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[1] This paper demonstrates a new method of assimilating atmospheric concentration
data into terrestrial biosphere models. Using a combination of adjoint and tangent linear
models of both the underlying biosphere model and the atmospheric transport model, we
directly infer optimal model parameters and their uncertainties. We also compute
biospheric fluxes and their uncertainties arising from these parameters. We demonstrate
the method using the Simple Diagnostic Biosphere Model (SDBM) and data on the
seasonal cycle of CO2 from 41 observing sites. In the model, the light-use efficiency for
several biomes is well-constrained by concentration observations. Optimal values
generally increase with latitude as required to match the seasonal cycle. Modeled Q10
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1. Introduction

[2] The rising concentration of CO2 [e.g., Keeling et al.,
1995] and its potential impact on climate are topics of
substantial scientific and policy interest. Over the last 2
decades, much effort has been focused on understanding the
processes which control the concentration of this gas in the
atmosphere, as a possible prelude to managing the concen-
tration. One tool commonly employed is atmospheric trans-
port inversions [e.g., Keeling et al., 1989; Enting et al.,
1995; Rayner et al., 1999]. These studies seek to infer the
net carbon exchange with the surface averaged over some
time and space resolution, often continental or semihemi-
spheric in spatial extent and at its finest at monthly time-
scales. Work by Kaminski et al. [1999b] is slightly different
in that it infers fluxes at the resolution of the underlying
transport model. As pointed out by [Kaminski et al., 2001],
this avoids a series of problems associated with trying to
infer only large-scale fluxes.
[3] The relative sparsity of observations (maybe 100

monthly mean observations) and the poor sampling of large
regions of the globe (e.g., tropical continents) means that
these inversions are badly underdetermined. This under-

determinacy manifests itself as large uncertainties on indi-
vidual regional fluxes. As we increase the horizontal
resolution [e.g., Kaminski et al., 1999b] the underdetermi-
nacy becomes more apparent. This is true both because the
number of unknown source components increases and also
because atmospheric mixing dilutes signals from small
regions faster than from large ones, making them harder
to observe.
[4] It is still true that the 7.8� � 10� resolution of

Kaminski et al. [1999b] is too coarse for many policy
applications, such as national carbon accounting. Hence if
progress is to be made we need work on two fronts. The
first is to open new streams of data, preferably guided so as
to optimally improve our flux estimates. This has been
approached incrementally by Gloor et al. [2000] with
suggested expansions to the surface network, or more
speculatively by Rayner and O’Brien [2001] with a sug-
gested role for remotely-sensed concentration.
[5] The second obvious method is to try to increase the

leverage of existing data. The simplest way to do this is to
relate fluxes at one point to fluxes at another. As normally
performed, synthesis inversion does this implicitly. These
inversions use sources defined over large regions with
patterns within the regions prescribed. Sources at every
point in a region are adjusted by a single magnitude. Thus,
even if only part of a region is observed by the measurement
network, the sources at all points in the region are con-
strained. Kaminski et al. [2001] have demonstrated the
problems with this approach if these prescribed patterns
are incorrect.
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[6] We can establish more subtle relationships between
fluxes at different points. Such relationships are part of the
task of models of surface processes. Such models consist of
a series of variables describing the state of the system (such
as the size of carbon pools) and a series of equations
describing the evolution of that state. These evolution
equations will usually contain parameters and the evolution
of the state will depend on the values of these parameters as
well as external forcing. Furthermore, any model will
calculate quantities which may be observed, albeit indi-
rectly. An example of such an observable is a surface flux
from a terrestrial biosphere model. If we can use the
observables to estimate the state at a particular time and
the parameters of the system, then, subject to the veracity of
the model equations themselves, we can describe the
physical system.
[7] Such an approach was briefly sketched by Rayner

[2001]. As mentioned there, it has a number of advantages.
First, the description is likely to be more compact than a
high-resolution description of many independent flux com-
ponents. Hence, depending on the independent observabil-
ity of the parameters and state variables, such a model is a
powerful constraint in the inverse problem so that its drastic
underdeterminacy may be ameliorated or even avoided.
[8] The second advantage is perhaps more important. In

general, there has been a separation between the kinds of
inferences made by atmospheric inversions and those from
process models. This has been manifest as a so-called scale
gap, where large-scale atmospheric inversions can only
make usefully certain inferences at very large scales while
process models can only be constrained by fairly small-
scale observations (flux towers and the like). It has been
difficult for the two communities to even disagree mean-
ingfully. The approach outlined here may allow both kinds
of estimate to infer the same kinds of quantity.
[9] The third advantage is to expand the list of observ-

ables treated by the inversion process. The atmospheric
inversions carried out thus far have used two types of input,
atmospheric constituent concentrations (including isotopes)
and estimates of large-scale fluxes (e.g., from fossil-fuel
combustion). These are optimally combined to produce
improved estimates, usually for flux magnitudes. This
ignores a large number of observables of the underlying
processes, e.g., local flux measurements, satellite radiances,
and biophysical variables. Combinations of satellite-derived
vegetation indices and atmospheric concentrations have
been previously used by Knorr and Heimann [2001] to
check mutual consistency. The framework outlined here
should allow the use of such multiple constraints in a
traditional data assimilation mode.
[10] The final advantage of this approach is more ambig-

uous. In general, the estimation of model parameters avoids
the distinction between prognostic and diagnostic investi-
gations of the system. The flux estimates of previous
inversion studies are purely diagnostic. They do not, of
themselves, estimate quantities which will aid prediction.
Process model studies, on the other hand, are largely
prognostic, only the task of tuning these models involves
a diagnosis of the current state. The approach of estimating
model parameters and state variables should overcome this

difference. Of course, if the underlying model is wrong, the
inferred parameters, although producing an optimal match
to current data, will yield meaningless predictions.
[11] The approach of estimating underlying parameters in

process models from observations is not itself new. Fung et
al. [1987] used atmospheric CO2 concentrations to cross-
check their model for inferring terrestrial productivity from
satellite observations, an approach updated in the study of
Knorr and Heimann [2001]. A new element of this study is
that the satellite data themselves are used to constrain
estimates of model parameters, a method also explored by
Knorr and Schulz [2001]. Knorr and Heimann [1995] used
atmospheric CO2 concentrations to tune parameters in a
terrestrial biosphere model while Balkanski et al. [1999]
used the seasonal cycle of atmospheric O2/N2 ratios to tune
parameters for an ocean biology model. Most recently,
Randerson et al. [2002] used both CO2 and d13C observa-
tions to constrain their values of isotopic discrimination at
high latitudes. In general, these studies have adjusted the
parameters by hand until they got a reasonable match with
the concentration data. One exception is the study of
Vukićević et al. [2001] which used a more formal varia-
tional technique (though without showing uncertainties)
with a simple, globally averaged terrestrial model. The
development path is similar to that of flux inversions. The
landmark studies by Keeling et al. [1989] and Tans et al.
[1990] used manual parameter adjustment. Later, the stud-
ies of Enting et al. [1995] introduced systematic methods
for optimal parameter estimation. Most importantly, these
systematic methods also allowed the calculation of the
uncertainty of the flux magnitudes. We intend here to bring
a similarly systematic approach to the estimation of model
parameters, particularly a calculation, albeit incomplete, of
their uncertainties.
[12] The outline of the rest of the paper is as follows:

Section 2 describes the methodology in detail. Section 3
describes the underlying terrestrial model and atmospheric
transport model, briefly, since they are both described
elsewhere in the literature. Section 4 describes the results
of the estimation of model parameters from a moderate-
sized network of concentration observations. Section 5 tests
some of the assumptions in our method, particularly the
various linearizations for the uncertainty calculations.
Finally, we sketch the application of this method to more
challenging problems.

