
Efficient sensitivities for the spin-up phase

Thomas Kaminski, Ralf Giering, and Michael Voßbeck

FastOpt, Schanzenstr. 36, 20357 Hamburg, Germany, (http://www.FastOpt.com)

Summary. In geosciences, it is common to spin up models by integrating with an-
ually repeated boundary conditions. AD-generated code for evaluating sensitivities
of the final cyclo-stationary state with respect to model parameters or boundary
conditions usually includes a similar iteration for the derivative statements, possibly
with a reduced number of iterations. We evaluate an alternative strategy that first
carries out the spin-up, then evaluates the full Jacobian for the final iteration and
from there applies the implicit function theorem to solve for the sensitivites of the
cyclo-stationary state. We demonstrate the benefit of the strategy for the spin-up of
a simple box-model of the atmospheric transport. We derive a heuristic inequality
for this benefit, which increases with the number of iterations and decreases with
the size of the state space.

Keywords: automatic differentiation, spin-up, sensitivities, source-to-source
transformation, TAF, implicit function

1 Introduction

In geosciences, it is common to spin up models to a cyclo-stationary state
with periodic boundary conditions (forcing) as is illustrated by Fig. 1. For
instance, to simulate the global carbon dioxide distribution in the atmosphere,
one runs an atmospheric transport model with a repeated seasonal cycle of
carbon dioxide fluxes at the Earth’s surface [15]. The spin-up is completed
once the simulated seasonal cycle of atmospheric carbon dioxide no longer
changes from one year to the next. Other examples are simulations of the
global thermo-haline ocean circulation [17] or of the terrestrial biosphere [24].
Especially for coupled model integrations, required spin-up times are often
prohibitively long. Sophisticated techniques have been devised to reduce them
(see, e.g, [11, 16, 22]).

Often, the sensitivity of the equilibrium state (spin-up sensitivity) with
respect to the forcing or internal parameters of the model is required. This

2 Thomas Kaminski, Ralf Giering, and Michael Voßbeck

spinup period

periodic forcing

 transient period

 nonperiodic forcing

Fig. 1. Schematic representation of spin-up phase.

sensitivity might be interesting per se, or it might be a part of an extended
sensitivity computation of other quantities that depend on the equilibrium
state through a transient integration (see Fig. 1).

Spin-ups are also carried out in fields other than geosciences. For exam-
ple, the simulation of a steady aerodynamic flow around an airfoil constitutes
a special case of a spin-up integration with constant forcing (reflecting the
airfoil’s shape and the far field) and a period of one time step. Spin-up sensi-
tivities provide important information for design optimisation.

Accurate spin-up sensitivities can be provided by automatic differentia-
tion (AD,[9]). Applying AD in a straightforward way does, however, result
in derivative propagation through the entire spin-up process, which is even
more costly than the spin-up itself. Often, the computation is only rendered
feasible at the cost of approximations in the model formulation. The terres-
trial biosphere model BETHY [13, 14], which forms the core of the Carbon
Cycle Data Assimilation System (CCDAS, see http://CCDAS.org), provides
an example of such an approximation. Spinning up a pool for slowly decom-
posing organic carbon in soil is avoided by introducing a so-called β factor to
parameterise the combined effect of both equilibrium pool size and turn-over
time on the release of carbon dioxide [21, 23]. Using this approximation, only
a fast decomposing soil carbon pool has to be spun up, which allows to reduce
the spin-up time from thousands of years [24] to five years.

The present paper evaluates an alternative approach to sensitivity calcu-
lation for the spin-up phase, the full Jacobian approach, which requires the
Jacobian for only a single year integration in equilibrium. The layout for the
remainder of the paper is as follows: Sect. 2 formalises the spin-up process,

Efficient sensitivities for the spin-up phase 3

discusses various ways of computing spin-up sensitivities, and presents the full
Jacobian approach. Sect. 3 describes its implementation, and Sect. 4 demon-
strates its application to the spin-up of a simple atmospheric transport model.
Sect. 5 analyses the computational efficiency of the full Jacobian approach. A
summary and an outlook are given in Sect. 6.

