Modelling Chain

Process Parameters

BETHY + background fluxes

TM2 LMDZ

Surface Fluxes

CO2 Flask CO2 continuous eddy flux
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Sketch of Network Designer
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Assumptions and Ingredients

Assumptions:

•Gaussian uncertainties on priors, observations, and from model error 
(or function of Gaussian, e.g. lognormal)

•Model not too non linear

•What else?

Ingredients:

•Ability to estimate uncertainties for priors, observations and due to 
model error; requires expertise of observationalists and modellers

•Assimilation system that can (efficiently) propagate uncertainties; 
helpful: adjoint, Hessian, and Jacobian codes, 
NAOSIMDAS could be the core

•Need to take logistic constraints into account
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Further Information

Terrestrial assimilation system applications and papers: 
http://CCDAS.org

The corresponding network design project: 

http://IMECC.CCDAS.org

with link to paper on network design (Kaminski and Rayner, in press)

Assimilation in the Arctic:

http://www.damocles-eu.org 

More assimilation systems, applications and papers:

http://FastOpt.com

Thomas.Kaminski@FastOpt.com  

http://CCDAS.org/
http://IMECC.CCDAS.org/
http://www.damocles-eu.org/
http://FastOpt.com/
mailto:Thomas.Kaminski@FastOpt.com