2. Assimilation Methodology

[13] The aim of our calculation is to infer some informa-
tion (an estimate of the mean and uncertainty) about a set of
parameters p from some atmospheric concentration obser-
vations c. This involves the propagation of information in
an inverse sense through a chain of models. This informa-
tion flow is shown in a forward sense in Figure 1. Starting
from the parameters themselves there is first a terrestrial
biosphere model B which produces among other things a
space-time distribution of modeled fluxes fM on a 0.5 � 0.5�
grid. Next is some kind of aggregation or interpolation
process to take the fluxes and map them onto the 7.8 � 10�
grid of the atmospheric transport model. We denote this as
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A. Although this is not important in the abstract description
of the problem, it is an important benefit of the method that
small-scale forcing of the biosphere can propagate through
to the atmospheric concentrations. If we were limited to the
rather coarse transport model grid some of the details of this
forcing would be lost.
[14] Finally there is the atmospheric transport model

which maps fluxes onto atmospheric concentrations. We
denote this operator as T. The use of the adjoint approach
described by Kaminski et al. [1999a] means that T can take
fluxes at the full resolution of the underlying transport
model and map them onto a predetermined set of observed
concentrations.
[15] Combining the three steps, we have a mapping from

biosphere parameters to modeled concentrations cM
expressed as

cM ¼ M pð Þ ¼ T� A� B pð Þ: ð1Þ

Strictly, the multiplication in the above expression repre-
sents composition of functions. T and A are linear, however,
so we can also consider this as matrix multiplication. We
stress again that nowhere in the construction of cM do we
need to make assumptions about the structure of fluxes apart
from those implicit in the biosphere model itself.
[16] We define an optimal vector p so that it minimizes

the overall mismatch with observed concentrations. To this
end we construct a cost function,

Jc pð Þ ¼ 1=2 M pð Þ � cð ÞTCc
�1 M pð Þ � cð Þ; ð2Þ

where Cc expresses our uncertainty for the observations c
in the form of a covariance matrix. Several augmented

forms of Jc are possible representing information from
other points along the chain of models. For example, we
can add a term embodying a mismatch of p from some
prior estimate p0. This is the Bayesian approach. It is
normally used in flux inversions such as Rayner et al.
[1999], partly to stabilize the estimates and partly to
embody prior knowledge of fluxes. In our case this
knowledge may be embodied in the model instead. Also, if
there are observed fluxes, f, we can add a term such as

Jf pð Þ ¼ 1=2 N pð Þ � fð ÞTCf
�1 N pð Þ � fð Þ; ð3Þ

where by analogy with equation (1) we have denoted by N
the function that computes modeled fluxes fM from p. We
can replace fluxes by any other observable calculated by
the biosphere model.
[17] We are now left with the computational problem of

optimizing p in the nonlinear composite model M. Note that
whatever optimization algorithm we use will involve sev-
eral, perhaps many, runs of M. This is not feasible if we
need to run T many times, because T is the most expensive
part of our model. Since T is linear, we can precalculate a
set of response functions, the approach normally used in
previous synthesis inversions. In our application, this has a
serious drawback. We can only calculate the response
functions for a subspace of fluxes. Our choice of subspace
represents a choice of a set of flux patterns, usually reflect-
ing structure within a particular region. In our case, as we
change p through the iterative optimization process, these
shapes will change. Kaminski et al. [2001] showed that
incorrect choices of flux shapes could seriously distort an
inversion. Fortunately, Kaminski et al. [1999a] demonstra-

Figure 1. Flow diagram for the forward direction of information in our composite model. Boxes show
the various quantities predicted by the chain of models while arrows describe the mappings between these
fields.
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ted the efficient calculation of the complete response
function for a transport model provided we only need
modeled concentrations at selected sites and times. Thus
we can include the transport model as a simple matrix
multiplication without losing the required generality of flux
fields.
[18] The calculation of T is based on automatic differ-

entiation (AD) of the atmospheric transport model in
reverse mode [Griewank, 2000]. It is efficient, because
the number of input parameters to the model (fluxes at
every month and surface grid cell) considerably exceeds
the number of output variables (concentrations at every
month at about 50 sites). The same observation holds for
the interpolation matrix A. Hence, again, we have applied
AD in reverse mode to generate the adjoint code of the
interpolation routine. This adjoint code efficiently com-
putes A. The automatic differentiation has been carried out
by the Tangent linear and Adjoint Model Compiler
(TAMC, R. Giering, 2000, available at http://puddle.mit.
edu/~ralf/tamc)).
[19] Powerful minimization algorithms for functions like

J, rely on the availability of the gradient of J with respect to
the parameters. Hence, again, we apply TAMC in reverse
mode to generate a subroutine to evaluate rp J(p) for any p.
Unlike the adjoints of T and Awhich evaluate derivatives of
vector valued functions, the adjoint of J evaluates the
derivative of a scalar valued function. This derivative is a
fairly compact expression, mapping maybe a few dozen
parameters onto their impact on the cost function, even
though some of the intermediate fields and hence mappings
may be large.
[20] The cost function minimization allows us to calculate

an optimal parameter set but provides no information on the
uncertainty in those parameters. Some information can be
obtained from the value of the second derivative or Hessian
at the minimum. Geometrically, this is the curvature of the
cost function. A subroutine for evaluation of the Hessian is
obtained by reapplying TAMC to the adjoint. It is slightly
more efficient to use the forward mode for this second pass,
because the function to be differentiated has as many input
as output variables (parameters and components of the
gradient, respectively).
[21] The way the cost function defined by equations (2)

and (3) is set up reflects the assumption of Gaussian
probability distributions for the observed concentrations,
the fluxes, and the a priori information about the parameters
(the Gaussian assumption). If our model was linear, one
could show [see, e.g., Tarantola, 1987, equations (4.4)–
(4.6)] that the posterior probability distribution is Gaussian
as well and that the uncertainties in the optimal parameters
are quantified by a covariance matrix which is the inverse of
the Hessian at the minimum. Since the model is nonlinear,
uncertainties derived this way are merely an approximation
(the locality approximation). In this work we make yet
another approximation, the linearity approximation. We
apply TAMC in forward mode to compute the linearizations
or Jacobian matrices of the mappings that relate parameters
to atmospheric concentrations (M ) and fluxes (N ) at obser-
vational sites. These Jacobians are denoted by DpM and
DpN, respectively. Since in each case there are fewer

parameters than observations, the forward mode is computa-
tionally preferable. In this linear approximation, the poste-
rior covariance matrix Cp is given by

