Using TAMC to generate efficient adjoint code:
Comparison of automatically generated code
for evaluation of first and second order derivatives
to hand written code from the Minpack-2 collection

Ralf Giering
Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology
e-mail: ralf@sea.mit.edu

Thomas Kaminski
Max-Planck-Institut fiir Meteorologie
e-mail: kaminski@Qdkrz.de

Adjoint models are increasingly being used in computational fluid dynamics (CFD),
in particular in meteorology, oceanography, and climate research. Typical applications
are data assimilation, model tuning, and sensitivity analysis. Both data assimilation
and model tuning derive a set of control variables that achieves an optimal degree
of consistency between simulated and observed quantities. Thereby the degree of
consistency is quantified by a scalar valued misfit or cost function, which is defined
trough the (usually large and complex) numerical model of the system under con-
sideration. The cost function can be minimized most efficiently by use of powerful
iterative gradient algorithms [9], if first order derivatives can be provided. Applying
the reverse mode of automatic differentiation (AD) adjoint code evaluates this first
order derivative or gradient (see introductory section). To analyze the uncertainties
in the inferred optimal values of the control variables, second order derivates of the
scalar valued cost function are of interest. Since, usually, the number of control vari-
ables is large, evaluation of the full second order derivative, i.e. the Hessian matrix,
is prohibitively expensive. However, Hessian vector products are relatively cheap and
provide a module to evaluate certain properties of the Hessian matrix. For example
the best constrained directions are the leading eigenvectors of the Hessian matrix and
can be determined iteratively by Lanczos type algorithms.

In practise, these adjoint applications are based on models that have been pre-
viously developed and applied for simulation of the system under consideration, i.e.
the designers of these models did not necessarily have adjoint applications in mind.
Typically these models are written in Fortran, more precisely some Fortran dialect
in between Fortran 77 and Fortran 90, with a recent tendency towards Fortran 90.
These models typically run on super computers close to the limit of resources in terms
of both memory and CPU time. Since the abovementioned applications (except for
sensitivity analysis) require multiple runs of the adjoint models, it is obvious that
efficient use of computer resources by the adjoint code is a necessary condition for

executing the generated adjoint models.

During the eighties and early nineties adjoints of CFD models have been hand
coded. This task, however, is extremely error prone and time consuming. Furthermore
the strategies that have been used made the adjoint code inflexible to changes in the
model code. As a consequence, development of adjoint models was rare and usually
limited to simplified models [19, 16]. The adjoint of the atmospheric model applied
for (4d-var) data assimilation at the ECMWF constitutes an exception: it has been
constructed and is maintained by hand. However construction of the adjoint seems
to have taken almost a decade and has started before AD tools were well enough
developed to tackle this challenge. Code for evaluation of second order derivatives,
as a consequence of its even larger degree of complexity, has not been hand written
for large scale applications [4].

Recently a number of AD tools are being developed that are capable of generating
adjoint code (Odyssee [15], GRESS [12], TAMC [7], see also other contributions to this
document). Other tools operating in reverse mode are employing operator overloading
capabilities of C** or Fortran-90 (ADOL-C, AD01, ADOL-F, IMAS, OPTIMA90)
[3].

TAMC (Tangent linear and Adjoint Model Compiler, [7]) is a source-to-source
translator for Fortran programs to generate derivative computing code operating in
forward or reverse mode. The internal algorithms are based on a few principles sug-
gested e.g. by Talagrand [18]. These principles can be derived from the chain rule
of differentiation [8]. TAMC applies a number of analyses and code normalizations
similar to those applied by optimizing compilers (constant propagation, index vari-
able substitution, data dependence analysis). In addition, given the top-level routine
to be differentiated and the independent and dependent variables, by applying a
forward /reverse data flow analysis TAMC detects all variables that depend on the
independent variables and influence the dependent variables (active variables). This
is in contrast to operator overloading based tools, where the user has to determine
active variables and to declare them to be of a specific data type. TAMC can handle
all but very few relevant Fortran 77 statements and an increasing number of Fortran
90 extensions, check the latest manual version on the TAMC home page [6] for the
current state of development.