2 Spin-up Sensitivities

Formally, integration of a model over a forcing-period of, say, one year can be
represented by a function f : Rp ×Rn → Rn mapping the state x at January
1, 0 am, to next year’s state at the same time, y:

y = f(b, x), (1)

where b denotes input quantities other than the initial state such as boundary
conditions or internal parameters of the model.

The spin-up is the iteration of (1), with y taking the role of x for the
subsequent iteration. A necessary condition for terminating the spin-up is
convergence of y to a fixed point xe (equilibrium state), i.e. the equation

xe = f(b, xe) (2)

must hold within a specified accuracy.
The spin-up sensitivity is the derivative of the equilibrium state xe with

respect to b. AD of the source code for (1) can provide derivative code to com-
pute this sensitivity. The most obvious approach (standard/black-box AD)
would be to differentiate the code of the entire spin-up phase, say in forward
mode [9] of AD. Using, for instance, our AD-tool Transformation of Algo-
rithms in Fortran (TAF [6, 7]), one would specify b as independent/input
variable and xe as dependent/output variable. TAF then generates code that
iterates

dy

db
=

∂f

∂b
+

∂f

∂x
· dx

db
(3)

along with (1). In this derivative code each relevant function code statement is
preceded by the corresponding derivative statement. For a given combination
of b and initial value of x, the spin-up sensitivity is evaluated by running the
derivative code with dx

db initialised to zero. In case there is only one stable
equilibrium, the results of both the spin-up iteration and the derivative itera-
tion are independent of the initial value of the state, x. Griewank [9] provides
a formal analysis of the convergence criteria for (3).

There are, however, more efficient strategies of providing spin-up sensi-
tivities, based on the implicit function theorem for (2): Presuming that f is
sufficiently regular and ∂f

∂x (b, xe(b))− Id is non-zero for a given b, then there
exists a regular function b̃ 7→ xe(b̃) around b and its derivative fulfils

4 Thomas Kaminski, Ralf Giering, and Michael Voßbeck

subroutine f(p, b, n, x, y)
integer p, n
real b(p), x(n), y(n)

File 1: Header of subroutine (file f.f) implementing (1).

0 =
∂f

∂b
(b, xe(b)) + (

∂f

∂x
(b, xe(b))− Id)

dxe

db
(b), (4)

where Id denotes the identity in Rn. dxe

db is determined by local properties
of f around b and the equilibrium state xe. [5, 9] suggest a delayed deriva-
tive propagation strategy (two-phase-AD), which does not turn on derivative
propagation until the iteration of (1) converges well. Bücker et al. [2] apply
this strategy to a CFD code.

Christianson [3, 4] analyses reverse mode (adjoint) AD of the iteration of
(1) and suggests an efficient alternative adjoint, which only uses the required
values (trajectory) [6] from the last iteration of (1) and thus considerably
reduces the necessary resources for storing/recomputing required values. TAF
implements automatic generation of the Christianson scheme, triggered by a
TAF-loop directive [7].

All above strategies (standard, delayed derivative propagation, Christian-
son) are matrix-free, i.e. they employ products of the Jacobian ∂f

∂x with a
vector to solve (3) for dxe

db . The present study explores the alternative full Ja-
cobian strategy of first running the spin-up, then computing the full Jacobian,
i.e. ∂f

∂b (b, xe(b)) and ∂f
∂x (b, xe(b)), and finally solving (4) for dxe

db .

3 Implementation

We sketch a Fortran implementation of the full Jacobian approach based on
our AD tool TAF [6, 7]. It is instructive to consider first the simpler case of
a sensitivity calculation that is restricted to the spin-up phase.

We start from the code of a single year integration, more precisely an
implementation of (1) a subroutine form of. The header of the subroutine is
shown in file 1. A single code for evaluating the two Jacobians required by (4),
i.e. ∂f

∂b (b, xe(b)) and ∂f
∂x (b, xe(b)), is generated by applying TAF with command

line options -forward -pure -toplevel f -input b,x -output y -jacobian
m -ftlmark dbx f.f, where m = p + n (the sum of the dimensions of b and
x) and f.f contains the source code of the subroutine f. The option -pure
invokes TAF’s pure mode, i.e. the derivative code does not include a function
evaluation, and function code statements are only included where necessary
to provide required values. TAF generates a subroutine f dbx that evaluates
the Jacobian.

