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Abstract. TM2 is a global three-dimensional model of the atmospheric transport of
passive tracers. The adjoint of TM2 is a model that allows the efficient evaluation
of derivatives of the simulated tracer concentration at observational locations with
respect to the tracer’s sources and sinks. We describe the generation of the adjoint
model by applying the Tangent linear and Adjoint Model Compiler in the reverse
mode of automatic differentiation to the code of TM2. Using CO � as an example
of a chemically inert tracer, the simulated concentration at observational locations
is linear in the surface exchange fluxes, and thus the transport can be represented
by the model’s Jacobian matrix. In many current inverse modeling studies, such
a matrix has been computed by multiple runs of a transport model for a set of
prescribed surface flux patterns. The computational cost has been proportional to
the number of patterns. In contrast, for differentiation in reverse mode, the cost
is independent of the number of flux components. Hence, by a single run of the
adjoint model, the Jacobian for the approximately 8

�
latitude by 10

�
longitude

horizontal resolution of TM2 could be computed efficiently. We quantify this
efficiency by comparison with the conventional forward modeling approach. For
some prominent observational sites, we present visualizations of the Jacobian
matrix by series of illustrative global maps quantifying the impact of potential
emissions on the concentration in particular months. Furthermore, we demonstrate
how the Jacobian matrix is employed to completely analyze a transport model run:
A simulated monthly mean value at a particular station is decomposed into the
contributions to this value by all flux components, i.e., the fluxes into every surface
model grid cell and month. This technique also results in a series of global maps.

1. Introduction

The radiative balance of the terrestrial atmosphere is sen-
sitive to the concentrations of a number of trace gases. En-
hanced concentrations of these greenhouse gases may thus
lead to climate change. This sensitivity of climate to pertur-

�
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bations in the concentrations of greenhouse gases is being
estimated by means of complex General Circulation Mod-
els [Watson et al., 1995]. For predictions of climate change
and its impacts, these models use the greenhouse gas con-
centrations as boundary condition. To control the tempo-
ral development of these concentrations, in turn, the sources
and sinks of the respective gases have to be predicted over
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the time period of interest. Hence reliable models of the un-
derlying source and sink processes are urgently needed to
determine the feedbacks of future climate changes on the
concentration of the gases. Improving our knowledge about
the past and current source and sink magnitudes would help
to improve and verify these process models.

At present, however, for many greenhouse gases such
as carbon dioxide (CO � ), carbon monoxide (CO), methane
(CH � ), or nitrous oxide (N � O) not even the current magni-
tudes of the natural as well as the anthropogenic sources and
sinks can be quantified with sufficient accuracy [Houghton
et al., 1995]. Especially for CO � and CH � , there have been
considerable efforts to measure directly the exchange fluxes
between the atmosphere and different source reservoirs (over
oceans, e.g., by global ship campaigns or over land by means
of eddy correlation flux measurements). Although this ”bot-
tom up” approach locally yields important information on
the relevant processes, large uncertainties are induced by the
necessary assumptions for extrapolation to regional or global
scales.

During the last decades, an observational network of in-
creasing density is being established to monitor the compo-
sition of the atmosphere. Space-borne observations are also
becoming available, as well as measurements on board of
ships and air planes. In contrast to local flux measurements,
if carefully selected, the atmospheric concentration observa-
tions are representative for larger spatial scales. Hence such
observations provide a means of estimating the sources and
sinks on larger scales. Yet, in order to link the surface fluxes
to the atmospheric concentration observations, a more or less
sophisticated model of the atmospheric transport is needed,
possibly in conjunction with a module of the relevant atmo-
spheric chemistry for the species under consideration. The
systematic search for spatiotemporal flux fields that, in com-
bination with an atmospheric transport model, yield modeled
concentrations close to observations is called inverse model-
ing of the atmospheric transport.

In order to alleviate future climate change, international
negotiations are currently underway to curb the emissions of
several of the greenhouse gases In this context, another per-
spective for inverse modeling is to derive regional estimates
of the source fluxes to monitor the success of these attempts.

A number of research groups have investigated the feasi-
bility of inversion of the atmospheric transport. The chal-
lenge consists in using the information from a spatially
sparse observational network in an optimal way to derive
regional flux estimates together with an estimated range of
confidence. Technically, this constitutes an underdetermined
or ”ill-posed” inverse problem: A unique solution can only
be derived by use of additional assumptions (regularization
of the inverse problem). The validity of these assumptions as

well as the reliability of the transport model are crucial for
the quality of the resulting estimates. Recently, a number
of studies have been carried out to quantify the magnitude
of the sources and sinks of CO � [Enting and Mansbridge,
1989; Enting et al., 1995; Ciais et al., 1995; Haas-Laursen,
1997; Rayner et al., 1999; Bousquet, 1997; Law, 1999], CH �
[Brown, 1993; Hein and Heimann, 1994; Brown, 1995; Hein
et al., 1996], and halocarbons [Brown, 1993; Hartley and
Prinn, 1993]. Differences among these studies mainly con-
sist in the resolution of the transport models (two dimen-
sional or three dimensional) and in the kind of assumptions
for regularization, which is formally reflected by different
inversion techniques [see, e.g., Enting, 1999].

Most of the relevant long-lived trace gases are either not
(CO � ) or only weakly (CH � , N � O, halocarbons) coupled to
tropospheric chemistry and thus, in a good approximation,
can be inverted with a linearized representation of the trans-
port. The transport then can be taken into account in the
following way: The surface flux field is decomposed into
prescribed spatiotemporal patterns (“source” or “flux” com-
ponents) with unknown scaling coefficients. The transport
model is separately run with each of the source components,
and the contributions to the concentration signal at each of
the monitoring sites and times are recorded. These contribu-
tions can be interpreted as a discretized ”impulse response”
or ”Greens function” that quantifies the response of the mod-
eled concentration at the observational sites and time periods
to unit changes in the magnitude of each source component.

Formally, this impulse response or Greens function is the
Jacobian matrix representing the first derivative of the mod-
eled concentration at the observational sites and dates with
respect to the coefficients of the source components. Com-
putationally, for ��� source components, ��� model runs (or a
single ��� tracer run transporting emissions from each source
component separately) have to be performed to determine
the ��� differential quotients constituting the columns of the
Jacobian matrix. Hence the number of source components
that can be considered is essentially limited by the computa-
tional cost of the necessary transport model runs, i.e., by the
model’s complexity in terms of both the representation of
the transport and possibly chemical processes and their spa-
tiotemporal resolution. The additional assumption that the
flux fields can be represented by a few patterns is thus inher-
ent in this approach and, in part, determines the result of the
inversion, because the internal shape of these patterns can-
not be altered by the inversion. It is evident, though, that for
many trace gases, such a restricted representation does not
take account of the full spatiotemporal variability in an ap-
propriate way. Further, in combination with inhomogeneous
sampling (which for sparse networks is inavoidable), this
low resolution in the space of unknowns may lead to biased
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estimates as recently investigated by Trampert and Snieder
[1996]: For example, to adjust a well-observed fraction of a
fixed prescribed pattern, the inversion algorithm must adjust
the pattern’s scaling factor, and the accompanying change in
the pattern’s less well-observed fraction can spoil the esti-
mate of the pattern’s integrated emissions.