Recently, TAMC has been successfully applied to generate the adjoint codes of an
increasing number of large and complex CFD codes [13, 17, 14, 5]. A mayor challenge
of adjoint code is providing intermediate results required, e.g. to evaluate derivatives
of non linear operations. Efficient adjoint code uses a combination of recalculating and
restoring from a tape written previously; both strategies can be applied by TAMC.
For generation of recalculations a reverse data flow analysis is applied, and, as far
as possible, only statements being absolutely necessary are inserted into the adjoint
code. Concerning this key issue for generation of efficient derivative code, TAMC
is unique among the AD tools. For the abovementioned applications checkpointing
schemes have been implemented semi automatically by TAMC. The checkpointing
technique allows to use the available resources for storing intermediate results more
efficiently at the cost of an additional model run and is indispensable for these large
applications [10]. For some applications even a multi level checkpointing is necessary.
Depending on the level of checkpointing, the run time of the adjoint code is in between
a factor of 3-6 of that of the model. Thereby the pure derivative code (without the
additional model evaluations) is in between a factor of 1-3 of that of the model. See
the TAMC home page [6] for more details on the adjoints of these models.

TAMC generates code to compute second order derivates operating in the so-

name | lines | short description

ept 51 | elastic-plastic torsion

ssc 54 | steady state combustion

pjb 61 | pressure distribution in a journal bearing

gl 70 | Ginzburg-Landau (1-dimensional) superconductivity
msa 90 | minimal surface area

gl2 111 | Ginzburg-Landau (2-dimensional) superconductivity

Table 1: Names of Minpack-2 problems and their number of code lines

called forward over reverse mode (FOR), i.e. the first order derivative is computed in
reverse mode and the second order derivative in forward mode. The constructed code
computes Hessian times vector products or the full Hessian. Alternative approaches
use the forward over forward mode (FOF) or Taylor series expansion (TSE) [1]. For
scalar valued functions FOR is much faster, and the relative run time is independent
of the number of control variables, while the cost of FOR and TSE increases with this
number. In theory, a relative run time below 10 should be attainable [11].

Although for the abovementioned applications, in theory, adjoint models also could
have been hand coded, probably, in practise, without AD none of these applications
would have been possible. This means in particular that there exist no hand coded
counterparts to compare the automatically generated adjoint code to in terms of
efficiency. Hence, for this purpose we employed the Minpack-2 test problem collection
[2]. For each problem the collection contains hand written code to compute a scalar
valued function, its gradient, and the product of its Hessian times a vector. The
number of independent variables can be chosen arbitrarily.

We selected six problems that are representative of small to medium scale op-
timization problems arising from applications in superconductivity, optimal design,
combustion, and lubrication. Table 1 gives the list of problems and their number of
Fortran code lines.

The code for function evaluation has been differentiated by TAMC to generate
code for evaluation of the gradient (adjoint code). The comparison has been carried
out on two machines, a Sun Ultra-1 and a Cray C90. To allow a fair comparison
on the Cray C90, the performance of the hand written code has been improved by
inserting vectorization directives and moving conditional statements out of the inner
most loop. The codes have been compiled by the vendors Fortran compiler with the
precision and compiler options given in Table 2.

| platform | precision | Fortran command line |

Sun Ultra-1 | double precision | f90 -O2
Cray C90 double precision | f90 -O inline3,scalar3,vector3,task0

Table 2: Precision and compiler options used on platforms.

The results for evaluation of the gradient codes are depicted in Fig. 1 for Sun
Ultra-1 and in Fig. 2 for Cray C90. For every test problem the relative run time,
i.e. the run time of the gradient code compared to the run time of the function
code, has been calculated for different numbers of independent variables. On Sun

gradient to function time ratio (gl2 on sun) gradient to function time ratio (ssc on sun)

25 1.25
2 o |
o o
8 g
15 e e T T T m s T T T T LASF~ - — — o __ - T T T T
1 11
0 05 1 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]
gradient to function time ratio (pjb on sun) gradient to function time ratio (gl1 on sun)

ratio

1 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]

gradient to function time ratio (msa on sun)

gradient to function time ratio (ept on sun)

\ —— hand coded
TAMC

ratio

S - ~ —~ ~

1) 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]

Figure 1: Relative run time of gradient code on Sun Ultra-1 (x-axis is the number of
control variables).

