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Applying TAF to generate efficient derivative code of Fortran 77-95 programs

This paper features FastOpt’s automatic differentiation (AD) tool Transformation of Algorithms in Fortran (TAF),
a source to source translator for programs written in Fortran 77-95. TAF and its predecessor TAMC have a long
record of successful large-scale applications. Here we give an overview on how TAF approaches typical challenges of
AD such as handling of badly written program code, of large memory/disk requirements, of iterative solvers or of
black boz routines. We also point out, where the user is required to prepare his program code prior to invoking TAF.

1. Introduction

FastOpt is a relatively young company which specialises in optimisation/inverse modelling, sensitivity analysis
and the likes. This paper features Transformation of Algorithms in Fortran (TAF, [1]), our tool for Automatic Dif-
ferentiation (AD, see [2]) of Fortran 77-95 programs. TAF operates as a source-to-source transformation tool: from
a given Fortran program, which evaluates a function, TAF generates a second Fortran program, which evaluates the
function’s derivative.

In brief (see further [2, 3]), the basic approach of a source-to-source translator is as follows: First the (po-
tentially long and complex) function code is decomposed into elementary functions. Each elementary function is
then differentiated, which yields a so- called local Jacobian. The local Jacobians are multiplied, which, according
to the chain rule, yields the derivative of the composite function. For the particular principles and rules that are
implemented in TAF we refer to Talagrand [3] or Giering and Kaminski [4]. The generated code yields derivatives,
which are exact up to machine precision. This is in contrast to approximating the derivative by divided differences
of function evaluations, which is the traditional (and inaccurate) alternative to AD.

Applying the chain rule results in evaluating a product of the local Jacobians. If evaluation works in the order
given by the function, the derivative code is referred to as operating in forward (or tangent linear) mode. If it works
in the opposite order, the derivative code is referred to as operating in reverse (or adjoint) mode. Of course, both
modes yield the same result. Depending on the ratio of the function’s independent (input) to dependent (output)
variables, there are large differences in the required computational effort, though. Similar to the finite difference
approximation, the computational resources needed in forward mode increase with the number of independent vari-
ables. In reverse mode, they are roughly proportional to the number of dependent variables. For instance, the reverse
mode, i.e. an adjoint model, is particularly well-suited for optimisation/control theory applications: It efficiently
provides the gradient of a scalar valued objective function with respect to an arbitrary number of independent
(control) variables to a gradient-based algorithm for minimisation.

TAF generates both forward and reverse mode derivative codes, i.e. tangent linear and adjoint models. Code that
evaluates second derivatives (Hessian code) is generated by applying TAF twice. TAF and its predecessor TAMC
have a long record of successful applications to large-scale models in the various fields of numerical modelling.
Selected applications are presented by Giering et al. [5] and Giering and Kaminski [6]. Recent and relatively
complete lists are available at www.FastOpt.com and at www.autodiff.org, together with information on further AD
tools. For a scalar valued function, TAF generated adjoint models require only about 2-5 times the CPU time of a
function evaluation.

An AD tool is challenged by a number of complexities, especially when it tackles the reverse mode. In the following
sections we list a number of typical challenges, which TAF faces when handling these large-scale applications. We
also include examples of code preparations we suggest to users prior to invoking TAF. Finally we present some
conclusions.

2. Badly written code

TAF often is confronted with non-standard Fortran, i.e. language extensions of particular compilers. TAF
can handle many of these but certainly does fail from time to time, in which case the user needs to remove the
non-standard constructs from the function code.
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TAF needs to analyse the control flow structure of the code. In addition, in reverse mode, the control flow must
be reversed. Ordinary branches or loops don’t pose any problem to TAF, see, e.g., [7] on how those are handled.
Structures which repeatedly use statements like cycle, exit, and goto can, however, have extremely complex
control flows. Some of these structures can be analysed and normalised by TAF, i.e. they are replaced by higher-
level constructs. As an example of what we regard as bad code, take the following hidden if then else structure,
which is expressed by two gotos:

c compute sqrt(x), but avoid x = 0
subroutine mysqrt( n, x, y )
implicit none
integer n
real x(n), y, epsilon
parameter (epsilon=0.0001)
if ( abs(x(1)) .1t. epsilon) goto 100
y = sqrt (x(1))
goto 200

100 continue
print*,’ Attention: x close to zero (sqrt not differentiable)’
y =0.