Here we present an alternative approach employing the
adjoint of the three-dimensional transport model TM2. By
means of the Tangent linear and Adjoint Model Compiler
(TAMC, R. Giering, 1997, available at http://puddle.mit.edu/
� ralf/tamc) this numerical module has been constructed au-
tomatically from the TM2 source code in the ”reverse mode”
of automatic differentiation. The principles of adjoint code
generation and the adjoint model are introduced in section 3.
Unlike most adjoint models applied in geosciences, which
are constructed for iterative minimization of scalar valued
functions, the adjoint of TM2 computes the derivative of a
vector valued function. Hence, by a single run of the adjoint
model the exact Jacobian is efficiently computed row by row,
for which the cost is proportional to the number of observa-
tions and nearly independent of the number of flux compo-
nents. Hence, defining the flux patterns as the model grid
cells, we are able to determine the Jacobian for the horizon-
tal TM2 resolution of approximately 8

���

10
�

and monthly
temporal resolution.

The Jacobian is computed for the simulation of the quasi-
stationary seasonal cycle of CO � , which is carried out in a
cyclostationary setup of TM2 described in section 2. The
rows of the Jacobian quantify the sensitivity of the modeled
concentration at a particular station and month to the fluxes
into every surface layer grid cell at every month. A visual-
ization results in instructive maps of the potential influence
of the flux components for the respective months on a par-
ticular observable. Prescribing for each grid cell the relative
distribution of the fluxes over the year (e.g., constant flux),
the information on potential influence can be condensed to
one map for each monthly mean concentration. On the other
hand, it is possible to derive the sensitivity of any partic-
ular feature that can be computed from the monthly mean
concentrations (e.g., the yearly mean concentration, or the
magnitude of the seasonal cycle). For linear combinations
of the monthly mean concentrations, in addition to compute
potential influence areas, it is possible to decompose the fea-
ture as modeled in a particular run according to the contri-
butions resulting from the respective flux components. Be-
sides these sensitivity studies, the Jacobian can be applied
for tracer simulations instead of TM2 [Knorr, 1997], as long
as the setup the matrix has been derived for is appropriate
for the problem at hand. In a companion paper [Kaminski
et al., this issue], we present a Bayesian inversion on the
TM2 grid, in which we combine the Jacobian with both at-

mospheric CO � observations and a priori information on the
fluxes.

In summary, the outline is as follows: In section 2 we
give a description of the transport model and the setup for
which we derive the matrix representation. The principles
of adjoint code generation and the adjoint model are intro-
duced in section 3. Section 4 discusses the Jacobian and its
use to compute sensitivities of particular features. Section 5
contains concluding remarks.

2. Model of the Quasi–Stationary Seasonal
Cycle

A statistical analysis of the observed atmospheric CO �
concentrations as performed, e.g., by Keeling et al. [1989]
points out that, on timescales of a few years, the concept of
a quasi-stationary seasonal cycle is appropriate to describe
the prevailing features in the records. This quasi-stationary
seasonal cycle component in the concentration, which es-
sentially is composed of a global trend and a spatially vary-
ing seasonal cycle, can be extracted from the observations as
well as be simulated by atmospheric transport models. Since
these transport models use CO � surface exchange flux fields
as boundary condition, comparison of the observed and the
simulated quasi-stationary seasonal cycles provides a way to
constrain these fluxes. In this section we briefly introduce
our transport model TM2, give a formal definition of the
quasi-stationary seasonal cycle, and describe an appropriate
setup of TM2 for simulation of the quasi-stationary seasonal
cycle. The adjoint model, which is described in section 3,
then evaluates the derivative of the function that is defined
by this particular setup. Comparison of simulated concen-
trations to observations is deferred to section 7 of Kaminski
et al. [this issue].

TM2 is a three-dimensional atmospheric transport model,
which solves the continuity equation for an arbitrary num-
ber of atmospheric tracers on an Eulerian grid spanning the
entire globe [Heimann, 1995]. It is driven by stored me-
teorological fields derived from analyses of a weather fore-
cast model or from output of an atmospheric general circula-
tion model. Tracer advection is calculated using the “slopes
scheme” of Russel and Lerner [1981]. Vertical transport due
to convective clouds is computed using the cloud mass flux
scheme of Tiedtke [1989]. Turbulent vertical transport is cal-
culated by stability dependent vertical diffusion according to
the scheme by Louis [1979]. Numerically, in each base time
step the model calculates the source and sink processes af-
fecting each tracer, followed by the calculation of the trans-
port processes.

The spatial structure of the model is a regular latitude-
longitude grid and a sigma coordinate system in the vertical.
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The base “coarse grid” version of the model uses a horizontal
resolution of approximately 8

�

latitude by 10
�

longitude (the
horizontal dimension of the grid is ����� ��� ���
	

) and 9
layers in the vertical dimension. The numerical time step of
this model version is 4 hours.

We apply TM2 to simulate the quasi-stationary seasonal
cycle component in the CO � concentration at particular ob-
servational sites. Therefore, prescribing the same monthly
mean surface exchange flux fields � each year (cyclosta-
tionarity), and starting from zero initial concentration, TM2
is run by repeatedly cycling through the same meteoro-
logical fields of the year 1987 derived from analyses of
the European Center for Medium Range Weather Forecast
(ECMWF), which are available to the model every 12 hours.
These meteorological fields have been adjusted in order to
guarantee air mass conservation. This adjustment is also
applied when switching from the fields of December 31 to
January 1 [Heimann, 1995]. We use monthly mean values
of the simulated concentration for comparison with obser-
vations, because for shorter averaging periods the influence
of synoptic events, whose interannual variations are not re-
solved, would become too important. To extract time series
of concentrations ��
 at particular sites � , we first compute
monthly means and then perform a bilinear interpolation in
the horizontal from the TM2 grid to the exact location of � .

With periodic boundary conditions and periodic trans-
port, at every site, the simulated concentration as well tends
towards a periodic state ��� . For a flux field with nonzero
global annual mean, however, a linear trend is superimposed
on the cyclostationary concentrations. The spatial variation
of the magnitude of the annual mean flux as well as the effect
of covarying seasonal cycles of fluxes and transport (recti-
fier effect) described, e.g., by Pearman and Hyson [1980],
Heimann et al. [1986], Heimann and Keeling [1989], and
Denning et al. [1995] result in a spatially varying offset in
� � . Formally, at the � th month, the simulated concentration
��
�� � can be composed as

��
�� ��� ��
�� ��������������� 
!��"#
$� ��% (1)

where the single terms have the following meaning: The pe-
riodic component has been split up into a function �&
$� � with
yearly period ( � 
�� �('*) �+�,� 
$� � ) and zero annual mean denot-
ing the seasonal cycle as well as the spatial gradient contri-
bution �-
 . The long-term global linear trend � is related to
the global annual mean flux .� by

�/�102� .��% (2)

where 03� 0.476 ppmv GtC 4 ) is the conversion factor from
mass to concentration for instantaneous global mixing as
used by the transport model. The length of the time inter-
val from the beginning of the simulation to the middle of the

� th month ��� is given by

� �*5 �
6 �87 ):9 �<;=�� ��> (3)

The residuum "!
�� � tends to zero as the length of the time
series increases.