A simple driver program that runs the code for the spin-up and its deriva-
tive is shown in file 2. Subroutine spinup performs the spin-up, including the
iterative call of the subroutine f and a termination condition. The field x0

Efficient sensitivities for the spin-up phase 5

real b(p), x0(n), xe(n), x(n), y(n)
real x_dbx(p+n,n), b_dbx(p+n,p)
real y_dbx(p+n,n), y_dx(n,n), y_db(p,n), x_db(p,n)
b = ...

! spin-up
x0 = 1.
call spinup(p, b, n, x0, xe)

! initialisation of derivative objects
do j =1,n

do i=1,p+n
x_dbx(i,j)=0.

enddo
x_dbx(p+j,j)=1.

enddo
do j =1,p

do i=1,p+n
b_dbx(i,j)=0.

enddo
x_dbx(j,j)=1.

enddo
! Jacobian evaluation

x=xe
call f_dbx(p, b, b_dbx, n, x, x_dbx, y, y_dbx)

! separating the Jacobians
do i=1,p

y_db(i,:) = y_dbx(i,:)
enddo
do i=1,n

y_dx(i,:) = y_dbx(p+i,:)
enddo

! solve for spin-up sensitivity
call solve (n, p, y_dx, y_db, x_db)

File 2: A driver program for solving first (2) and then (4) using the full
Jacobian approach.

!$taf subroutine spinup input = 1,2,3,4
!$taf subroutine spinup output = 5
!$taf subroutine spinup active = 2,5
!$taf subroutine spinup depend = 1,2,3,4
!$taf subroutine spinup adname = spinup_ad
!$taf subroutine spinup ftlname = spinup_tl

File 3: TAF flow directives for the subroutine spinup.

contains the initial value of the state and the field x e its equilibrium value.
The matrices dx

db and db
dx are initialised to zero, and dx

dx and db
db to the identities

in Rn and Rp, respectively. The Jacobian is evaluated for x = xe, i.e. at the
equilibrium, then the result is split up into the two Jacobians and passed to
a solver routine which finally returns dxe

db .
For cases in which the Jacobian evaluation in reverse mode is preferable,

the TAF command line and the driver need to be modified. The command line
arguments -forward -ftlmark have to be replaced by -reverse -admark. In
the driver, it is now the field y dbx that has to be initialised, and the Jacobian
is returned in the fields b dbx and x dbx.

Let’s now address the case in which the spin-up is part of a larger computa-
tion and some sensitivity involving the entire computation is needed. We apply

6 Thomas Kaminski, Ralf Giering, and Michael Voßbeck

TAF to the source code of the entire computation. To handle the spin-up, we
use the TAF flow directives for the subroutine spinup (see file 3) which trigger
inclusion of a calling sequence for an externally provided derivative routine of
spinup. The forward mode then calls a routine spinup tl while the reverse
mode calls a routine spinup ad. For details on TAF flow directives see [8].

The two routines spinup tl and spinup ad are hand-written wrappers.
They first compute dxe

db as shown in file 2 and then carry out a matrix mul-
tiplication to propagate the derivative through the spin-up. The form of this
matrix multiplication depends on the mode in which the entire code is differ-
entiated. In forward mode, spinup tl multiplies dxe

db from the right with the
derivative of b with respect to the independents, and in reverse mode from
the left with the derivative of the dependents with respect to xe.

4 Numerical Example

As a test code, we employ “boxmod”, a simple model of the atmospheric
transport, which uses an Euler scheme to integrate the continuity equation
for a passive trace gas. In this context, passive means that the concentra-
tion does not influence the atmospheric transport. The model is described in
[20, 25] and its forward and reverse mode derivatives in [20]. There is one box
for each hemisphere, their tracer concentrations take the role of x in (1). The
inter-hemispheric mixing rate [20] of 1/year is its single parameter and corre-
sponds to b in (1). We use boxmod in its methyl chloroform setup described
in [20], with a uniform sink term corresponding to an inverse lifetime of 1/4.7
years [10]. We repeat the 1978 surface source estimates of Prinn et al. [19],
modulated by a cosine with a period of one year and an amplitude of 10% the
source strength. To mimic a large-scale application, the model is integrated
with 107 time steps per year. We use the same initial concentration of 100 ppt
(parts per trillion) for both boxes, which is about 10% off the equilibrium.

