
An Example of an Automatic
Differentiation-Based Modelling System

Thomas Kaminski1, Ralf Giering1, Marko Scholze2, Peter Rayner3, and
Wolfgang Knorr4

1 FastOpt, Martinistr. 21, 20251 Hamburg, Germany, http://www.FastOpt.com
2 MPI für Meteorologie, Bundesstraße 55, D-20146 Hamburg, Germany

3 CSIRO-DAR, Aspendale, Australia
4 MPI für Biogeochemie, Jena, Germany

Abstract. We present a prototype of a Carbon Cycle Data Assimilation
System (CCDAS), which is composed of a terrestrial biosphere model
(BETHY) coupled to an atmospheric transport model (TM2), corre-
sponding derivative codes and a derivative-based optimisation routine. In
calibration mode, we use first and second derivatives to estimate model
parameters and their uncertainties from atmospheric observations and
their uncertainties. In prognostic mode, we use first derivatives to map
model parameters and their uncertainties onto prognostic quantities and
their uncertainties. For the initial version of BETHY the corresponding
derivative codes have been generated automatically by FastOpt’s auto-
matic differentiation (AD) tool Transformation of Algorithms in Fortran
(TAF). From this point on, BETHY has been developed further within
CCDAS, allowing immediate update of the derivative code by TAF. This
yields, at each development step, both sensitivity information and sys-
tematic comparison with observational data meaning that CCDAS is
supporting model development. The data assimilation activities, in turn,
benefit from using the current model version. We describe generation
and performance of the various derivative codes in CCDAS, i.e. reverse
scalar (adjoint), forward over reverse (Hessian) as well as forward and
reverse Jacobian plus detection of the Jacobian’s sparsity.

1 Introduction

In the past decades, numerical simulation models have become indispensable
tools for earth system research. Component models describe parts of the sys-
tem such as atmosphere, ocean, cryosphere, terrestrial and oceanic biosphere, or
atmospheric chemistry. As there are important feedbacks between the dynam-
ics of the individual components, coupling of component models is becoming
more and more important. The steady increase in available computer resources
allows an increase of the complexity of these models in terms of the level of
component-detail, the number of components, and the numerical resolution.

A typical model formulation is based on a discretised set of equations and
includes a number of parameters, initial and boundary conditions, all of which



are subject to uncertainties. The subset regarded most uncertain are usually
specified as unknowns (or tunable parameters). In addition there are observable
quantities that can be diagnosed by the model and are subject to observational
uncertainties. The data assimilation (inverse modelling) community is concerned
with combining models and observational data. Usually, on the basis of a given
validated model rather sophisticated mathematical techniques are applied to
infer information on the model’s unknowns. A subset of these techniques are
based on first- or higher-order derivative information.

In the model development community, the sensitivity of a given model for-
mulation to values of the unknowns is usually assessed by multiple model runs.
Validation is often carried out in a qualitative way, e.g. by plotting observational
data against model simulations. Calibration of the models is usually guided by
intuition rather than a mathematical algorithm. The advanced tools of the data
assimilation community are rarely used. One of the reasons for this is the usu-
ally long delay from the release of a new model version to its integration in a
data assimilation system. For derivative based data assimilation systems that
rely on hand coding of, say, the adjoint of a complex model, this delay is often
in the order of years. The ocean modelling community has started to reduce
significantly this delay by employing an automatic differentiation (AD) tool to
generate and maintain the derivative code of their data assimilation systems.
FastOpt’s AD tool Transformation of Algorithms in Fortran (TAF,[1, 2]) has
become an integral component of the ocean state estimation tool [3, 4], a data
assimilation system based on the MIT general circulation model (MITgcm, [5,
6]) built by the ECCO consortium. Within ECCO, model development and data
assimilation go hand in hand and benefit from each other. TAF is also integrated
in a similar system, which is currently being built around the Modular Ocean
Model (MOM, [7], see also [8]) by the Geophysical Fluid Dynamics Laboratory
at Princeton.