We define the quasi-stationary seasonal cycle as

��
�� �?7@"#
$� �A�B��
�� �����������C���-
D�,� � � 
�� �������E���F> (4)

To represent the quasi-stationary seasonal cycle, in addition
to the global linear trend, 12 numbers per site are needed to
quantify �G� : 11 numbers for � 
 (the 12th monthly value is
determined by the other 11, because the sum must be 0) and
1 number for �-
 . As soon as "#
�� � is close enough to zero to
be neglected, the quasi-stationary seasonal cycle can be ex-
tracted from our modeled time series. Heimann and Keeling
[1989] found that for tropospheric sites a spin up period of
3 years is sufficient to achieve an appropriate degree of con-
vergence in (4). The rate of convergence reflects the model’s
timescales of mixing. These timescales are commonly quan-
tified in terms of exchange times [Rayner and Law, 1995;
Law et al., 1996]. More precisely, the rate of convergence
is determined by the longest exchange time, which, in the
troposphere, is associated to the interhemispheric transport.
Using the radioactive tracer HJI Kr, Jacob et al. [1987] found
an interhemispheric exchange time of 1.1 years for a similar
transport model, and Heimann and Keeling [1989] found 1.3
years for TM2. Similar to Heimann and Keeling [1989] as
”standard setup” of TM2, we choose to perform a four year
run, of which we extract the monthly mean concentrations
in the last year. Together with the global annual mean flux,
these 12 values per site determine the trend and the periodic
component representing the quasi-stationary seasonal cycle:

�K� 02�/.�
�G� � 
�� � � � 
�� �('�LEM ) �N7@� �('�LEM ) �O��02�/.� 6 �*� = % =�� ; > (5)

In the terminology of linear algebra, the standard setup in-
cludes the choice of a basis (and its order) for the space of
fluxes, i.e., a set of � � � =�� �

��� vectors spanning the space,
and ��P�Q "SR$T is a representation of a particular flux vector
by its components with respect to that basis. The compo-
nents of � quantify the 12 monthly mean fluxes into each
surface grid cell. In particular, the basis defines the physical
units of the fluxes. Similarly, with respect to a basis in the
space of concentrations, the output �UP1Q " R�V is a vector of
��WX� =�� �

��Y components for the modeled monthly mean
concentration at � Y observational sites. Since, in addition,
every step in the simulation is linear, in the standard setup
TM2 can be represented by a real � W � ��� matrix Z , and the
application of the model to a flux field � can be written as

�#�[ZS��> (6)
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Using this matrix notation, the model of the quasi-stationary
seasonal cycle in (5) reads

� � 0 �/.�
�J� � ZS� 7@�8��0 �N.��% (7)

where the vector � contains the values of �F� .
Concatenating � and ��� to one vector � � Y W , these equations

define a single matrix
�

:

� � Y W � 5 � ��> (8)

Since our model neglects interannual variations in the
transport as well as in the fluxes, a careful interpretation of
� � Y�W is necessary: If it was interpreted as the quasi-stationary
seasonal cycle of 1987, the year of the meteorological data,
� � Y�W would be subject to both sources of error: For the spin-
up years the difference in the meteorologies to 1987 as well
as the differences in the fluxes to 1987 would be neglected.
Instead, as in the study of Hein et al. [1996], � � Y�W should be
interpreted as a mean quasi-stationary seasonal cycle over
a target period of a few years: Prescribing the mean flux
over the whole target period, the error caused by the cyclo-
stationary flux assumption decreases with increasing length
of the target period. The error induced by using the me-
teorology of a particular year to simulate the whole target
period still remains. One might argue that a climatology,
i.e., the meteorology of a mean year, should be used instead.
In order not to underestimate the transport, however, TM2
needs the synoptic scale variation, which is partly removed
by the averaging procedure yielding the climatology. Hence,
instead of using a mean meteorology, � � Y�W is interpreted as
one particular element of the ensemble of modeled concen-
trations that would result from using the same mean fluxes
but the meteorologies from the particular years of the tar-
get period. This model error has to be taken into account
when comparing � � Y�W to the mean quasi-stationary seasonal
cycle extracted from observations. Recent studies indicate
that for monthly mean concentrations, this error is not too
large: Knorr and Heimann [1995] investigated the impact
of the meteorological data by comparing the seasonal cycle
of the monthly mean concentration simulated with TM2 in
the standard setup driven by the meteorology either of 1986
or 1987. In their study they obtain only a minor difference.
With a different model, Law and Simmonds [1996] explored
the sensitivity of fluxes resulting from an inversion to the
year of the meteorological fields. They also found small dif-
ferences. In section 9 of Kaminski et al. [this issue] these
results are confirmed by a comparison of the flux fields in-
ferred from two inversions that we perform on the basis of
meteorological data from 1986 and 1987.

3. The Adjoint Model

As explained in section 2, for the standard setup, TM2
can be represented by a �AW � � � matrix Z . For given surface
fluxes � , by a model run, we are able to compute the result-
ing concentrations at the station locations ��� ��� � ZS� . The
matrix Z itself is yet to be determined.

Following, e.g., Enting et al. [1995], by applying TM2
subsequently to the � � standard basis vectors

� )N� 6 = %�� % > > > %	� ; % > > > % � R$T � 6
� %E> > > %�� % = ;

spanning Q " R T , the matrix Z could be computed column by
column. This can be looked upon as a special case of approx-
imating the Jacobian matrix that represents the first deriva-
tive of a function by differential quotients: Owing to linear-
ity of the model (1) differential quotients are not merely an
approximation of the Jacobian, and (2) the Jacobian of Z is
equal to Z . A disadvantage of this approach is that it re-
quires ��� runs of TM2, and thus is only feasible for a small
number of flux components. In this section we introduce an
alternative and for our matrix much more efficient approach:
By the model adjoint to TM2 in the standard setup the Jaco-
bian matrix is computed row by row in reverse mode. Here
the computational cost depends on the number of rows, i.e.,
on � W , rather than on the number of columns, i.e., on � � .
This kind of an adjoint model is uncommon in geosciences:
Usually, rather than vector valued functions, scalar valued
functions are being differentiated.

As will be sketched in section 3.1, for the implemen-
tation of an adjoint model there are alternative strategies.
Following the concept of differentiation of algorithms, the
adjoint of TM2 has been directly derived from the model
code. For automatic generation of this adjoint code, the Tan-
gent linear and Adjoint Model Compiler (TAMC, R. Gier-
ing, 1997, available at http://puddle.mit.edu/ � ralf/tamc) has
been applied. Briefly summarizing earlier work [Giering
and Kaminski, 1998], section 3.2 introduces the concept of
differentiation of algorithms. Finally, section 3.3 describes
how TM2’s adjoint has been generated.

3.1. Adjoint Code Construction

In the following we briefly sketch three approaches to
adjoint code construction whose essential difference is the
level on which the adjoint operators are constructed.

1. Traditionally, as demonstrated, e.g., by Marchuk [1995]
for various dynamical systems, adjoint models have been
derived from the description of the system by a state func-
tion of space and time, being the solution of what Marchuk
refers to as the main problem. Typically, the main prob-
lem consists of a set of differential equations together with
initial and boundary conditions that, in the terminology of
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functional analysis, define a (potentially non linear) differ-
ential operator Z in an appropriate space of functions � .
Spaces of this type are examples of Hilbert spaces, vector
spaces furnished with an inner product � �E%A��� . For the atmo-
spheric transport of a passive tracer, the main problem con-
sists of the continuity equation, together with a prescribed
initial concentration field and a prescribed source sink dis-
tribution. Each observable quantity is represented by a lin-
ear functional on the Hilbert space. The control variables,
i.e., functions that characterize the system such as initial or
boundary conditions or parameters in the formulation of Z ,
are also elements of appropriate Hilbert spaces. The sen-
sitivity of a quantity to a change in the control variables is
then the Hilbert space or continuous analogue of the famil-
iar first derivative in finite dimensional spaces, which will
be discussed in section 3.2. Applying first-order perturba-
tion theory to the particular problem at hand, a Hilbert space
analogue of the chain rule is derived: The sensitivity of the
functional’s value to a change in the control variables can
be composed of the sensitivity of the functional’s value to a
change in the state function and the sensitivity of the state
function to a change in the control variables. As can be
shown, this sensitivity of the state function with respect to
a change in the control variables can be obtained as the solu-
tion of the adjoint problem, being defined by the adjoint Z��
of the differential operator Z . The adjoint operator can be
defined by

�
Z�� %	�
�*����� %-Z � �
� (9)

for each � P�� 6 Z�� ;�� � and � P�� 6 Z ;�� � , whenever
the domain � 6 Z ; of Z is ’large enough’. (If Z is non linear,
i.e., it depends on the state of the system, or it depends in a
direct way on the control variables, an additional term quan-
tifies this contribution to the sensitivity of the functional to
the control variables. This is a continuous analogue to the
product rule.)