C�1
p ¼ DpM

� �
C�1

c DpM
� �Tþ DpN

� �
C�1

f DpN
� �TþC�1

0;p; ð4Þ

where C0,p expresses the a priori uncertainty in parameters.
The inverse can be computed, for example, by a singular
value decomposition (SVD). We have described the formula
and the SVD [Rayner et al., 1999; Kaminski et al., 1999b],
but all the background is given by Tarantola [1987]. We
shall check the locality approximation and the linearity
approximation by comparing the cost function generated by
varying the parameters around their optimal values with the
cost function implied by our calculated parameter un-
certainties.
[22] The locality approximation has an important conse-

quence for the calculated uncertainty. As an example,
consider a cost function which is quadratic in the region
of the optimal values but contains a large potential barrier at
zero, effectively disallowing negative values. This might
occur if we wish to prevent an optimization routine taking
logarithms of negative numbers. Our local analysis of
uncertainties at the cost function minimum will never, even
in principle, see this constraint. Even with this limitation,
the calculation of uncertainties still represents a substantial
advance on previous methods.
[23] In the final step of the process, the calculation of

fluxes and their uncertainties, we use the optimal values
from the first step and the covariance matrix from the
second. The flux calculation requires only a forward run
of the biosphere model, although to reduce storage require-
ments we can use the aggregation step to output fluxes on
the transport model grid. Note that even here, the covariance
matrix representing the uncertainty in flux estimates is very
large, 10,368 � 10,368. Fortunately we can store a compact
expression for the square root of this matrix and generate
relevant fields off-line.
[24] It is worth reiterating the centrality of the automatic

differentiation tool TAMC in this whole process. In fact, it
is used 5 times. First, we use it to calculate the aggrega-
tion operator A. Next we use the matrix representation of
the transport model TM2 calculated by Kaminski et al.
[1999a]. The optimization step uses the derivative of the
cost function with respect to input parameters, which is
provided by the adjoint of the composite model, M. The
calculation of approximate parameter uncertainties uses the
Jacobian of observations with respect to biosphere param-
eters, generated as a tangent linear model to the forward
model. Finally, the calculation of flux uncertainties uses
the Jacobian of fluxes with respect to parameters, again a
tangent linear model but this time leaving out the transport
model step.

3. Models and Data

3.1. Biosphere Model

[25] We use the Simple Diagnostic Biosphere Model
(SDBM) described by Knorr and Heimann [1995]. In brief,
the model calculates a pure seasonal cycle of net bio-
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sphere–atmosphere fluxes as the difference of two fluxes in
any month at each 0.5� � 0.5� land grid cell,

F ¼ H� NPP; ð5Þ

where F is the net flux to the atmosphere, H is the
heterotrophic respiration, and NPP is the net primary
productivity.
[26] The calculation is performed on the basis of meas-

ured Normalized Differential Vegetation Index (NDVI),
incoming solar radiation, and surface temperature. There
is an additional time-dependent water-stress term a, which
may limit the efficiency either of NPP, or heterotrophic
respiration, or both. This factor will be included in various
of the calculations in this work in either of the two fluxes H
and NPP; in the case described below, it is included in both.
[27] NPP is calculated for each month as

NPP ¼ a�APAR; ð6Þ

where APAR is absorbed photosynthetically active radiation
and � is a light-use efficiency parameter. APAR is computed
from NDVI data by Gallow [1992] and incoming solar
radiation inferred from cloudiness data by Leemans and
Cramer [1991] using the method of Linacre [1968].
[28] Heterotrophic respiration H is calculated as an expo-

nential function of temperature as

H ¼ a�H0Q
T=10
10 ; ð7Þ

where �H0 is the heterotrophic respiration rate at T = 0 and
a = 1 (i.e., no water stress) and Q10 is the ratio of respiration
at T + 10 to that at T; T is given in �C. We have absorbed e

into the formulation of H for later convenience.
[29] In order to ensure a balanced biosphere (no net

annual flux), we rescale H0 at each grid cell so that
integrated NPP and H are equal over a year. Thus H0 is
not a free parameter.
[30] The water-stress factor, a = AET/PET (actual divided

by potential evapotranspiration), is computed with the
model of Prentice et al. [1993]. PET is assumed equal to
equilibrium evapotranspiration, and AET is the minimum of
PET and a supply rate assumed proportional to soil mois-
ture. The model neglects the effect of soil freezing and snow
accumulation, so that at low ambient temperatures where
PET is mostly small, a tends toward 1. Freezing-induced
drought effects are therefore not considered in SDBM; low
temperatures rather affect H through its temperature depend-
ence given by the value of Q10.
[31] We can now write the total flux as

F tð Þ ¼ a� H0Q
T tð Þ=10
10 � APAR tð Þ

� �
: ð8Þ

Subject to the constraint that

H0

Z
Q

T tð Þ=10
10 dt ¼

Z
APAR tð Þdt; ð9Þ

where integrals are taken over the annual cycle. Integrals are
calculated as sums of monthly values weighted by the
length of the month.

3.2. Transport Model

[32] We use the adjoint form of the transport model
TM2. The base model is described by Heimann [1995].

The model is an off-line tracer transport model with a 7.8�
latitude � 10� longitude grid and nine vertical levels. It is
driven by analyzed winds from the European Centre for
Medium Range Weather Forecasting (ECMWF), in this
case from the year 1987. The model features vertical
transport by convection and turbulent eddy transport
following the schemes of Louis [1979] and Tiedtke
[1989], respectively.
[33] TM2 was a participant in the Transport Model

Comparison (TransCom) project reported by Rayner and
Law [1995] and Law et al. [1996]. Of most importance here
was its simulation of the seasonal cycle, since the amplitude
and phase of the seasonal cycle are the critical parameters in
our study. In general, the simulated seasonal amplitudes lie
within the range of other model simulations. One different
emphasis of this model is the relatively large amplitudes
over tropical regions compared to those over higher latitude
regions. We should bear this in mind when considering the
distribution of NPP between low and high latitudes in our
optimizations. We must stress, of course, that the range of
model simulations does not necessarily provide guidance
for the correct atmospheric transport behavior.
[34] The adjoint form of the model was constructed by

Kaminski et al. [1999a] and used in a previous flux
inversion by Kaminski et al. [1999b]. The adjoint model
calculates the derivative of the monthly mean concentration
at a specified set of observing sites with respect to emissions
in all surface grid points and all months. Since simulated
concentrations are linear in emissions, this derivative need
only be calculated once. Hence, once we restrict ourselves
to a given observing network, the transport model can be
replaced by a single matrix multiplication. As we have
already mentioned, this form of the transport model allows
the full structure of fluxes up to the resolution of the
transport model to be mapped onto concentrations. This is
an important advantage in a study like ours, since changes
in parameters may cause small-scale changes in the struc-
ture of fluxes.