Table 1 shows the convergence of the spin-up in double precision, the first
column lists the iteration number, and the next two columns both components
of the state vector; the last column will be discussed later. For our base case
we choose to iterate until the relative difference between y and x (as defined in
(1)) is less than 10−7 for both components, which is reached after 49 iterations.
We also look at a low accuracy case with a relative difference of 10−3, which
is reached after six iterations.

To compare the standard approach and the full Jacobian approach, two
derivative codes are generated in TAF’s pure forward mode (see Sect. 3). As
our state vector has only two components, solving (4) for dxe

db is trivial. For our
base case with 49 iterations, the relative difference in the spin-up sensitivities
from both approaches is below 10−14.

We also test solving (4) by iterating (3) (with the full Jacobian). The con-
vergence of dy

db is shown in the last column of table 1. After only 8 iterations the
relative difference to the dy

db value from standard is below 10−7. Note that this

Efficient sensitivities for the spin-up phase 7

Table 1. Convergence of the spin-up.

Iteration x(1) x(2) dx(1)/db

1 108.51645929 91.94163466 -7.3450784858

2 109.60820945 91.22018250 -8.1485930691

3 109.85705135 91.27066920 -8.2364935166

4 109.98888128 91.38080007 -8.2461093827

5 110.08786208 91.47740710 -8.2471613100

6 110.16704315 91.55632850 -8.2472763855

8 110.28261339 91.67186723 -8.2472903514

10 110.35811940 91.74737286 -8.2472905185

12 110.40745656 91.79671001 -8.2472905205

20 110.48351777 91.87277122 -8.2472905205

30 110.49845465 91.88770810 -8.2472905205

40 110.50023387 91.88948732 -8.2472905205

49 110.50043900 91.88969246 -8.2472905205

50 110.50044580 91.88969925 -8.2472905205

60 110.50047104 91.88972449 -8.2472905205

70 110.50047405 91.88972750 -8.2472905205

80 110.50047441 91.88972786 -8.2472905205

90 110.50047445 91.88972790 -8.2472905205

100 110.50047446 91.88972791 -8.2472905205

Table 2. Performance for derivatives of boxmod equilibrium state with respect to
mixing rate.

Case Spin-up [s] Std AD [s] Jacobian [s] Std/Jac

base 4.4 5.9 0.17 35.2

ifort 4.4 5.3 0.21 25.0

low accuracy 0.53 0.72 0.17 4.3

procedure is different from delayed derivative propagation, as we are using the
precomputed Jacobian for the equilibrium state. Also, delayed derivative prop-
agation faces the decision when to start the derivative propagation without
knowing how many iterations are still needed by the function code iteration
to converge.

For the low accuracy case, the derivatives of both approaches (standard
and full Jacobian) each have a relative difference below 10−4 to the ’true’
sensitivity (from 100 iterations in the standard approach, see Table 1).

8 Thomas Kaminski, Ralf Giering, and Michael Voßbeck

We run performance tests on a 3GHz Pentium 4 processor. Each test is
repeated 10 times and the average run time recorded. Table 2 lists run times for
three test cases. The cases base and low accuracy use the Lahey-Fujitsu Fortran
95 compiler lf95 with high optimisation level and double precision (flags -O3
- -dbl). Case ifort equals the base case, with lf95 replaced by the Intel Fortran
compiler, again with high optimisation level and double precision (flags -
O3 - -autodouble). The second column shows the run time for the spin-up
integration, columns three and four refer to the standard and full Jacobian
approaches, respectively. The last column shows the quotient of columns three
and four. The relative run times depend strongly on the compiler, but also on
compiler options and platform (not shown here). The full Jacobian approach
is considerably faster than standard, even in the low accuracy case.