In this paper we present a prototype of a Carbon Cycle Data Assimilation
System, CCDAS [9], based on the terrestrial biosphere model BETHY [10] cou-
pled to the atmospheric transport model TM2 [11]. CCDAS has been set up and
is being used by a group of model development and data assimilation experts.
For the initial version of BETHY, the corresponding derivative codes have been
generated automatically by TAF. From this point on, BETHY has been devel-
oped within CCDAS, allowing immediate update of the derivative code by TAF.
At each development step, rather than testing the current model formulation
at a few subjectively selected points in parameter space, we explore that space
algorithmically. In Sect. 2 we give a brief description of the model underlying
CCDAS, and Sect. 3 presents the system as a whole. Section 4 addresses the AD
component including performance, and Sect. 5 draws some conclusions.

2 BETHY and TM2

BETHY [12, 10] is a model of the terrestrial biosphere. For the initial version of
CCDAS, the model has been restricted to the simulation of photosynthesis, car-



bon and energy balance (see also [9]). Global vegetation is mapped onto 13 plant
functional types (PFTs) based on [13]. The reduced BETHY can be driven by
observed climate and radiation data ([14] which have been extended to the year
2000 [15]) or by climate model output. Hydrology and phenology are provided
by an integration of the full BETHY version. For a given integration period
(typically a number of years), the model simulates the diurnal cycle of a repre-
sentative day for each month. This diurnal cycle is resolved at an hourly time
step. BETHY computes carbon dioxide exchange fluxes with the atmosphere.
To constrain the model with atmospheric concentrations observed at a global
sampling network [16], BETHY is coupled to the atmospheric transport model
TM2 [11]. For a passive tracer such as carbon dioxide, in our setup, TM2 acts
as a linear function, mapping monthly mean fluxes across its about 9’000 sur-
face grid cells onto monthly mean concentrations at 40–100 observational sites.
Hence, we represent the model by its Jacobian matrix derived by reverse mode
AD of TM2, in a similar way as [17]. Coupling is realised on the Fortran code
level, rather than on the level of the operating system. The same strategy has
been applied previously for coupling a much simpler biosphere model, the Simple
Diagnostic Biosphere Model (SDBM, [18]), to TM2. We refer to [19] for details.

3 Two Modes of CCDAS

CCDAS has two modes of operation. We give a brief description here, for details
consult [20]. In its calibration or assimilation mode, CCDAS employs observa-
tions plus their uncertainties to infer information on unknowns in the model.
These unknowns include, for example, rate constants or asymptotic values of
functional forms used to describe plant or soil behaviour. In our current setup,
we have 57 parameters within BETHY plus an initial value of the atmospheric
concentration as an additional unknown. The observations of 41 sites are pro-
vided by a global atmospheric flask sampling network [16]. The atmospheric
concentration is also affected by fluxes from components other than those sim-
ulated by BETHY. Our model accounts for these components as prescribed
contributions (background fluxes) from ocean [21, 22], land use change [23], and
fossil fuel emissions [24, 25]. Figure 1 depicts the model setup for the calibration
mode. Additional streams of observational data can be accessed by coupling fur-
ther models. The model is currently calibrated at a global resolution of 2 × 2
degrees using 21 years of observations and a spin up period of 5 years in order
to achieve a quasi-equilibrium state for its litter carbon pool.

The calibration problem is formulated in a Bayesian way (see e.g. [26, 27]):
The observational information is combined with a priori knowledge on the un-
knowns and the constraint provided by the model. Observations and priors (d
and p, respectively) are assumed to have Gaussian probability distributions, i.e.
they are represented by their mean values and covariance matrices (Cd and Cp,
respectively). Model error is reflected by a contribution to the observational
covariance matrix. Currently we are using diagonal covariance matrices for ob-
servations and priors. Combining observed and prior information to the model



Fig. 1. Flow of information in the coupled model. Oval boxes show the various quan-
tities, dependent and independent variables are dark grey, intermediate fields are light
grey. Rectangular boxes denote the mappings between these fields

yields a posterior probability distribution for the unknowns, which is highest at
the minimum of the misfit function J

J(x) =
1
2
((M(x)− d)T Cd

−1 (M(x)− d) + (x− p)T Cp
−1 (x− p)) , (1)

where M denotes our model and T the transpose. The calibration thus yields an
optimisation problem with x as control variables. The problem is solved with a
BFGS algorithm similar to [28], which iteratively evaluates both J and its gradi-
ent with respect x. The optimiser works off-line: at each iteration the values from
function and gradient evaluations plus some internal information are recorded.
This allows interruptions and restarts, which is convenient, e.g. for switching
computing platforms. The optimisation is preconditioned with the prior covari-
ance matrix, i.e control variables are normalised by their prior uncertainties.