In most practical applications the main problem is so
complex that it has to be tackled numerically: First, a dis-
cretization scheme for the main equations is chosen, and
then a numerical model for integration of the discrete equa-
tions is coded. Since, in general, the adjoint problem is as
complex as the main problem, it is solved numerically as
well. The resulting implementation is called adjoint model.
The solution of the adjoint problem is then used to evaluate
the discretized expression of the sensitivity.

2. Besides the cumbersome analysis that for a particu-
lar problem is necessary to rigorously define Z and Z � and
to derive an expression for the sensitivity, approach 1 has a
distinct disadvantage: There is no unique choice of a dis-
cretization scheme for the adjoint problem, and a priori it is
not clear which choice will result in a discrete version that

is adjoint to the discretization of the main problem. In par-
ticular, the appropriate discretization scheme for the adjoint
problem can be different from that for the main problem,
i.e., as operators, building the adjoint and discretization do
not interchange [Griewank, 1989]. Owing to inappropriate
discretization, thus the sensitivity computed by the adjoint
model differs from the sensitivity of the numerical model of
the main problem. As is examined by, e.g., Shah [1991] and
remarked by Talagrand and Courtier [1987], therefore it is
favorable to develop the adjoint model from the discretiza-
tion of the main problem: The adjoint operator is derived
for the discretized form of Z , operating in a finite dimen-
sional space. Implicitly, this adjoint operator also defines
the discretization scheme for the adjoint problem. As in the
approach 1, eventually an adjoint model solving the discrete
adjoint problem has to be implemented, and the solution is
used to evaluate the discretized expression of the sensitivity.
This approach has been applied to weather forecast mod-
els, e.g., by Talagrand and Courtier [1987], Courtier and
Talagrand [1987] or to ocean circulation models, e.g., by
Thacker and Long [1988].

3. A more direct approach for adjoint code generation
uses the code of the main model as starting point: The com-
position of the main model with some functionals character-
izing the quantities of interest is considered as an algorithm
mapping a finite representation of the control variables onto
the values of the functionals. As described below, by apply-
ing systematically the chain rule of differentiation to every
single step in the model code in reverse mode, a model for
the sensitivity is constructed. In the terminology introduced
above, this model is the composition of the adjoint model
with the implementation of the functional’s first derivative.
Using the model code as starting point for adjoint code con-
struction, however, this distinction is no longer important,
so that we slightly change our terminology and refer to this
composition as adjoint model in the following. In section 3.2
we demonstrate that essentially, the adjoint model performs
subsequent multiplications in reverse order of the adjoints
of the Jacobians corresponding to the single steps in the
model code. The main advantage of this approach is that,
on the level of the single steps in the model code, the ad-
joints can be constructed according to simple rules [Gier-
ing and Kaminski, 1998]. Thus this task can be handled
automatically [Juedes, 1991] (R. Giering, 1997, available
at http://puddle.mit.edu/ � ralf/tamc) without any knowledge
of the nature of the main problem and the system that is
integrated by the model. For applications to geosciences,
see, e.g., Talagrand [1991] and Thacker [1991]. The con-
cept of applying systematically the chain rule to differenti-
ate a numerical code is known as ”differentiation of algo-
rithms,” ”computational differentiation,” or ”automatic dif-
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ferentiation” [Griewank, 1989], and adjoint code construc-
tion is merely one of its applications. For an overview, see,
e.g., Iri [1991] or Corliss and Rall [1996].

3.2. Differentiation of Algorithms

In the following we describe how a function that is com-
posed of elementary functions can be differentiated by use
of the chain rule. When talking about elementary functions
the reader should have in mind the single statements of the
TM2 code, although the same mathematical formalism can
be applied, if the elementary functions are considered to be
related, e.g., to basic physical processes such as advection or
diffusion. For automatic generation of derivative computing
code, however, it is crucial that the Jacobians of the single
steps can be constructed according to simple rules. Let� 5 Q " R � Q " �� �� �
be a function that is composed

� � ����� >E> > �	� ) � 5
�
 � � ) �

�
(10)

of 
 differentiable elementary functions:� �
5 Q " R�������� Q " R�� 6�� � = % > > > %�
 ;� �

4 ) �� � �
>

Even if
�

is not given symbolically, i.e., by a formula, but
by a numerical algorithm such as TM2, the Jacobian matrix
representing the first derivative of

�
� � 6 � ;� � 5 �

���
�

� � �"!�#%$� #	� >E> >
� � �"!&#'$� #	(...

...� �*) !&#%$� #	� >E> >
� �+) !�#%$� #	(

,.--
/

can be computed using the chain rule of differentiation from
the Jacobians of the elementary functions� � 6 � ;� � 0000 # � #21 �� � �� � � 4 ) 0004365 ��� � 3 5 ���1 ��> > > �

� � )� �+7 00098 1�:�; 1 > (11)

We have used� �
7 5 � � � � > > > �	� ) 6 � 7 ; 6 ==< � < 
 ;

to denote the intermediate results, through which the deriva-
tives of the elementary functions depend on

� 7 .

For evaluating the multiple matrix product in (11) there
are many possibilities. Depending on the size of the elemen-
tary matrices they differ in the number of operations that
have to be performed and in the size of the matrices contain-
ing the intermediate derivatives. For an algorithm tackling
the evaluation of this multiple matrix product, the most ob-
vious strategies are the forward and the reverse mode, where
forward and reverse refer to the order of operations imposed
by the composition: Operating in forward mode, the product
is evaluated from the right to the left, which means that the
product is computed in the same order as for evaluation of

�
in (10). Alternatively, the product can be evaluated from the
left to the right, which is denoted as reverse mode, because
the order is opposite to the order for evaluation of

�
in (10).

In this evaluation procedure, the intermediate matrices at the�
th step contain � 6 � � � > > > �	� ) ; 6 � ;� � 00 ;6:�; 1

in forward mode and� 6 � � � >E> > �	� �
'*) ; 6 �

�
;� � �
000 8 � : 8 �1

in reverse mode. Thus forward and reverse refer to the direc-
tions in which the intermediate derivatives are propagated by
the respective algorithm for evaluation of (11). According to
(11), the forward mode step corresponding to the

�
th step of

the composition (10) is� 6 � � � > > > �	� ) ; 6 � ;� � 00 ;>:�; 1 �� � �
� � �

4 ) 0000 8 �����": 8 �4���1 �
� 6 � �

4 ) � > >E> �	� ) ; 6 � ;� � 00 ;>:�; 1 >
(12)

With respect to the standard inner product the adjoint ma-
trix of � � 6 � ;� �
is simply the transposed matrix. Thus (11) can be written in
the form� � 6 � ;� � 0000 # � #?1

� �� � )� �@7 000 8 1 :�; 1
� �$>E> > �

� � �� � � 4 ) 000�3>5 ��� � 3 5 ���1 � > (13)