5 Performance analysis

In the box-model example, the full Jacobian strategy outscores the standard
strategy considerably. Why is that? Let r(m) denote the computational cost
of a Jacobian product with m vectors for a single year run of boxmod. Our
standard measure for computational cost of derivative code is CPU time in
multiples of the CPU time spent for the evaluation of the underlying function.
But let’s use the number of operations for a moment. Then r(·) would be an
affine function of m, i.e.

r(m) = r(1) + s · (m− 1), (5)

with r(1) being the number of flops for the product of the Jacobian times the
first vector and s being the number of flops per additional vector. The first
vector is more expensive, because the computation of required values has to
be included.

When returning to CPU time as performance measure, the form of r(·)
depends on additional factors, most of which are platform and compiler de-
pendent. Examples of such factors are data locality, vector length, level of
compiler optimisation, and other compiler options. Also, from a certain m the
computation will exceed the available memory and hence needs to be split
up. A previous study [12] has tested the performance for TAF-generated code
for forward and reverse mode Jacobian evaluations within CCDAS: In reverse
mode, testing r(m) for fourteen values of m between 1 and 96 (see Figure
4 of [12]) indicates that (5) is indeed a good approximation, with s ≈ 0.25
and r(1) between 3 and 4. In forward mode, r(1) = 1.5 and r(58) = 12 yield
s ≈ 0.2.

Our present example is a bit more complex as, in addition to increasing
the number of Jacobian-vector products, we are also increasing the set of
quantities with respect to which we are differentiating. On the other hand,

Efficient sensitivities for the spin-up phase 9

the state, x, is active [1, 6] even when differentiating only with respect to b
(standard), i.e. derivatives of the state are propagated for both approaches
standard and full Jacobian. We can estimate the extra cost for extending the
Jacobian from derivatives with respect to b to derivatives with respect to b and
x from the numbers in Table 2. With 107 time steps per year, we can safely
neglect the CPU time spent outside boxmod and its derivatives. For the base
case with its k = 49 iterations we have then r(1) = (5.909/49)/(4.3651/49) ≈
1.35, and r(3) = 0.168/(4.3651/49) ≈ 1.86, which yields a slope s of about
0.25.

If we can neglect the cost of solving (4) and if (5) is a good approximation
for capturing the cost of adding derivatives with respect to x, the full Jacobian
strategy (left hand side) is preferable to standard (right hand side), if

k + r(1) + s · (p + n− 1) < k · (r(1) + s · (p− 1)), (6)

where p denotes the dimension of b. The left hand side k quantifies the cost of
the spin-up itself. Since we have always r(1) > 1, the full Jacobian gets more
favourable with increasing k, as seen in the example. Increasing n favours the
standard approach, whereas increasing p favours the full Jacobian approach.

When increasing p, from a certain point the reverse mode is more efficient
than the forward mode. This point depends on the number of dependent
variables, q. If the dependent variables are the equilibrium state then q = n.
The dependent variables may also be some function of the equilibrium state,
including, e.g., a transient integration as illustrated in Fig. 1. In reverse mode,
the Christianson approach is more efficient than the standard approach, as
the former needs to provide fewer required values. If we denote the cost of
evaluating the Jacobian times q vectors in reverse mode by r̃(q) and its slope
by s̃, the corresponding cost estimates for the full Jacobian and Christianson
approaches are

k + r̃(1) + s̃ · (n− 1) (7)

and

k · (r̃(1) + s̃ · (q − 1)), (8)

respectively.
We can illustrate (6) with numbers from [7], where the authors apply TAF

to a Navier-Stokes solver, in a simple configuration with k = 500, n = 5×801,
p = 2 (Mach number and angle of attack), and q = 1 (scalar objective function
of lift and drag). With their r(1) = 2.4 and an assumed s = 0.25, (6) yields
a cost of about 1500 for the full Jacobian approach versus about 1300 for
the standard approach. As the Christianson approach yields r̃(1) = 3.4, the
standard approach (in forward mode) may be preferable up to p = 5 (using
the assumed s = 0.25). For any larger p, (8) yields a cost of 1700. Hence, at
first glance, the full Jacobian appears slightly favourable for 5 < p < 800.

10 Thomas Kaminski, Ralf Giering, and Michael Voßbeck

For n = 5 × 801 we cannot, however, ignore the cost of solving (4). The
cost of standard methods for solving systems of linear equations (e.g. LU
decomposition) grows with n3 [18]. Solving (4) iteratively (as done in Sect. 4),
requires one matrix-vector product in Rn per iteration. The only relevant
component of the spin-up sensitivity dxe

db is given by the derivative of the
objective function with respect to the equilibrium state. One can, thus, focus
on convergence of that component.