The posterior uncertainty on the unknowns is approximated by the inverse
Hessian of J at the minimum. We invert the Hessian in the subspace of unknowns
which is constrained by the observations, in the orthogonal complement we keep
the prior uncertainties.

In its prognostic mode, CCDAS computes selected target quantities and their
uncertainties from the calibrated values and their uncertainties. The underlying
modelling chain is shown in Fig. 2. Current target quantities are spatial and
temporal means of exchange fluxes. Their uncertainties are approximated by

Cf = DMT CxDM , (2)

where DM denotes the Jacobian of the model. By coupling further models,
additional quantities can be predicted.



Fig. 2. Model set-up for the prognostic mode. Oval boxes show the various quantities,
dependent and independent variables are dark grey, intermediate fields are light grey.
Rectangular boxes denote the mappings between these fields

As mentioned above, a new version of BETHY was prepared for CCDAS.
Attention has been paid to formulate the model in a differentiable way. As a
consequence, the model formulation was improved and so was the approximation
capability of the derivatives. This is beneficial for both the optimisation and the
prognostic uncertainty approximation. From the initial version which was used
to build up CCDAS, the model has been developed further within the system.
This proved beneficial for model development in many cases. At an early stage,
a sensitivity of zero to a particular parameter helped to detect and remove a
bug in the model code. The first calibration of the model showed a poor fit to
atmospheric observations. The model formulation was then revised to allow up
to 3 PFTs per grid cell, rather than a single PFT as in the initial version. A
calibration of model version 11 resulted in a good fit however a bug related to the
model’s spin up period was detected. To compensate for this bug, the calibration
yielded a surprising value of a related parameter. Calibration of model version 12
(with the bug removed), yields an improved fit to the observations compared to
version 11. We refer to [29] for results based on version 11 and to [20] for results
based on version 12.

4 Automatic Differentiation

All of the derivative codes mentioned in the foregoing sections are generated fully
automatically by FastOpt’s AD-tool Transformation of Algorithms in Fortran
(TAF) [1, 2]. BETHY is implemented in Fortran-90. It uses features such as
modules, allocation/deallocation of arrays, assumed shape arrays, derived types,



and array expressions. Without comments, model version 12 comprises about
5’500 lines of source code. Both, initialisation of the model and postprocessing
of the results are carried out in subroutines separate from the core of the model.
For each derivative code generation there is a top-level subroutine that defines
independent and dependent variables and invokes the core of the model.

The model’s adjoint evaluates the gradient of the scalar-valued misfit func-
tion (1) with respect to the control variables and provides it to the optimiser.
The most challenging task of adjoint coding is to provide values computed dur-
ing the function evaluation (required values [1]) to the derivative evaluation. For
providing these required values, the adjoint uses a mixed strategy of recomputa-
tion and storing/reading [1, 2], which includes a two level checkpointing scheme
[30, 31] as described by [2]. In the inner checkpointing loop, values are stored in
core memory, in the outer loop on hard disk. The entire store/read scheme is
triggered by 8 TAF INIT directives, which create a tape in memory/disk each,
plus 23 TAF store directives, which indicate the values to be stored. To support
TAF’s data flow analysis, there are 38 TAF loop directives, which indicate loops
that can be executed in parallel, 5 TAF flow directives (see [2]) trigger inclusion
of the deallocation of model variables at the end of the adjoint integration. This
deallocation is useful to allow multiple consecutive runs of the adjoint. Running
the adjoint takes the time of about 3.4 function evaluations. For shorter integra-
tions, without the need of the checkpointing scheme, this number would reduce to
2.4. Generation of the tangent linear code involves no particular complications.
Its run times is that of 1.5 function evaluations.

Efficient code to provide the Hessian of the misfit function (1) is generated
by redifferentiating the adjoint code in forward mode, which is known as forward
over reverse mode of AD (see also [32, 2]). Unfortunately the evaluation of the
entire Hessian does not fit into the memory available on our production machine,
a Linux PC, with 2 XEON 2GHz processors and 2 GByte core memory. Evalu-
ating the Hessian in groups of 12 columns, however, just fits. Such an evaluation
takes the time of about 50 function evaluations.

To provide the Jacobian needed in (2) we differentiate a function that maps
the unknowns onto the prognostic quantities, which are currently simple diag-
nostics of the field of carbon fluxes into the atmosphere. Depending on the ratio
of number of diagnostics to number of unknowns we evaluate the derivative in
forward or reverse mode.