3.3. Data

[35] We use the compilations of the seasonal cycle from
GLOBALVIEW-CO2 [2000]. We use a network of 41
stations. The network we use is shown in Figure 2 and
listed in Table 1.

[36] One obvious property of the network is its oceanic
focus. This is clearly undesirable for our current study, and
one of our aims will be to investigate the knowledge
available from such a network for constraining biospheric
processes. We have removed the oceanic bias somewhat by
eliminating the sampling locations from ship cruises in the
Pacific Ocean and South China Sea.
[37] As well as assigning data values, we need to assign

an uncertainty for weighting the data in equation (2). We
calculate the data uncertainty from the two uncertainty
estimates provided by GLOBALVIEW-CO2 [2000]. One
uncertainty comes from the residuals of the flask data from
the smoothed curve used to define the monthly mean. It is a
measure of short-term variability and the concomitant
sampling error. The other contribution is the interannual
variability in the monthly means themselves.
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[38] While a detailed discussion of the assignment of data
uncertainty in synthesis inversions is beyond us here, we
note that these uncertainty estimates are really a proxy for a
range of uncertainties which must be included in our
calculation. These include (1) imprecision in the measure-
ments themselves, (2) the inability to simulate concentra-
tions measured at a point and time with monthly mean
model concentrations on a 7.8� � 10� grid, (3) inadequacies
in the biosphere or transport model including their driving
data and source heterogeneity not captured by the model,
and (4) uncertainties in the other contributions to the
seasonal cycle which are not included in our statistical
model. All these uncertainties are hard to quantify. In
particular, uncertainties from source heterogeneity depend
critically on the choice of structures which can be resolved
by the model, as demonstrated by Kaminski et al. [2001]. In
general, the data uncertainties from GLOBALVIEW-CO2

[2000] have the right structure, with larger errors in the
vicinity of large and heterogeneous sources.
[39] In our calculation we quadratically sum the two

components of the Globalview uncertainty, since we need
to take both into account. Finally, to deal with potential
model inadequacies, we require a minimum value of 0.70
ppmv. This minimum value is important, since 328 of the
452 values used in our standard case would otherwise
have lower uncertainties. Table 1 lists the root-mean-
square uncertainty for each station, averaged over the
year.

3.4. Background Fluxes

[40] Terrestrial biospheric activity, particularly the sea-
sonal cycle, is focused on the large land masses of the
Northern Hemisphere and tropics. Even here, and partic-
ularly in the southern extratropics, the other major carbon
fluxes may make a significant contribution to the seasonal
cycle of CO2 concentration. Even seasonality in transport
acting on a time-invariant source field may produce sub-

stantial seasonality in concentration. We include three such
contributions in our study. These extra fluxes should be
considered part of the driving data for the problem; that is,
we do not optimize them in any way. Note that the seasonal
cycle is the main datum which forces our results, so
contributions to seasonality are more important than overall
magnitude. We must factor uncertainties in the contribution
of these fluxes to seasonality of concentration into uncer-
tainties in the data.
[41] We use the annually invariant flux from fossil fuel

combustion and cement production compiled by Andres et
al. [1996]. The seasonality in concentration arising from
this flux is largest at low latitudes, peaking around 1 ppmv
at Seychelles in our study. Seasonal variations in the flux
are likely to produce even smaller seasonality in concen-
tration than this and will hence be unimportant for this
study.
[42] We use the estimate of ocean CO2 flux compiled by

Takahashi et al. [1999] derived from a compilation of air–
sea dpCO2 values and using the air–sea gas exchange
formulation of Wanninkhof [1992]. This field contains
moderate seasonality and in the Southern Hemisphere is
likely to be a major contributor to seasonality in the
concentration records. However, in the Northern Hemi-
sphere and tropics, its maximum values around 1 ppmv
are only a small contribution to the observed seasonal cycle.
Thus, while there may be errors in the seasonality of the
flux estimates, these probably do not contribute much to the
overall seasonality in concentration.
[43] Finally, we use the estimate of flux due to land-use

change compiled by Houghton et al. [1990]. Strictly, this
considers only the source due to deforestation rather than
land abandonment. It is focused on low latitudes. Most
importantly, for our study we treat it as annually invariant,
whereas the burning events which comprise this flux largely
occur in the tropical dry season, in reality. Thus, there may
be a significant error in seasonality in this flux, and we

Figure 2. CO2 observing network used in the study.

14 - 6 KAMINSKI ET AL.: ASSIMILATING CO2 IN BIOSPHERE MODELS



should consider this when interpreting results for low-
latitude biomes.

3.5. Implementation Details

[44] In this work we aim to estimate the two parameters �
(light-use efficiency) and Q10 in SDBM for each of 12
biomes. The biomes are taken from DeFries and Townshend
[1994], and their distribution is shown in Figure 3. Abbre-
viations used throughout the paper for each biome are listed
in Table 2. This generates 24 unknowns of interest. As well,
we need to solve for a mean value at each of the stations in
our chosen observational network. Although we use the
pure seasonal cycles from GLOBALVIEW-CO2 [2000], and
SDBM generates a pure seasonal cycle, the composite
model will compute nonzero mean values for two reasons.
First, we must consider the contributions to the seasonal
cycle made by fossil-fuel combustion and ocean fluxes;
these are input as known fluxes. Second, the covariance of
transport and seasonal biospheric fluxes will of itself
produce a nonzero mean value, as demonstrated by Keeling

et al. [1989], Denning et al. [1995], and Law et al. [1996].
To avoid this mismatch producing erroneous corrections to
biosphere parameters, we use a free-floating offset to match
the mean value. Thus we have one extra unknown per
station in the observing network. These offsets are only
important in the optimization step, and we neglect them
later.

[45] Throughout the following calculations, we use a
Bayesian estimation Procedure; that is, we include prior
constraints on the biosphere parameters but not on the
offsets. Prior uncertainties for the � are set at 50% of their
initial value while those for Q10 are set at 30% of their prior
value, as shown in Figures 4 and 5.