This means, the reverse mode step corresponding to the
�
th

step of the composition (10) is performed by multiplying the
intermediate matrix� 6 � � � >E> > �	� �

'*) ; 6 �
�
;� � �
000 8 � : 8 �1
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Forward mode

x x x
x x x
x x x
x x x

x x
x x
x x

x x x x x
x x x x x

x x x=
x x x
x x x
x x x

x x x x x
x x x x x
x x x x x

x x x=
x x x x x
x x x x x
x x x x x

x x x x x=

Reverse mode

x x x
x x x
x x x
x x x

x x
x x
x x

x x x x x
x x x x x

x x x x x=

x x x
x x
x x
x x

x x x x x
x x x x x=

x x x x x x x
x x x x x=

Figure 1. Example of forward and reverse modes illustrating
the differences in the storage requirements and in the number
of operations: The same matrix product, whose result has
one row and five columns, is evaluated in forward mode,
i.e., from right to left (top), and in reverse mode, i.e., from
left to right (bottom). In forward mode the matrices holding
the intermediate results have five columns, while in reverse
mode they have one row.

by the adjoint of � � �
� � �

4 ) 0000 8 ����� : 8 �����1 %

which yields� 6 � � � >E> > �	� �
; 6 �

�
4 ) ;� � �

4 ) 0000 8 ����� : 8 �4���1 �
�� � �

� � �
4 ) 0000 8 ����� : 8 �����1 �

�
� 6 � � � >E> > �	� �

'*) ; 6 �
�
;� � �
000 8 � : 8 �1

�
>

(14)

Therefore the reverse mode is also called adjoint mode.

As illustrated by Figure 1 for a scalar valued function
( � � =

) of �B� �
variables, in the forward mode all ma-

trices containing intermediate derivatives have � columns,
whereas in the reverse mode they have � rows. Therefore, in

forward mode the number of operations as well as the stor-
age requirements are proportional to � , whereas in reverse
mode both is proportional to � .

In general, the intermediate results
� �
7 of the preceding

step are required for the evaluation of the derivatives of the
elementary functions (see (11)). While in the forward mode
the intermediate results are required in the same order as
computed, in the reverse mode they are required in reverse
order. Thus providing of the intermediate results is more
complicated in reverse mode and in general causes extra op-
erations or extra storage requirements [Giering and Kamin-
ski, 1998], which has to be taken into account when compar-
ing the efficiency of reverse and forward mode for a particu-
lar function

�
(see section 3.3).

The Tangent linear and Adjoint Model Compiler (R. Gier-
ing, 1997, available at http://puddle.mit.edu/ � ralf/tamc) is a
tool that automatically generates code for evaluation of first
derivatives. The TAMC is a source to source translator that
accepts essentially FORTRAN 77 code for the evaluation of
a function and generates code for evaluation of its Jacobian.
As requested by the user, the generated code operates ei-
ther in forward or reverse mode. The schemes for forward
or reverse mode are practically implementations of the gen-
eral rules (12) and (14), respectively. Of course, this imple-
mentation is not unique: The scheme chosen for the TAMC
is based on a few principles [Giering and Kaminski, 1998],
which essentially have been suggested by Talagrand [1991].
Rigorous application of these principles yields rules for dif-
ferentiating the single statements a code is composed of.
These simple rules can be applied automatically by source
to source translators like TAMC or Odyssée [Rostaing et al.,
1993].

3.3. Generation of the Adjoint Model

By the TAMC the model adjoint to TM2 in the standard
setup has been generated automatically. To ensure an accu-
rate interpretation by the TAMC the structure of the model
code had to be slightly rearranged.

As is obvious from (14), the intermediate results
� �
7

(required variables) have to be provided for the adjoint
run. Unlike many other adjoint applications in meteorol-
ogy and oceanography, in transport models many of the
required variables quantify the dynamic state of the atmo-
sphere. These required variables do not depend on the con-
trol variables, i.e., the sources and sinks. In the terminol-
ogy of adjoint code construction they are called passive vari-
ables. Hence, in principle, they could be computed and
stored once and then be read during each adjoint run. Since
this would require disk space of about 1.3 gigawords (GW),
(at least on a Cray C90) it is more efficient to recompute the
required values during every adjoint run. In order to reduce



KAMINSKI ET AL.: Adjoint Model and Jacobian Matrix 9

these storage requirements during the adjoint run it is favor-
able to include a so-called checkpointing scheme [Griewank,
1992] in the adjoint model: In a first integration of TM2 the
state of the model is saved at checkpoints in weekly intervals
on disk. During the adjoint run the checkpoints are used as
starting points for recomputation and storing of required val-
ues for the whole week in a second file. Finally, for the ad-
joint computations these stored values are read. The storage
requirements are reduced considerably at the cost of an ad-
ditional model integration. This checkpointing scheme also
is implemented automatically by the TAMC.

In Table 1 the adjoint model’s CPU and memory require-
ments are compared to computation of the Jacobian by dif-
ferential quotients. The numbers refer to a Cray C90 su-
percomputer. For the standard setup with ��W � =

, the ad-
joint model needs the CPU time of about 3.5 TM2 runs and
about the same amount of memory as TM2. The Jacobian
for 27 stations, including the stations in Figure 2, has been
computed in two separate runs in order not to allocate more
memory than 32 megawords (MW). In total, the CPU time
of about 85 TM2 runs has been used. While the memory re-
quirements are proportional to the number of output values
� W , the CPU time per value decreases with increasing � W for
two reasons: First, for our function Z , the cost of providing
the required variables is independent of �*W . Thus, for higher
��W , there is no additional cost. Second, by the TAMC the
adjoint code is arranged to achieve a vector lengths of � W ;
for vectorized loops of the transport model, advanced com-
pilers are even capable to enlarge vector dimensions by a
factor of � W . On a vector machine like the C90, this yields a
considerable speedup, because the computations for the in-
dividual vector components are independent of each other.
For the same reason, a similar speedup could be achieved
on a parallel machine. In contrast, from the difference of
runs with one and two tracers, one can estimate a CPU time
of 7460 TM2 runs for the computation of the full Jacobian
by an ��� tracer run. By rearranging the TM2 code, so that
the tracer dimension ��� is used for vectorization instead of
the dimension of the zonal grid (36), a speedup could be
achieved, too. Yet this speedup is limited by the maximum
vector length, which is 128 on the C90. In addition, this
multitracer run would need more memory than is available
on most machines (429 MW), so that it had to be split up to
a couple of runs with less tracers. For a linear function like
Z , the Jacobian that is computed by differential quotients is
free from truncation error. In that respect, the forward mode
is not superior to differential quotients. Nor is the forward
mode superior in terms of computational efficiency, because
it includes an additional function evaluation, so that for small
� � the forward mode would be slightly slower, and for large
� � the efficiency would be comparable to differential quo-

tients. Hence there is no need to include explicit numbers
for the forward mode in this comparison. The last row in
Table 1 explores the feasibility of the computation of a Ja-
cobian for an observational network of 90 stations, which is
about the extend of the Globalview CO � monitoring network
[Globalview–CO2, 1996]. By scaling up the CPU time for
an 18 station run (row 6) row 7 quantifies the requirements
for computation of the Jacobian in reverse mode in 5 sepa-
rate runs. Even for this extended network the cost of about
275 forward runs or 14.3 hours is small compared to the cost
of about 20 days for the forward approach.