Ultra-1 the hand written code is in four cases slower than the TAMC generated
code (GL2,SSC,GL1,EPT). However, a remarkable difference can only be seen for the
GL2 problem, in all other cases differences are small. A nested loop in the function
computing code of GL2 is split into three loops in the hand written gradient code:
one for interior points of the domain and two for boundary points. This has been
common practice in hand written adjoint codes. In contrary, TAMC does not split the
loop; instead interior and boundary points are handled simultaneously as is implied
by strict application of the rules TAMC is based on [8]. In all cases, the changes of
the relative run time with the dimension of the problems (the number of independent
variables) are very small. On a Sun Ultra-1 performance is compromised by cache
misses. Their number depends mainly on the memory needed for all variables in a
loop compared to the cache size. For non-linear operators, this ratio is different for
function and gradient code. This explains the spikes at certain problem sizes.

The differences in relative run time are also small on a Cray C90, except again for
the GL2 problem. Here, in most cases, the relative run time increases slightly with
the problem size.

Some recalculations in the adjoint code are independent of the problem size. If
they, for small sizes, constitute a mayor part of the whole calculations the ratio
is almost one. For large sizes the run time of the adjoint code is dominated by
updating adjoint variables. Thus, the ratio depends on the complexity of the non-
linear operations in the corresponding function code. On vector machines like the
Cray C90 run time depends mainly on the efficient use of vector pipes. For these

gradient to function time ratio (gl2 on cray) gradient to function time ratio (ssc on cray)
25 13

ratio

1 0.9
0 05 1 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]
gradient to function time ratio (pjb on cray) gradient to function time ratio (gl1 on cray)
18
° e |~
§ § 1.6
14
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
dimension [1.e5] dimension [1.e5]

gradient to function time ratio (msa on cray)

gradient to function time ratio (ept on cray)

15 4
’
’
1

0.5 1.2
0 05 15 2 25 0 0.5 1 15 2 25

1
dimension [1.e5] dimension [1.e5]

ratio

14/~ —— hand coded
TAMC

’ S

Figure 2: Relative run time of gradient code on Cray C90 (x-axis is the number of
control variables).

test problems the effective vector length increases with the number of independent
variables. Thus, on a Cray C90, in contrary to the Sun Ultra-1, the abovementioned
transition to dominance of updating adjoint variables is at higher problem sizes.

The Hessian times vector code has only been compared on the Sun Ultra-1. The
results depicted in Fig. 3 show the relative run time of the Hessian times vector code
compared to the run time of the original function code. Only in one case (GL2) is
the TAMC generated code faster than the hand written code. As for the gradient
code, the hand written version of the Hessian times vector code for the GL2 problem
splits a nested loop into three loops. But the run time penalty for this splitting is
much more pronounced: the TAMC generated code is about a factor 2 faster! For
the other problems, the TAMC generated code is slower, because TAMC generates
some initializations of adjoint variables to zero that could be omitted by combining
them with subsequent assignments to the same variable. Although humans can easily
detect these cases, automatization can become arbitrarily complex, because it might
involve comparison of array subscript expressions.

In summary, the efficiency of TAMC generated adjoint code and Hessian times
vector code is comparable to that of their hand written counterparts. In detail, the
results depend on particular features of the computer and on the compiler that are
used and also on details of the implementation of both the particular function to be
differentiated and the hand written derivative code. TAMC is available through its
home page [6] or by electronic mail to its designer (ralf@sea.mit.edu).

hessvec to function time ratio (gl2 on ultral0) hessvec to function time ratio (ssc on ultral0)

25 1.8
—— hand coded
20 "& 16} - - TAMCfw-rv 1
o N mmm s T T T T T TS s s s s s s s s
§ 15 1.4t 1
Of-=-_ ___________ 1.2t
5 1
0 02 04 06 08 1 12 14 16 0 02 04 06 08 1 12 14 16
hessvec to function time ratio (pjb on ultral0) hessvec to function time ratio (gl1 on ultral0)
3 T T T T T T T 3 T —T ———T T T
— I ___- —
p
25 T~ PP _
P -~ __ - - ~~ . 25

ratio

2

15

1

] I]

0

15
0.2 0.4 0.6 0.8 1 12 1.4 16 0 0.2 0.4 0.6 0.8 1 12 14 16

hessvec to function time ratio (ept on ultral0) hessvec to function time ratio (msa on ultral0)

45 T

-

" " " " " " " 35 " " " " " " "
0.2 0.4 0.6 0.8 1 12 14 16 0 0.2 0.4 0.6 0.8 1 12 14 16

dimension [1.e5] dimension [1.e5]

Figure 3: Relative run time of Hessian times vector code on Sun Ultra-1.