4. Results

[46] In this section we will discuss two major aspects of
the results of optimizations using the framework described
above. First, we will show some of the estimated parameters
and fluxes produced by our control case and some varia-
tions of it. Then we will discuss the uncertainties on these
parameters, with a view to recovering the information on
biospheric processes available from atmospheric concentra-
tion observations.
[47] For our control case, we choose an inversion with the

water-stress parameter a turned on for both the NPP and
respiration terms. Figures 4 and 5 show the prior and
predicted values of � and Q10 for each biome in our standard
inversion. Several things are immediately apparent from
these figures. First, the � values are generally shifted further
from their prior estimates than the Q10 parameters. This
would normally be expected because of the generally larger
reduction in uncertainty in �, which indicates that the
inversion is adding more information about � than about
Q10. The proximate cause for this difference is the greater
sensitivity of the seasonal cycle of concentrations to
changes in � than Q10. This is a direct result of the model
formulation as can be seen from the governing equations of
SDBM (equation (8)) and the nature of the forcing functions
for the model. As formulated, the amplitude of the seasonal
cycle of flux in SDBM is governed by the value of �. The
phase results from the interaction of seasonal variations in
temperature and water stress with the value of Q10. With the
seasonality of temperature and water stress fixed, there is
relatively little sensitivity of fluxes to changes in Q10 and
hence only a weak constraint on this parameter.
[48] The structure of the changes to � also shows some

interesting features. In general, � is increased for high-
latitude biomes. In Particular, the optimization suggests that
the high-latitude deciduous forests and tundra require high
light-use efficiency to match seasonality in concentration.
The coniferous forest (also mostly found at high latitudes)
has optimized e closer to the prior value. The tundra and
deciduous forest values are particularly striking since their
optimized confidence interval is shifted outside or nearly
outside their original confidence interval. Meanwhile, the
C4 grassland biome has its light-use efficiency parameter
reduced almost to zero.
[49] When considering the above results, it is useful to

take into account the relative biological importance of the

Table 1. List of Station Codes and Names Along With Their RMS

Uncertainties and RMS Errors for the Control Optimization

Code Descriptive Name
RMS Uncertainty,

ppmv
RMS Error,

ppmv

ALT Alert, N.W.T., Canada 0.73 1.25
AMS Amsterdam Island 0.70 0.58
ASC Ascension Island 0.70 0.54
AVI St. Croix, Virgin Islands 0.71 1.10
AZR Terceira Island, Azores 0.96 0.62
BAL Baltic Sea 2.79 0.73
BME St. David’s Head, Bermuda 0.83 1.19
BMW Southhampton, Bermuda 0.96 1.22
BRW Barrow, Alaska 0.81 1.59
CBA Cold Bay, Alaska 0.83 1.26
CGO Cape Grim, Tasmania 0.70 0.48
CHR Christmas Island, Kiribati 0.70 0.50
CMO Cape Meares, Oregon 1.22 0.72
CRZ Crozet, Indian Ocean 0.70 0.44
EIC Easter Island 0.70 0.68
GMI Guam, Mariana Islands 0.74 0.61
HBA Halley Bay, Antarctica 0.70 0.27
ICE Storhofdi, Heimaey,

Vestmannaeyjar, Iceland
0.77 1.02

IZO Tenerife, Canary Islands 0.70 0.65
KEY Key Biscayne, Florida 0.81 0.95
KUM Cape Kumukahi, Hawaii 0.70 0.84
MBC Mould Bay, N.W.T., Canada 0.77 1.42
MHD Mace Head, Ireland 0.84 1.22
MID Sand Island, Midway 0.73 0.71
MLO Mauna Loa, Hawaii 0.70 0.39
NWR Niwot Ridge, Colorado 0.81 1.10
OPW Olympic Peninsula, Washington 1.24 0.78
PSA Palmer Station, Antarctica 0.70 0.18
RPB Ragged Point, Barbados 0.70 1.24
SEY Mahe Island, Seychelles 0.70 0.53
SHM Shemya Island, Alaska 0.89 1.46
SMO Tutuila, American Samoa 0.70 0.32
SPO South Pole, Antarctica 0.70 0.20
STM Atlantic Ocean (Polarfront) 0.75 1.50
SYO Syowa Station, Antarctica 0.70 0.32
TAP Tae-ahn Peninsula, Korea 2.25 0.31
UTA Wendover, Utah 1.19 0.80
UUM Ulaan Uul, Mongolia 1.12 1.05
WIS Sede Boker, Israel 1.03 1.90
WLG Mt. Waliguan, China 0.86 1.37
ZEP Zeppelin Station, Svalbard 0.86 0.98
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various biomes. A measure of this importance is the total
APAR associated with each biome, or, alternatively, its total
NPP. Figure 6 shows the prior and predicted NPP for each
biome. The prior uncertainties reflect the 50% prior uncer-
tainty on �. The global total is hardly changed from the prior
estimate (53.8 to 53.5 Gt C). The uncertainty is reduced,
from 11 to 7.2 Gt C which is approximately 13% of the
total. This reduction in uncertainty suggests only moderate
scope for concentration measurements used alone to con-
strain such large-scale processes.
[50] This result resembles that of Knorr and Heimann

[2001], who used satellite-derived vegetation index data to
constrain a global process-based vegetation model. They
estimated error margins for the most important model
parameters and performed a series of sensitivity studies.
The result was that without the satellite constraint, the
model was inconsistent with the observed seasonal cycle
of atmospheric CO2. Consistency was improved after inver-
sion against the satellite data. The uncertainty in global NPP
for the free model, which would correspond to SDBM with
prior parameters and uncertainties, was 24.1 Gt C from a
total of 75.8 Gt C (31%), while the model consistent with
both satellite and CO2 data still had 18.5 Gt C uncertainty
out of 73.6 Gt C (25%). Apart from the fact that uncertain-
ties can be expected to be larger for a process-based model
that has many more parameters, their result again stresses
the importance of using multiple constraints for optimizing
global vegetation models. It should also be noted that the
station network used by Knorr and Heimann [2001] was
smaller than the one in the present study, and that their
analysis used tropical stations only in a qualitative way.
[51] Figure 6 shows that some of the largest changes in �

occur for biomes with relatively small NPP. In particular,
the large decrease for the C4 grassland biome and large
increase for tundra do not have dramatic effects, since their

total NPP is relatively small. Uncertainties for � for these
biomes also remain close to their prior value. One reason for
this is evident from equation (6). As the signal in the
atmosphere used to constrain the model is created by the
seasonal cycle of net flux, F (equation (5)), and because of
the way H0 is calculated, this signal scales linearly with �.
How sensitive the seasonal cycle is to changes in �,
however, depends on the seasonal cycle in a (tropical
biomes), in T (northern biomes), and APAR (both). As
noted by Knorr and Heimann [1995], the seasonal cycle in
the tropics is very small when a is included in both NPP
and H. This means that the seasonal cycle of concentrations
that we observe is not sensitive to � from the C4 grassland
biome. Such a lack of sensitivity means that the parameter is
only weakly constrained. In fact, Knorr and Heimann
[2001] found that tropical trees and C4 grasses make a
sizeable contribution to the seasonal cycle only south of the
equator (15 and 25%, respectively), where this seasonal
cycle is small.
[52] Another diagnostic output of the model is the spatial

distribution of NPP. This can be compared with the NPP

Figure 3. Distribution of biomes used in the study, taken from DeFries and Townshend [1994]. Biome
labels are described in Table 2. See color version of this figure at back of this issue.