4. The Matrix Representation

In section 2 we have defined a standard setup of our trans-
port model to simulate the quasi-stationary seasonal cycle at
particular observational sites. Section 3 then has introduced
the adjoint of the transport model and has discussed the com-
putational benefit of applying the adjoint to derive a repre-
sentation of the model by its Jacobian matrix Z , which in
the work of Kaminski et al. [this issue] is used for an inver-
sion of the atmospheric transport of CO � . Besides its use for
inversions, the Jacobian by itself is an interesting object to
study, because it quantifies how the transport relates a given
flux field to the quasi-stationary seasonal cycle at the obser-
vational sites. In this section, we first visualize and discuss
parts of the full Jacobian and then give examples of collaps-
ing the matrix to compress or summarize its information.
Also we demonstrate how the matrix is applied to analyze
transport model runs by decomposing the simulated values
with respect to the contributions of the fluxes into all grid
cells in all months.

4.1. Visualization of Atmospheric Transport: Potential
Impact

In the following we discuss the Jacobian matrix Z derived
for � Y � � �

locations of stations from the NOAA/CMDL
global observational network (see Figure 2 and Table 2),
whose data we use for our inversion example of Kaminski
et al. [this issue]. A row of Z consists of the sensitivity of
the modeled concentration at a particular station and month
to the fluxes into each of the �A� � �$� ���
	

TM2 surface
layer grid cells at each month. The columns of Z quantify
the impact of a particular flux component on the modeled
concentration at each station and month. The sensitivity or
the impact are defined as the change in the concentration
resulting from a change in the flux, which formally is repre-
sented by the derivative of the concentration with respect to
the flux and has the unit of a concentration divided by a flux.

For comparison of the respective entries, direct visualiza-
tion of the Jacobian is not very instructive: According to the



KAMINSKI ET AL.: Adjoint Model and Jacobian Matrix 10

Table 1. Comparison of Efficiency in the Computation of the Jacobian Between Adjoint Model and Differential Quotients
for a Cray C90

Run CPU Time, Memory,
s h/d Relative MW Relative

1 forward 1 tracer 186 1 0.933 1
2 forward 2 tracers 320 1.72 0.974 1.04

10368 tracers (from 1 and 2) 1389364 16 d 7460 429.090 460
10368

�

1 tracer 1928448 22 d 10368 0.933 1
3 adjoint, � W � 1 660 3.5 1.092 1.2
4 adjoint, � W � 24 (2 stations) 3045 16.4 3.999 4.3
5 adjoint, �8WO� 108 (9 stations) 5560 30 15.797 16.9
6 adjoint, � W � 216 (18 stations) 10260 55 30.962 33.2

sum of 5 and 6 15820 4.4 h 85
7 5 times 6 (90 stations) 51300 14.3 h 275 30.962 33.2

Columns: number and description of run, CPU time in seconds and multiples of the CPU time for a
simple forward run, memory requirements in MW and in multiples of the memory required by a simple
forward run. The numbers for 10368 tracers are computed from scaling up the differences between the 1
and 2 tracer runs (the forward model does not vectorize over the tracer dimension). The given numbers
for a 90 station Jacobian correspond to a computation by five runs with 18 stations per run.

Figure 2. Twenty-five NOAA/CMDL monitoring stations whose observational data we use in our inversion example.

definition of our standard setup, the single entries quantify
the concentration change that results from switching on a
uniform flux for a particular month in a particular grid cell in
every year of the four year simulation period. Hence, in ad-

dition to the properties of the atmospheric transport model,
the matrix also reflects features determined by our setup,
such as (1) the lengths of the spin up period, (2) whether the
month the concentration refers to is earlier in the year than
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Table 2. Twenty-Five NOAA/CMDL Monitoring Stations Whose Observational Data We Use in Our Inversion Example

Identifier Description Country Latitude Longitude Elevation

ALT Alert, N.W.T. Canada 82 27’N 62 31’W 210
MBC Mould Bay, N.W.T. Canada 76 14’N 119 20’W 15
BRW Point Barrow, Alaska United States 71 19’N 156 36’W 11
STM Ocean Station ”M” Norway 66 00’N 2 00’E 6
CBA Cold Bay, Alaska United States 55 12’N 162 43’W 25
SHM Shemya Island United States 52 43’N 174 06’E 40
CMO Cape Meares, Oregon United States 45 29’N 124 00’W 30
AZR Azores (Terceira Island) Portugal 38 45’N 27 05’W 30
NWR Niwot Ridge, Colorado United States 40 03’N 105 38’W 3749
MID Sand Island, Midway United States 28 13’N 177 22’W 4
KEY Key Biscayne, Florida United States 24 40’N 80 12’W 3
MLO Mauna Loa, Hawaii United States 19 32’N 155 35’W 3397
KUM Cape Kumukahi, Hawaii United States 19 31’N 154 49’W 3
GMI Guam U.S. Territory 13 26’N 144 47’E 2
AVI St. Croix, Virgin Islands United States 17 45’N 64 45 W 3
RPB Ragged Point Barbados 13 10’N 59 26’W 3
CHR Christmas Island Kiribati 2 00’N 157 19’W 3
SEY Seychelles (Mahe Island) Seychelles 4 40’S 55 10’E 3
ASC Ascension Island United Kingdom 7 55’S 14 25’W 54
SMO American Samoa U.S. Territory 14 15’S 170 34’W 30
AMS Amsterdam Island France 37 57’S 77 32’E 150
CGO Cape Grim, Tasmania Australia 40 41’S 144 41’E 94
PSA Palmer Station (Anvers Island) Antarctica 64 55’S 64 00’W 10
HBA Halley Bay Antarctica 75 40’S 25 30’W 10
SPO Amundsen Scott (South Pole) Antarctica 89 59’S 24 48’W 2810
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the month the flux refers to, and (3) the lengths of the month
the flux refers to. Feature (3) can be easily removed from the
Jacobian by changing units from concentration per flux to
concentration per yearly emission rate, i.e., ppmv GtC 4 ) a.
To get rid of features (1) and (2), rather than the Jacobian it-
self, we plot its difference from an appropriate reference ma-
trix. In (7), we already made use of such a reference matrix,
namely the matrix whose entries quantify the changes in the
global linear trend contributions to the respective concentra-
tion components that result from changes of the respective
flux components. With this reference matrix, we get rid of
feature (1) but not of feature (2), because the entries in the
matrix are the same regardless of the month the flux belongs
to. Yet this choice of a reference matrix is appropriate to
visualize a column of the Jacobian, because within one col-
umn of Z all entries refer to the same flux component, and
its impact on all the concentration components can be com-
pared. With respect to this reference matrix, plots of the
columns, according to (7), show the impact of a particular
flux component on the periodic contributions to each of the
concentration components.

For visualization of the Jacobian’s rows as in Figures 3 –
5 discussed below, in contrast, we choose a reference matrix
that removes features (1) and (2), namely the Jacobian that
our standard setup would yield, if global mixing was instan-
taneous. In other words, the reference matrix is derived from
a one box model that behaves like TM2 with infinitely fast
diffusion, i.e., it also uses 0 � 0.476 ppmv GtC 4 ) to con-
vert mass into concentrations. Since a row corresponds to
the concentration at a particular station and month, it yields
12 global maps, each of which is quantifying this concen-
tration’s sensitivity to the mean surface exchange fluxes in
a particular month at any location on the globe. A posi-
tive value on the map for any month quantifies a sensitiv-
ity to an emission at the corresponding grid cell and the re-
spective months that is enhanced compared to instantaneous
global mixing: a value of � ppmv GtC 4 ) y 4 ) means that
a yearly emission of 1 GtC, which is uniformly distributed
over the respective grid cell and month, in a TM2 run yields
a monthly mean concentration at the station and month that
is enhanced by � ppmv. Note that for stations in the lower
model layers, the average of these sensitivities with respect
to all flux components, in general, will be higher than zero.
This is simply because we deal with surface fluxes, while
our reference is derived for a homogeneous distribution in
the entire atmosphere. In contrast, for observations in the
stratosphere this average would be lower than zero.