This type of Jacobian is often sparse, i.e. there are entries of value 0: For ex-
ample, the initial concentration component of the control vector has no impact
on prognostics that are fluxes into the atmosphere. Furthermore, as a subset
of the 57 parameters are PFT-specific their influence is limited to particular
regions of the globe. For instance high latitude fluxes are insensitive to param-
eters specific to tropical forests. This sparseness of the Jacobian is determined
by TAF’s Automatic Sparsity Detection (ASD) mode. ASD is a source to source
transformation similar to AD. Instead of propagating derivative values, how-
ever, ASD propagates only the sparsity information. In contrast to an entry
of the Jacobian, which takes real values, an entry in the sparsity pattern only



takes boolean values, i.e. true or false. TAF’s ASD mode exploits this by stor-
ing sparsity information in the bits of integers, i.e. as integer bit-vectors. In our
current setup based on 4 byte integers, each variable holds blocks of 32 (8×4)
units of sparsity information. Operations on these integers efficiently propagate
sparsity information block-wise, i.e. 32 units per operation. As a demonstration,
Fig. 3 illustrates the sparsity pattern of the Jacobian for 12 prognostic quanti-
ties, namely the mean fluxes over the integration period and 12 latitude bands
spanning the northern hemisphere. The pattern has been derived by ASD in
reverse mode. The first row has only zero entries, because the model simulates
no biospheric flux in that latitude. The last (58th) column is zero, because it
corresponds to the initial atmospheric concentration, which has no impact on
the surface fluxes. The remaining zeros correspond to parameters which have
no influence on the fluxes of the respective latitude band, because they refer to
PFTs which are not represented in this band. [33–35] exploit Jacobian sparsity
by efficiently constructing the full Jacobian from Jacobian-vector products. In
the current version of CCDAS we do not take advantage of sparsity yet, but
might do so, as the dimensions of the Jacobian increase.

0000000000000000000000000000000000000000000000000000000000
0000000000100000000000000011111111111000011100000000000000
0000001100110000000110011011111111111010111100000011001100
0001111110110000111111011011111111111010111100011111101100
0001111111111000111111111111111111111111111100011111111110
0001111111111000111111111111111111111111111100011111111110
0111101111111011110111111111111111111111111101111011111110
0111101111111011110111111111111111111111111101111011111110
1111101111111111110111111111111111111111111111111011111110
1101101111011110110111101111111111111111111111011011110110
1101001111011110100111101111111111111111111111010011110110
1101001111011110100111101111111111111111111111010011110110

Fig. 3. Example of a sparsity pattern

The performance of Jacobian and ASD evaluations has been tested on a Linux
PC, with an Athlon 1.6 GHz processor and 1 GByte core memory. The integra-
tion period was limited to one year. All runs are for 58 unknowns (independents).
Run times of forward mode AD and ASD are about 12 and 1.3 function evalu-
ations, respectively. Figure 4 shows performance numbers of reverse mode AD
and ASD for a varying number of prognostics (dependents). Both, forward and
reverse ASD, consume most of the CPU time to provide required variables, for
which they use the same strategies as their AD counterparts. Reverse ASD for
1000 prognostics, i.e. about 30 bit-vectors, costs about 6 function evaluations
(not shown in Fig. 4).

5 Conclusions

We have presented an example of a derivative based modelling system for data
assimilation, which also serves as a frame for model development. We have given



Fig. 4. Performance of Jacobian (solid line) and ASD (dashed line) evaluations in
reverse mode for varying number of prognostics (dependents). Values are in multiples
of the CPU time of one function evaluation

examples in which sensitivity information and algorithmic comparison with ob-
servations support model development. Rather than testing a given model formu-
lation with a few selected sets of parameter values, CCDAS allows us to judge a
model formulation with its optimal set of parameters. As we get more experience
in operating the system, we expect it to make further important contributions to
model development. The system’s inverse modelling applications, in turn, benefit
enormously from having the most recent model version available. In this system,
AD is a key technology, since it provides a reliable and efficient way of keeping
a suite of derivative codes up to date with the latest model version.

This example may well be generalised to other models and other fields. Espe-
cially when developing a new model from scratch, it appears beneficial to have
the model code AD compliant in order to benefit from a derivative based system
around the model.
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