Table 2. Descriptive Abbreviations Used for Biomes

Abbreviation Full Name

BE broadleaf evergreen
BDW broadleaf deciduous and woodland
MCB mixed coniferous, broadleaf deciduous, and woodland
CF coniferous forest and woodland
HLD high lat deciduous and woodland
WC4 wooded C4 grassland
C4 C4 grassland
DES shrubs and bare ground (desert)
TUN tundra
AG cultivation (agriculture)
WC3 C3 wooded grassland
C3 C3 grassland
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fields produced by other calculations. In the Potsdam
Intercomparison [Cramer et al., 1999], many terrestrial
modeling groups produced such estimates. Figure 7 shows
the zonal mean NPP per unit land area for four optimized
cases for SDBM along with the median and extreme deciles
from Kicklighter et al. [1999]. The four optimized cases
show the impact of including water stress for either or both
of NPP and respiration. We see that our standard case (water
stress on for both) lies close to the median value in the
tropics but above the upper decile in high northern latitudes.
This is consistent with the observation of Nemry et al.
[1999] that most of the models in the Potsdam Intercompar-
ison underestimated seasonality of concentrations at high
latitudes. This is also true for initial parameter settings of
SDBM, so the optimization increases � in high latitudes to
improve the match. NPP is increased as a consequence.
[53] Low-latitude NPP shows great sensitivity to the

treatment of water stress. While our standard case lies close
to the median Potsdam result, all the other cases lie below
the lowest decile. There is less sensitivity elsewhere, sug-
gesting either that NPP is so low that the range is tightly

constrained (subtropics), or that water stress is not a serious
factor in controlling NPP (high latitudes). These results are
consistent with Knorr and Heimann [1995], who showed
that the impact of water stress on seasonal cycles of
concentration could only be noticed from tropical regions.
[54] As we have already noted, the most striking facet of

the Q10 results in Figure 5 is the large predicted uncertain-
ties on this value. This weak constraint occurs despite the
use of biomes representing large regions; it would be worse
at finer spatial resolution. Hence any comment we make on
the predicted estimates must be rather cautious. One general
feature that does emerge is the tendency for high values for
high-latitude biomes and lower values for tropical biomes.
All biomes suggest a positive sensitivity of heterotrophic
respiration to air temperature (Q10 > 1) consistent with the
measurements compiled by Raich and Potter [1995], which
also refer to air temperature. When soil respiration is related
to soil temperature, however, Q10 values are mostly higher,
closer to the commonly assumed value of 2, as reported by
Raich and Schlesinger [1992]. However, the median of the
values found experimentally by Holland et al. [2000] for

Figure 4. Light-use efficiency � for 12 biomes. The horizontal line shows the prior estimate, the box
shows 1 standard deviation of prior uncertainty, the cross shows the optimized value, and the error bar

Figure 5. Q10 for twelve biomes. The horizontal line shows the prior estimate, the box shows 1 standard
deviation of prior uncertainty, the cross shows the optimized value, and the error bar shows 1 standard
deviation of predicted uncertainty. Biome labels are described in Table 2.
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tropical soils (1.74) still lies within the confidence interval
for the tropical biomes.
[55] To study the impact of extra measurements in this

calculation we repeated the standard case with the addition
of some pseudoflux measurements. These fake measure-
ments were created by archiving the fluxes for one point in
the Broadleaf Evergreen biome, then recalculating the
propagated uncertainties. Since the pseudoflux data is that

from the optimized model itself, the estimated values do not
change. We assign the monthly mean pseudoflux data an
uncertainty of 10 gm�2month�1, corresponding to an error
of approximately 5% of the maximum monthly flux. This
uncertainty should be regarded as an example, particularly
as we have not included the representativeness of such a
flux for the entire biome. Overall uncertainties for both �
and Q10 in this biome are much reduced. Figure 8 shows the

Figure 7. Zonal mean NPP per unit land area for four cases. The solid line shows our standard case
while the three dashed lines show cases where the effect of water stress is turned off for either or both of
NPP and respiration. Line styles are as shown in the key. The shading indicates the interdecile range of
model estimates from the Potsdam Intercomparison while the bold line shows the median.

Figure 6. NPP for 12 biomes. The horizontal line shows the prior estimate, the box shows 1 standard
deviation of prior uncertainty, the cross shows the optimized value, and the error bar shows 1 standard
deviation of predicted uncertainty. Biome labels are described in Table 2.
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results for Q10. The uncertainty of Q10 for the broadleaf
evergreen biome that was not well constrained by concen-
tration observations is substantially reduced. This compli-
mentary role suggests combined use of both types of
measurements.
[56] SDBM is a very simple model of seasonal carbon

exchange. It is worthwhile asking, then, how well it can fit
the concentration observations when its parameters are
optimized. As examples, Figure 9 shows the predicted and
observed seasonal cycle for four stations: Point Barrow,
Alaska; Ulaan Uul, Mongolia; Mahe Island, Seychelles; and
Cape Grim Tasmania. These are marked on Figure 2. The
dashed lines either side of the observed line show the
uncertainty used on each monthly datapoint. The same
information is also summarized in Table 1, where the final
column shows the root-mean-square error (rmse) between
predicted and observed concentration from our control case.
Barrow is one of the worst simulated stations (rmse = 1.59
ppmv). It’s large seasonal cycle, of course, provides some
context for this error. The general phase and amplitude of
the seasonal cycle are well simulated. The clearest error is
an overestimate of the source during spring. Notwithstand-
ing this, the optimized and even unoptimized model pro-
duces more accurate seasonality at high latitudes than many
models with more sophisticated biogeochemistry but less
diagnostic information [see, e.g., Nemry et al., 1999].
[57] At Ulaan Uul (rmse =1.05 ppmv), the general form of

the seasonal cycle is well simulated, the only error being a
slight overestimate of the amplitude. The much smaller
seasonal cycle at Seychelles is also fairly well simulated
(rmse = 0.53 ppmv). Errors are larger as a proportion of the
seasonal cycle, but the data uncertainties are similarly
proportionally larger. Seasonality at Seychelles is driven
by combinations of seasonality from nearby land and
complex modulations of large-scale transport such as mon-
soon circulations and the movement of the intertropical
convergence zone (ITCZ). Simulations with only the back-
ground (fossil and ocean) fluxes suggest these may contrib-
ute as much to the seasonal cycle at Seychelles as the
biosphere, which suggests both that our conservative choice

of data uncertainties is wise and that this is not a good site to
try to constrain tropical biomes.
[58] Finally, the even smaller seasonality evident at Cape

Grim is fairly well simulated by the model (rmse = 0.48
ppmv). The amplitude is roughly correct, but the model
leads the observations by perhaps 2 months. Here there
might be a case for much tighter uncertainty bounds on the
observations, but the uncertain contribution of the back-
ground fluxes (the ocean in particular here) would support
our more conservative choice. Law [1996] also showed
considerable sensitivity of the phase of the seasonal cycle at
Cape Grim to methods used to select clean or baseline air,
already pointed out in the original analysis with SDBM by
Knorr and Heimann [1995].
[59] We can calculate a global measure of the quality of the

optimal simulation as the mean-square mismatch orc2 value,

c2 ¼ 1

N

XN

i¼1

cM ;i � cc;i

si

� �2

¼ Jc2N ; ð10Þ

where cM,i is modeled concentration, cci is observed
concentration, and si is the prior uncertainty on the
observed concentration. N is the total number of concentra-
tion observations. In general, if our statistical assumptions
are valid, c2 will be around 1. It should at least not be
greater than 1, or we should suspect that our prior
uncertainties are too tight.
[60] The c2 value gives us a convenient summary meas-

ure of the quality of a given optimization. Table 3 shows
this mismatch along with the global NPP and NPP for each
biome from the four optimization cases from Figure 7. The
table reinforces the behavior seen in the figure, notably that
NPP is much lower for the tropical biomes (BE and WC4)
in our alternative cases than the control. This lowers the
global NPP, also. It is interesting that including the impact
of water stress on respiration when it already effects photo-
synthesis (the last two columns) has the most dramatic
impact on optimized NPP of any single parameter change.
This occurs despite the assumption in the model that, at
every point, annual respiration is adjusted to balance NPP.