As an example, in Figure 3 the second half of the ma-
trix row corresponding to the November mean concentration
at the station on Ascension Island (ASC: 7

�

55’S, 14
�

25’W,
54 m) is displayed. November emissions in the ocean re-

gion ranging from the south of Africa (30
�

south) to the
equator at the longitude of ASC would have the highest im-
pact (more than 10 ppmv GtC 4 ) ). Going one month back
to October emissions, the area of highest impact is shifting
to the east, now covering the southern half of Africa. Still
the impact of this region is at least as high as for Novem-
ber emissions. Interestingly, at the latitude of ASC in the
Pacific Ocean and part of the Indian Ocean, the impact of
emissions in November or even in October is smaller than
for instantaneous global mixing. This demonstrates the dis-
advantages of using the mean concentration at a monitoring
station in a two-dimensional inversion to constrain the fluxes
at a latitude band around the respective station on a monthly
timescale. In the maps quantifying the impact of emissions
earlier in the year (not shown), the predominant structure
is a division between both hemispheres. Compared to in-
stantaneous global mixing the impact of the northern hemi-
sphere is about 0.5 ppmv GtC 4 ) smaller, whereas the impact
of the southern hemisphere is larger by the same amount.
This feature is clearly caused by the relatively slow inter-
hemispheric mixing across the Hadley cell. Quantitatively,
the fact that the impact of October emissions north of 30

�

is more than 0.5 ppmv GtC 4 ) smaller as compared to in-
stantaneous global mixing shows that not even the emissions
of the previous year have been transported to ASC at an
amount comparable to instantaneous global mixing (0.476
ppmv GtC 4 ) ). This reflects the fact that in TM2 the trans-
port needs more than one year to achieve a globally well
mixed atmosphere (see section 2).

For comparison, maps for two stations and months are
displayed, where the shape of the areas with high poten-
tial impact compared to instantaneous global mixing is more
zonal than for ASC. Figure 4 shows the potential impact of
emissions in the first half of the year to the May mean con-
centration at the station on the mountain Mauna Loa, Hawaii
(MLO: 19

�

32’N, 155
�

35’W, 3397 m). The potential impact
is highest for May emissions around of the station. The ab-
solute peak values are lower than those for ASC (less than 10
ppmv GtC 4 ) ) because the emission is diluted before reach-
ing the mountain location. As another example, in Figure 5
we display the impact of emissions in the first half of the
year on the June mean concentration at the Point Barrow
station in Alaska (BRW: 66

�

00’N, 2
�

00’E, 6 m). Here the
area of highest impact is well focussed near the station with
high peak values of up to 70 ppmv GtC 4 ) . The information
on potential impact can be compressed on the flux side, or
on the concentration side, or both: Prescribing the shape of
the seasonal cycle of the emissions into every surface grid
cell, each matrix row can be projected to a single map of the
potential impact of a yearly flux on the respective monthly
mean concentration. On the concentration side, for all fea-
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Figure 3. The second half of the Jacobian’s row corresponding to the November mean concentration at the station on Ascen-
sion Island (ASC: 7

�

55’S, 14
�

25’W, 54 m). For our cyclostationary model setup, each global map shows the concentration’s
sensitivity to a periodical yearly emission, which is uniformly distributed over a particular month. Reference is instantaneous
global mixing, i.e., negative numbers quantify sensitivities that are reduced owing to transport. The cross indicates the station
location.

tures that can be derived from the monthly mean concentra-
tions at the stations, the sensitivities with respect to monthly
or yearly emissions (in combination with prescribed tempo-
ral shape) can be easily computed from the matrix. As an
example, in Figure 6 we show the sensitivity of the annual
mean concentration at ASC, MLO, and BRW, respectively,
to fluxes that are constant in time over the whole year. Com-
pared to the monthly maps the peak of the potential impact

is lower, slightly more widespread but still in the same re-
gions. This indicates that for uniform emissions throughout
the year, at these stations the modeled concentration is not
very sensitive to the seasonality of the transport.

Another way of looking at the maps is in terms of the size
of surface areas that are ”observed” by the respective sta-
tions: On the monthly timescale all three stations are most
influenced by an area of only a few grid cells. On the annual
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Figure 4. The first half of the Jacobian’s row corresponding to the May mean concentration at the station on the mountain
Mauna Loa, Hawaii (MLO: 19

�

32’N, 155
�

35’W, 3397 m). For our cyclostationary model setup, each global map shows the
concentration’s sensitivity to a periodical yearly emission, which is uniformly distributed over a particular month. Reference
is instantaneous global mixing, i.e., negative numbers quantify sensitivities that are reduced owing to transport. The cross
indicates the station location.

timescale there are differences among the stations: While
ASC still observes only a small area, BRW is representative
for the northern high latitudes, and MLO is strongly influ-
enced by the entire northern hemisphere. When investigat-
ing a particular scientific question these transport character-
istics, of course, are merely a fraction of the features that de-
termine the importance of a monitoring location. Other fea-
tures are the specific source/sink characteristics of the tracer

of interest.

4.2. Combining Atmospheric Transport and Flux
Fields: Simulated Impact

We discussed the potential impact quantified by the Jaco-
bian. If a particular flux field � is prescribed, according to
(8) by a matrix multiplication with the Jacobian this potential
impact can be used to simulate the resulting quasi-stationary
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Figure 5. The first half of the Jacobian’s row corresponding to the June mean concentration at the Point Barrow station
in Alaska (BRW: 66

�

00’N, 2
�

00’E, 6 m). For our cyclostationary model setup, each global map shows the concentration’s
sensitivity to a periodical yearly emission, which is uniformly distributed over a particular month. Reference is instantaneous
global mixing, i.e., negative numbers quantify sensitivities that are reduced owing to transport. The cross indicates the station
location.

seasonal cycle at the station locations. Hence the Jacobian
is an extremely efficient transport model by itself. Once the
Jacobian has been computed, for the simulation of the quasi-
stationary seasonal cycle at the stations, there is no need to
run TM2 again, as long as the setup (including the location
of the stations) is still appropriate for the tracer of interest.

For an example, we employed the a posteriori CO � fluxes
inferred in an inversion of the atmospheric transport [Kamin-

ski et al., this issue]. These fluxes are the sum of the fossil
fuel component and the biospheric and oceanic components
depicted in Figure (9) of Kaminski et al. [this issue]. Fig-
ure 7 shows the simulated periodic component of the quasi-
stationary seasonal cycle at Mauna Loa, which has been
computed according to (8).

Using the matrix does not only reduce the computational
cost of a simulation to the cost of a simple matrix multipli-
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Figure 6. Collapsed Jacobian’s rows corresponding to the 12 monthly mean concentrations at the stations (a) on Ascension
Island (ASC: 7

�

55’S, 14
�

25’W, 54 m), (b) on the mountain Mauna Loa, Hawaii (MLO: 19
�

32’N, 155
�

35’W, 3397 m) and
(c) at Point Barrow in Alaska (BRW: 66

�

00’N, 2
�

00’E, 6 m). The annual mean concentration’s sensitivity to a periodical
yearly emission, which is constant in time, in our cyclostationary model setup. Reference is instantaneous global mixing, i.e.,
negative numbers quantify sensitivities that are reduced owing to transport. The cross indicates the station location.
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Figure 7. Simulated quasi-stationary seasonal cycle at Mauna Loa based on the flux field inferred in the inversion of Kaminski
et al. [this issue].

cation but also the amount of required disk space. While
the meteorological fields to drive TM2 for one year occupy
about 30 MW, the matrix just needs

�����������
	�������
��
	��
W

� �
MW. Thus, among other applications, as transport

model the Jacobian represents a valuable tool for sensitivity
tests: Knorr [1997] investigated the response of the atmo-
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spheric CO � concentration at the NOAA/CMDL stations to
exchange flux fields computed by a large number of different
formulations of his terrestrial biosphere model.