References

[1] Jason Abate, Christian Bischof, Alan Carle, and Lucas Roh. Algorithms and

[3]

[4]

[6]

design for a second-order automatic differentiation module. In Int. Symposium
on Symbolic and Algebraic Computing (ISSAC), pages 149-155. Association of
Computing Machinery, New York, 1997.

Brett M. Averick, Richard G. Carter, Jorge J. More, and Guo-Linad Xue. The
Minpack-2 Test Problem Collection. Preprint MCS-P153-0692, Mathematics and
Computer Science Division, Argonne National Laboratory, 1992.

Christian Bischof. A collection of automatic differentiation tools.
URL=http://www.mcs.anl.gov/Projects/autodiff/AD Tools/index.html.

Christian H. Bischof, George F. Corliss, Larry Green, Andreas Griewank, Ken
Haigler, and Perry Newman. Automatic differentiation of advanced CFD codes
for multidisciplinary design. Journal on Computing Systems in Engineering,
3:625-638, 1992.

Christian Eckert. On Predictability Limits of ENSO - A Study Performed with a
Simplified Model of the Tropical Pacific Ocean-Atmosphere System. PhD thesis,
Max-Planck-Institut fiir Meteorologie, Hamburg, Germany, 1998.

Ralf Giering. Tangent linear and Adjoint Model Compiler home page.
URL=http://puddle.mit.edu/~ralf/tamc.

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Ralf Giering. Tangent linear and Adjoint Model Compiler , Users manual, 1997.
unpublished, available from http://puddle.mit.edu/~ralf/tamc.

Ralf Giering and Thomas Kaminski. Recipes for Adjoint Code Construction,
1998. in press ACM Trans. On Math. Software.

P. E. Gill, W. Murray, and Margret H. Wright. Practical Optimization. Academic
Press, New York, 1981.

Andreas Griewank. Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optimization Methods and Software,
1:35-54, 1992.

Andreas Griewank. Some bounds on the complexity of gradients, Jacobians, and
Hessians. In Panos M. Pardalos, editor, Complezity in Nonlinear Optimization,
pages 128-161. World Scientific Publishers, 1993.

Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran pro-
grams. In Andreas Griewank and George F. Corliss, editors, Automatic Differen-
tiation of Algorithms: Theory, Implementation, and Application, pages 243-250.
SIAM, Philadelphia, Penn., 1991.

T. Kaminski, R. Giering, and M. Heimann. Sensitivity of the seasonal cycle of
CO2 at remote monitoring stations with respect to seasonal surface exchange
fluxes determined with the adjoint of an atmospheric transport model. Physics
and Chemistry of the Earth, 21(5-6):457-462, 1996.

Geert Jan van Oldenborgh, Gerrit Burgers, Stephan Venzke, Christian Eckert,
and Ralf Giering. Tracking down the delayed ENSO oscillator with an adjoint
OGCM. Technical Report 97-23, Royal Netherlands Meteorological Institute,
P.O. Box 201, 3730 AE De Bilt, The Netherlands, 1997. Monthly Weather
Review, in press.

N. Rostaing, S. Dalmas, and A. Galligo. Automatic differentiation in Odyssée.
Tellus, pages 558—-568, 1993.

Jens Schréter. Driving of non-linear time dependent ocean models by obser-
vations of transient tracer - a problem of constrained optimization. In D.L.T.
Anderson and J. Willebrand, editors, Ocean Circulation Models: Combining Data
and Dynamics, pages 257-285. Kluwer Academic Publishers, 1989.

Detlef Stammer, Carl Wunsch, Ralf Giering, Qian Zhang, Jochem Marotzke,
John Marshall, and Chris Hill. The Global Ocean Circulation estimated from
TOPEX/POSEIDON Altimetry and a General Circulation Model. Technical
Report 49, Center for Global Change Science, Massachusetts Institute of Tech-
nology, 1997.

Oliver Talagrand. The use of adjoint equations in numerical modelling of the
atmospheric circulation. In Andreas Griewank and George F. Corliss, editors,
Automatic Differentiation of Algorithms: Theory, Implementation, and Applica-
tion, pages 169—-180. STAM, Philadelphia, Penn., 1991.

Eli Tziperman and W. C. Thacker. An optimal control/adjoint equation approach
to studying the ocean general circulation. Journal of Physical Oceanography,
19:1471-1485, 1989.