The comparison looks much different for the spin-up of terrestrial bio-
sphere models. As there is no exchange of information across borders of grid
cells, the Jacobian ∂f

∂x has a block diagonal structure, with the block size equal
to the dimension of the state space per grid cell. This dimension, neff , is the
effective size of state space to be used in (6), as the sparse Jacobian can be
retrieved from neff Jacobian-vector products. Also, (4) can be solved block
by block. As neff is usually below 10, the computation of ∂f

∂x as well as solv-
ing (4) are inexpensive. Regarding s, one can, for instance, assume the above
mentioned value for CCDAS of s ≈ 0.2. With n = 5 and k = 3000 the cost
of the full Jacobian approach is dominated by the cost of the spin-up itself,
which is 3000. The sensitivities come at an extra cost of only about 2.5.

6 Summary and Outlook

We have explored the full Jacobian approach to the computation of sensi-
tivities for the spin-up phase. For a simple box-model of the atmospheric
transport, the full Jacobian approach is 4 to 35 times more efficient than
the standard approach of propagating derivatives through the entire spin-up
phase. This benefit increases with the number of iterations and decreases with
the size of the state space.

We have shown that for terrestrial biosphere models, which are charac-
terised by a low dimensional effective state-space, the full Jacobian approach
looks promising. As a first large-scale application, we plan to compute spin-up
sensitivities for a biosphere model within CCDAS.

Acknowledgements

The idea for this study originates from a discussion with Srikanth Akkaram
on sensitivities of a structural mechanics code. Wolfgang Knorr and Marko
Scholze have provided valuable advice and comments. Part of this work has
been carried out in the project CAMELS, supported by the EU under contract
no. EVK2-CT-2002-00151 within the 5th Framework Programme for Research
and Technological Development.

Efficient sensitivities for the spin-up phase 11

References

1. Christian H. Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. AD-
IFOR 2.0: Automatic differentiation of Fortran 77 programs. IEEE Computa-
tional Science & Engineering, 3(3):18–32, 1996.

2. H. M. Bücker, A. Rasch, E. Slusanschi, and C. H. Bischof. Delayed Propagation
of Derivatives in a Two-dimensional Aircraft Design Optimization Problem. In
D. Snchal, editor, Proceedings of the 17th Annual International Symposium on
High Performance Computing Systems and Applications and OSCAR Sympo-
sium, Sherbrooke, Qubec, Canada, May 11-14, pages 123–126. NRC Research
Press, 2003.

3. Bruce Christianson. Reverse accumulation and attractive fixed points. Opti-
mization Methods and Software, 3:311–326, 1994.

4. Bruce Christianson. Reverse accumulation and implicit functions. Optimization
Methods and Software, 9(4):307–322, 1998.

5. Shaun A. Forth and Trevor P. Evans. Aerofoil optimisation via ad of a multi-
grid cell-vertex Euler flow solver. In George Corliss, Christèle Faure, Andreas
Griewank, Laurent Hascoët, and Uwe Naumann, editors, Automatic Differen-
tiation: From Simulation to Optimization, Computer and Information Science,
chapter 17, pages 153–160. Springer, New York, 2001.

6. R. Giering and T. Kaminski. Recipes for Adjoint Code Construction. ACM
Trans. Math. Software, 24(4):437–474, 1998.

7. R. Giering, T. Kaminski, and T. Slawig. Applying TAF to a Navier-Stokes solver
that simulates an Euler flow around an airfoil. To appear in Future Generation
Computer Systems, 2005.

8. R. Giering, T. Kaminski, R. Todling, R. Errico, R. Gelaro, and N. Winslow.
Generating tangent linear and adjoint versions of NASA/GMAO’s Fortran-90
global weather forecast model. In H. M. Bücker, G. Corliss, P. Hovland, U. Nau-
mann, and B. Norris, editors, Automatic Differentiation: Applications, Theory,
and Tools, Lecture Notes in Computational Science and Engineering. Springer,
2005.