In addition to quantifying potential impact and to perform
transport simulations, by means of the Jacobian it is easy to
analyze the simulation in terms of the simulated impact of
all components of a prescribed flux vector: Writing (8) in
the form (and dropping the index qsc for convenience)

� � �
R$T�

� � ) � � � � � � % (15)

each concentration component � � is decomposed into the
contributions ��� � � 5 � � � � � � � by the respective flux compo-
nent � � . The quantity �E� � � 9 � � is then the portion of ��� result-
ing from the flux component � in the simulation and like the
potential impact can be conveniently displayed on 12 maps
per concentration component.

As an example, we analyzed the simulation of the quasi-
stationary seasonal cycle at Mauna Loa, which was based
on the flux field described above. Figure 8 shows the de-
composition of the May mean in the periodic component of
the quasi-stationary seasonal cycle, which is depicted in Fig-
ure 7. Recall that according to the definition of this periodic
component in (15), e.g., for an emission, the impact on the
trend (reference term) is subtracted from the impact quanti-
fied by the product of the emission with the respective col-
umn of the Jacobian (Jacobian term). Discussion of the maps
is complicated by the different signs of both terms, i.e., their
relative magnitude is important. On the northern hemisphere
where the station is located, in general, the reference term
is smaller than the transport term, so that the interpretation
is rather straight forward: In months where fluxes into the
atmosphere are positive, grid cells tend to have a positive
contribution to the May concentration at Mauna Loa (i.e.,
the May component in the quasi-stationary seasonal cycleat
Mauna Loa). In winter, this is the case for most of the terres-
trial grid cells, i.e., most of Asia, Europe and North Amer-
ica. In contrast, whenever there are large fluxes from the
atmosphere into the ocean or the biosphere, the respective
grid cells have a negative contribution, i.e., those fluxes re-
duce the May concentration at Mauna Loa. This is the case
for the North Atlantic sink. Of course, according to (15),
this is weighted by the effect of the transport: For exam-
ple, although the absolute value of the May fluxes into the
North Atlantic is smaller than that of the terrestrial uptake in
June at the temperate latitudes over Asia, the contribution of
the North Atlantic sink in May to the May concentration at
Mauna Loa is much larger. These different weighting fac-
tors are reflected in Figure 4. In contrast, for fluxes on the
southern (and remote) hemisphere, the reference term in (15)
tends to dominate the Jacobian term, which is small due to

slow interhemispheric exchange. For this reason sources in
South America and the southern part of Africa have a neg-
ative impact on the May concentration at Mauna Loa: Such
a source flattens the north-south gradient, and the reduction
of the annual mean part of the periodic component at Mauna
Loa (due to subtraction of the trend) overcompensates the
increase due to the Jacobian term. On the other hand, for
example in December, the fluxes from the atmosphere into
the Southern Ocean have a positive contribution to the May
concentration at Mauna Loa: The north south gradient is in-
creased, so that the annual mean in the periodic component
at MLO increases, too. And this increase overcompensates
the decrease of the May mean concentration due to the Jaco-
bian term.

Again, as for the potential impact, the information can be
compressed on the flux side, the concentration side, or both
sides. For example, in the work of Kaminski et al. [1996] we
analyzed a TM2 run using the fluxes derived by a biosphere
model [SDBM, Knorr and Heimann, 1995]: On the flux side
we prescribed the shape of the SDBM fluxes, and on the con-
centration side we projected on the simulated seasonal cycle.
We thus decomposed the magnitude of the modeled seasonal
cycle at particular observational sites with respect to the con-
tributions by the respective grid cells, which yields one map
per station. For this study we had to run the adjoint model
once per station. By means of the Jacobian this kind of de-
composition is easily performed without the adjoint model.

5. Concluding Remarks

We demonstrated the benefit of the adjoint approach for
the computation of the Jacobian matrix representing a three
dimensional atmospheric transport model. This matrix maps
flux fields on the model’s approximately 8

�

by 10
�

horizon-
tal grid onto the simulated concentrations at 27 observational
sites. For this setup the computational efficiency of the ad-
joint was about 100 times higher as compared to conven-
tional forward modeling.

The adjoint model has been automatically generated from
the transport model code by the TAMC. To ensure an accu-
rate interpretation, prior to invoking the TAMC, the code had
to be prepared and rearranged slightly. In particular con-
structs that complicate the order of execution of the state-
ments had to be replaced. Unlike the conventional use of ad-
joint models, where the adjoint model evaluates the deriva-
tive of a scalar valued cost function, which is then iteratively
minimized by an optimization algorithm, the Jacobian com-
puted here is the derivative of a linear vector valued function.

As a linear function mapping fluxes on concentrations
at observational sites, the Jacobian contains all information
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Figure 8. Decomposition of the May component in the quasi-stationary seasonal cycle at Mauna Loa based on the flux field
inferred in the inversion of Kaminski et al. [this issue]. The respective maps quantify the contributions from the fluxes at all
months and grid cells in per cent. (a) fluxes from January to June; (b) fluxes from July to December. Negative values mean
that the fluxes in the respective months and grid cells have a negative contribution, i.e., increasing those fluxes would yield a
reduced May component in the quasi-stationary seasonal cycle at Mauna Loa.
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about the transport. Hence, once the Jacobian is available
for a particular setup, it can replace the transport model: To
simulate the concentrations at the station locations, instead
of running the model for a given flux field, this flux field can
be multiplied by the Jacobian, which is much more efficient
in terms of both memory and CPU requirements.

Plots of the rows of the Jacobian provide information
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about the potential impact of emissions at every location on
the globe and in every month on the modeled concentration
at a particular station and month. On the other hand, com-
bining the Jacobian to a prescribed flux field, a simulated
concentration value at a particular station and month can be
analyzed: This value can be decomposed into the contribu-
tions of the fluxes in the respective grid cells and months.

Such maps of potential or simulated impact could provide
valuable information about differences in the transport sim-
ulated by different models. In that respect the reverse ap-
proach could complement the maps of concentration fields
simulated by running prescribed flux fields forward through
different models. The reverse approach requires that adjoints
of the respective transport models be available. Since trans-
port models typically are implemented in Fortran, we sug-
gest the use of automatic differentiation tools such as the
TAMC.

The Jacobian contains all necessary transport informa-
tion to infer the magnitude of cyclostationary CO � surface
exchange fluxes together with their uncertainties from ob-
served concentrations at the station locations and prior esti-
mates of the fluxes. In a companion paper [Kaminski et al.,
this issue], we present such an inversion study using atmo-
spheric CO � observations of the period from January 1981
to January 1987 from the NOAA/CMDL program [Conway
et al., 1994; Globalview–CO2, 1996]. Our inversion con-
trasts the conventional use of adjoint models for optimiza-
tion, where a (potentially expensive) computation of second
derivatives is necessary to obtain estimates of the uncertain-
ties in the unknown variables.
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