Figure 8. Predicted Q10 with the addition of a pseudoflux measurement in the broadleaf evergreen
biome. The pseudoflux data is that predicted from optimized values for that point and the flux
measurement uncertainty is 10 g m�2 yr�1. The horizontal line shows the prior estimate, the box shows 1
standard deviation of prior uncertainty, and the cross shows the optimized value. The vertical bar shows
the 1 standard deviation confidence interval of the predicted value. Biome labels are described in Table 2.
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A similar result was previously noted by Lloyd and Farqu-
har [1994] and Knorr and Heimann [1995] for Q10. A
larger Q10 value, they noted, increases the proportion of
respiration in summer and hence requires a larger NPP to
produce the large drawdown in summer concentrations. In
our case, water stress reduces respiration in the dry season
and so requires a smaller value of � to avoid a large
drawdown. The mismatch is not very sensitive to the
presence of a, although we see that, as suggested by Knorr
and Heimann [1995], the match is worst when water stress
is considered to impact NPP but not respiration.

[61] As a final example, Figures 10 and 11 show the
terrestrial biospheric fluxes for July and their uncertainties
as calculated from the optimal parameter values and their
uncertainties. The overall structure of the fluxes is as one
might expect for July, with large uptake over the high-
latitude continents decreasing at lower latitudes and, gen-
erally, sources in the Southern Hemisphere. The uncertainty
in fluxes generally scales with the flux, suggesting that
uncertainties in e are the main contributor to flux uncer-
tainty, at least for this month. There is also a role for
correlations between parameters in reducing uncertainties
on net flux. This role is only possible because of the

propagation of the complete covariance structure through
the calculation.
[62] We can compare the power of this technique with the

traditional inversion of atmospheric transport by comparing
the flux uncertainties we calculate to those from the trans-
port inversion at comparable resolution reported by Kamin-
ski et al. [1998, Figure 23]. That study, using a 25-station
network, achieved small reductions in uncertainty at the
grid-point level, usually much less than 5%. In contrast, our
July case has flux uncertainties roughly proportional to
uncertainties in �. Thus we can predict the uncertainty
reduction for fluxes from the uncertainty reduction for �.
For most biomes, this reduction is much greater than 5%.
This higher reduction in uncertainty is a consequence of the
additional constraint introduced through the biosphere
model. The result is unsurprising given the relatively small
parameter set we are optimizing.

5. Discussion

[63] Given the extreme simplicity of SDBM, it is ques-
tionable how much weight to put on the particular results of
our optimization. The ability to simulate the observed data,

Figure 9. Simulated and observed seasonal cycle of concentration (ppmv) for four observing sites: (a)
Point Barrow Alaska, (b) Ulaan Uul, Mongolia, (c) Mahe Island, Seychelles, and (d) Cape Grim,
Tasmania. The dashed line indicates ±1 standard deviation about the observations.
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while a necessary condition for the use of the model, should
not be taken as a validation of the optimized values. We
have not performed a detailed cross-validation study here,
which would involve simulating concentrations we do not
use in the optimization and comparing them with observa-
tions. Such a study would be required before we placed
great weight on the results. As we have already stated, the
technique is an attempt to build process understanding
explicitly into atmospheric inversions; if the process under-
standing is oversimplified, the conclusions will be corre-
spondingly erroneous.
[64] All this having been said, some of the general

structure of the results is interesting. The overall value of

Q10 is lower than studies relating soil respiration to soil
temperature [e.g., Raich and Schlesinger, 1992], but similar
to those that use air temperature [e.g., Raich and Potter,
1995]. This difference has also been noted by other studies
using atmospheric forcing to drive terrestrial models [e.g.,
Maisongrande et al., 1997; Randerson et al., 2002]. It most
likely results from the difference between soil and air
temperatures. The dominant process in heterotrophic respi-
ration, respiration from within soils, presumably reacts to
soil temperature. Soil tends to damp the large variations in
air temperature, either diurnally or seasonally. Snow has a
particularly strong effect on the seasonal variations. Thus
the apparent sensitivity of respiration to air temperature is
lower than it would be for soil temperature.
[65] The latitudinal structure of Q10 is also interesting,

although the uncertainties make strong conclusions unwise.
In general, the above argument would suggest a closer match
between soil-temperature and air-temperature derived values
of Q10 at low latitudes than at high latitudes, since air
temperature variations are so much higher at high latitudes.
We, however, observe higher values at high latitudes than low
in agreement withMaisongrande et al. [1997]. Our result also
agrees with the finding by Holland et al. [2000] that many
tropical soils show values below 2, less than the typical values
for northern latitudes cited by Raich and Schlesinger [1992].
[66] We have already noted a similar gradient in opti-

mized values of � with latitude. The implied structure in
NPP is clearly at variance with the consensus understanding
of terrestrial biological models as shown in Figure 7. There
are several potential explanations for this. One possibility is
the impact of processes that may affect the seasonal cycle
but are not included in the model. These include seasonality
in disturbance fluxes. Most of these (e.g., fires) would be
expected to counteract the strong summer drawdown of
atmospheric CO2 and hence require even larger values of �
to match the observed seasonal cycle of concentrations.
More likely is the model’s assumption about the relationship

Table 3. Predicted NPP for Various Model Configurationsa

Biome Abbrev

NPP, Gt C

Prior Optimized

a-off a-NPP a-off a-resp a-NPP a-both

BE 16.0 15.2 8.0 3.3 6.8 14.6
BDW 2.1 1.8 2.1 2.4 1.9 2.1
MCB 5.0 4.6 6.2 3.7 5.6 3.7
CF 5.0 4.6 6.2 3.7 7.0 5.7
HLD 2.2 2.1 4.0 4.1 4.3 4.1
WC4 14.4 12.9 4.8 7.5 3.5 10.9
C4 2.0 1.5 �0.3 0.9 �0.5 0.3
DES 0.4 0.2 0.3 0.3 0.2 0.2
TUN 1.0 1.0 1.9 2.1 1.6 2.0
AG 6.7 5.7 4.8 8.6 3.9 6.1
WC3 3.2 2.9 2.2 0.3 3.0 2.2
C3 1.9 1.3 0.9 2.7 �1.0 1.6
Global 60.0 53.8 41.1 39.5 36.4 53.5
Mismatch n/a n/a 0.87 0.78 0.98 0.87

aHeadings refer to whether water stress a is included for each flux
component. Columns two and three list the unoptimized NPP for two model
configurations, the first with water stress (a) turned off and the second
including its effect on NPP (control case). Columns four through seven list
NPP for four optimized model configurations, including or excluding the
effect of water stress on photosynthesis or respiration. Biome abbreviations
are listed in Table 2.