9. A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia, 2000.

10. S. Houweling, Frank Dentener, and Jos Lelieveld. The impact of nonmethane
hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res.,
103(D9):10673–10696, 1998.

11. Tim C. Johns, Ruth E. Carnell, Jenny F. Crossley, Jonathan M. Gregory, John
F. B. Mitchell, Catherine A. Senior, Simon F. B. Tett, and Richard A. Wood.
The Second Hadley Centre coupled ocean-atmosphere GCM: Model description,
spinup and validation. Clim. Dyn., 13:103–134, 1997.

12. T. Kaminski, R. Giering, M. Scholze, P. Rayner, and W. Knorr. An exam-
ple of an automatic differentiation-based modelling system. In V. Kumar,
L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer, editors, Computational Science
– ICCSA 2003, International Conference Montreal, Canada, May 2003, Pro-
ceedings, Part II, volume 2668 of Lecture Notes in Computer Science, pages
95–104, Berlin, 2003. Springer.

13. W. Knorr. Satellitengestützte Fernerkundung und Modellierung des Globalen
CO2 -Austauschs der Landvegetation: Eine Synthese. PhD thesis, Max-Planck-
Institut für Meteorologie, Hamburg, Germany, 1997.

12 Thomas Kaminski, Ralf Giering, and Michael Voßbeck

14. W. Knorr. Annual and interannual CO2 exchanges of the terrestrial biosphere:
process based simulations and uncertainties. Glob. Ecol. and Biogeogr., 9:225–
252, 2000.

15. R. M. Law, P. J. Rayner, A. S. Denning, D. Erickson, M. Heimann, S. C. Piper,
M. Ramonet, S. Taguchi, J. A. Taylor, C. M. Trudinger, and I. G. Watter-
son. Variations in modelled atmospheric transport of carbon dioxide and the
consequences for CO2 inversions. Global Biogeochem. Cycles, 10:783–796, 1996.

16. S. Manabe and R. Stouffer. Two climate equilibria of a coupled ocean-
atmosphere model. Climate Dyn., 1:841–866, 1988.

17. M. Nakamura, P. H. Stone, and J. Marotzke. Destabilization of the thermohaline
circulation by atmospheric eddy transports. J. Climate, 7:1870–1882, 1994.

18. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipies in Fortran. 2nd edn. Cambridge University Press,
Cambridge, 1992.

19. Prinn et al. Global average concentration and trend for hydroxil radical deduc-
tion from ALE/GAGE trichloroethane (methyl chloroform) data for 1987–1990.
J. Geophys. Res., 97:2445–2461, 1992.

20. P. Rayner, R. Giering, T. Kaminski, R. Ménard, R. Todling, and C. Trudinger.
Exercises. In P. Kasibhatla, M. Heimann, D. Hartley, P. J. Rayner, N. Ma-
howald, and R. Prinn, editors, Inverse Methods in Global Biogeochemical Cycles,
Geophys. Monogr. Ser., volume 114, pages 324–347. Washington, D. C., 1999.

21. P. Rayner, M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann.
Two decades of terrestrial Carbon fluxes from a Carbon Cycle Data Assimilation
System (CCDAS). Accepted for publication in to Global Biogeochemical Cycles,
2004.

22. Andreas Schmittner and Thomas F. Stocker. A seasonally forced ocean-
atmosphere model for paleoclimate studies. J. Climate, 14:1055–1068, 2001.

23. M. Scholze. Model studies on the response of the terrestrial carbon cycle on
climate change and variability. Examensarbeit, Max-Planck-Institut für Mete-
orologie, Hamburg, Germany, 2003.

24. S. Sitch, I. C. Prentice, B. Smith, A. Arneth, A. Bondeau, W. Cramer, J. O.
Kaplan, S. Levis, W. Lucht, M. T. Sykes, K. Thonicke, and S. Venevsky. Evalu-
ation of ecosystem dynamics, plant geography and terrestrial carbon cycling in
the LPJ dynamic global vegetation model. Global Change Biology, 9:161–185,
2003.

25. P. P. Tans. A note on isotopic ratios and the global atmospheric methane
budget. Global Biogeochem. Cycles, 11:77–81, 1997.