Figure 10. Predicted monthly mean net flux (g C m�2 yr�1) from land for July in the control case. The
contour interval is 200 and positive values are shaded.
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between seasonal and annual mean production. Here these
are governed by the one parameter �. Increasing � to match
the seasonal cycle of concentration necessarily increases
annual NPP. Possibilities like reducing minimum NPP to
achieve the same increase in seasonality are not available to
the model. Similarly, annual mean NPP depends on the
relationship between annual mean APAR and its season-
ality. For example, the seasonality in NPP is unaffected by
adding a constant value to every monthly APAR value, but
the annual mean NPP will change. The effect on the
monthly net flux is complicated by the constraint of a
balanced biosphere.
[67] There is a more fundamental issue facing the

approach outlined in this paper which transcends any
particular results. It concerns the propagation of constraints
from one series of measurements across large and spatially
separate regions. This is a common concern in terrestrial
biological modeling, often (though confusingly) referred to
as the scaling problem. In our calculations the issue is most
starkly demonstrated by the influence of flux measurements
taken at a specific point throughout an entire biome. Recall
that a fictitious measurement on a single 0.5� � 0.5� grid
cell produced a substantial reduction in uncertainty in
productivity for an entire large biome. This is inherent in
the use of single parameters to describe entire biomes. The
idea is challenged by a recent study by Wang et al. [2001],
who optimized parameters in their biophysical model
against campaign-mode flux observations taken at several
apparently similar sites. They calculated large variations in
photosynthetic capacity challenging the very idea of apply-
ing parameters on large scales. We should note that the
model used in that study did not consider differences in
nutrient status between the various sites, so that in some
sense their model was not complete.

[68] This objection is certainly serious, but has implica-
tions far beyond inversion studies like this. However it is
stated, the aim of local measurements is to garner process
understanding and apply it more widely. If this general-
ization is in principle impossible, then a major motivation
for such measurements is invalid. In its broadest sense the
inability to translate understanding from one place to
another represents model failure. Whether this failure is
inevitable and insoluble remains an open question. The
framework outlined here provides a method for testing such
questions, since local or process-based estimates can be
generalized and rigorously compared with integral con-
straints such as atmospheric concentration observations.
Any operational use of such a procedure would involve
quarantining some observations from the optimization pro-
cedure to check (or cross-validate) the inferences we might
make.
[69] Finally, there are some aspects of the uncertainty

calculations shown throughout this paper which require
further comment. These concern the propagation of uncer-
tainty through our linearized model to yield multivariate
normal distributions for our inferred parameters from multi-
variate normal distributions of our observables. This is an
inherent limitation of our analysis. As noted in section 2, we
make the linearity approximation of calculating the deriva-
tive of the cost function via the derivative of concentrations
with respect to parameters rather than by direct calculation
of the Hessian. We can test this approximation by compar-
ing the cost function as a function of one parameter to the
ideal cost function assuming the normal distribution com-
puted by linear error propagation. Figure 12 shows an
example of such a comparison, for Q10 for the broadleaf
evergreen biome. We note good agreement in the curvature
around the minimum. This agreement suggests that our

Figure 11. Predicted standard deviation for net flux (g C m�2 yr�1) from land for July in the control
case. The contour interval is 100.
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uncertainty estimate is locally correct, i.e., that our linearity
approximation is a good one. Figure 12 also provides a test
of our locality approximation. Were the real cost function
purely quadratic (corresponding to a Gaussian posterior
distribution), this agreement would not only hold near the
minimum, but across all values. However, we see a more
rapid increase in cost for low Q10 values in the real than the
ideal cost function, reflecting that our ideal probability
distribution overestimates the probability of low Q10 values.
This disagreement might partly explain the relatively low
Q10 values seen in this study, since the mean Q10 value from
the real probability distribution would be larger than from
the ideal.
[70] The simplicity of the problem studied in this paper is

mainly driven by the simplicity of the terrestrial biosphere
model we employ. The simplicity manifests itself in two
important aspects. First, the model calculates only the
seasonal cycle of fluxes. With the dominant focus of
research in the carbon cycle now shifting to understanding
the climate sensitivity of the underlying source processes,
there is an obvious opening to repeat this work with a model
capable of simulating interannual variability of fluxes. In
particular, it would be interesting to see how much con-
fidence in predictions of terrestrial biosphere responses to
climate change can be improved by parameter calibrations
against the historical record. Another consequence of the
simplicity of the biosphere model is that prior uncertainties
only enter two parameters, although in a more realistic,
process-based model, many more parameters would have to
be specified. This has been explored in detail by Knorr and
Heimann [2001], and the result is an approximate doubling
of uncertainties in global annual NPP compared to this
study.

[71] The other important limitation of this model is its
limited set of observables. This meant we could not do a
real comparison of local and integral measures. The work of
Knorr and Heimann [2001] suggests that other forms of
data may constrain terrestrial biosphere models more
strongly than the atmospheric concentrations used here.
Models which simulated, rather than were driven by,
absorbed photosynthetically active radiation as well as
fluxes and stock changes might yield a much more stringent
test of whether the framework outlined here is useful in real
situations. The use of such satellite-derived data has been
investigated by Knorr and Schulz [2001] and Knorr and
Heimann [2001], and a preliminary assimilation study
combining these with concentration observations is pre-
sented by Rayner et al. [2001].

6. Conclusions

[72] We have outlined and demonstrated an assimilation
framework for combining atmospheric concentration meas-
urements with local measurements in constraining a terres-
trial biosphere model. Using the Simple Diagnostic
Biosphere Model and the techniques of automatic differ-
entiation, we have been able to constrain the net primary
productivity globally and in most major biomes using the
seasonal cycle of atmospheric concentration. The results
generally show higher light-use efficiencies in high latitudes
than low latitudes, a consequence of the unoptimized
model’s failure to match the seasonal cycle in concentration
at high latitudes. Predicted NPP for the base case is close to
the median of the Potsdam Intercomparison at low latitudes
and higher at high northern latitudes. Low-latitude NPP is
sensitive to the treatment of water stress in SDBM with
three variations that we tested, showing substantially lower
NPP than our base case. The sensitivity of heterotrophic
respiration to temperature is poorly constrained by concen-
tration measurements but better constrained by local flux
pseudodata. Finally, the calculated uncertainties on fluxes
for July suggest that the method may be useful in constrain-
ing tropical terrestrial fluxes from the sparse observing
network. This constraint relies on using the process model
to extrapolate information gained in one region throughout
large biomes. This is a more soundly based approach than
the previous flux-based inversions but is subject to the
veracity of the terrestrial model.
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Figure 3. Distribution of biomes used in the study, taken from DeFries and Townshend [1994]. Biome
labels are described in Table 2.
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