200 continue
end

TAF first normalises this to an explicit if then else structure and then differentiates it (with declarations removed
to save space):

subroutine admysqrt( n, x, adx, ady )
. declarations removed by hand ...

if (abs(x(1)) .1lt. epsilon) then

else
adx (1) = adx(1)+ady*(1./(2.%sqrt(x(1))))
ady = 0.

endif

end

The next bit of code shows a hidden do while structure that is expressed by two gotos.

C for given x find y such that 0 = sqrt(y) - y + x
subroutine model( n, x, y )
implicit none
integer n, i, imax
real x(n), y, yold, epsilon
parameter (epsilon=0.0001, imax=100)

y = 2.

i=1
100 continue

yold =y

y = sqrt(y) + x(1)
if (i .gt. imax) goto 200
if ( abs(y-yold) .gt. epsilon) goto 100
return
200 continue
print*,’bad luck: no convergence’
END

TAF cannot yet normalise this structure and reports an error. The user needs to modify the function code, e.g. by
including the loop’s termination condition into its entry condition:

100 continue
i=1i+1



yold =y

y = sqrt(y) + x(1)

if ( abs(y-yold) .gt. epsilon .and. i .lt. imax) goto 100
if (i .eq. imax) print*, ’bad luck: no convergence’

END

In this form, TAF can normalise the structure to a do while structure and differentiate it. A better and much
clearer solution, however, would be to manually replace this type of structure altogether by an explicit do while
structure.

3. Large disk/memory requirements

To evaluate a local Jacobian, the derivative code typically requires values of particular variables (required
values [7]) from the function evaluation. In adjoint code, required values can be provided by recomputation or
by storing them during a preceding function evaluation and reading them back in during the derivative evaluation
[7]. To generate most efficient recomputations, TAF uses a much refined version of the Efficient Recomputation
Algorithm (ERA [8]). Furthermore, the user can trigger generation of a storing/reading scheme by inserting TAF
store directives in the function code. Via an argument of the TAF init directive the user can choose, whether
to store the values on dynamic or static memory or on disk. This gives large flexibility in trading-off CPU time
against memory/disk resources. Furthermore, generation of a checkpointing scheme [9] can be easily triggered [6].
Implementation of a checkpointing scheme considerably reduces the required memory/disk space at the cost of
almost an additional function evaluation.

4. Tterative solvers

It is common to use iterative solvers for differential or algebraic equations. TAF by default generates adjoint
code, which uses the values of the required variables from each iteration in the function evaluation. Christianson
[10, 11] has derived an alternative adjoint formulation, which uses only the values from the final iteration in the
function evaluation. In TAF generation of this memory/disk-efficient alternative adjoint code can be triggered by
inserting a directive in the function code [7, 5].

5. Inaccessible code

Often library routines are called in the function evaluation, but their code is not available. TAF, however,
needs the data flow information for the entire function code. By providing the necessary information via TAF flow
directives, the user can enable TAF to handle these black box routines. Let’s suppose, for example, that the code
of the subroutine mysqrt from section that is called for the following function evaluation was not available:

c$taf subroutine mysqrt input = 1, 2

c$taf subroutine mysqrt output = 3
c$taf subroutine mysqrt depend = 1, 2
c$taf subroutine mysqrt active = 2, 3
c$taf subroutine mysqrt adname = admysqrt

subroutine model( n, x, y )
implicit none
integer n

real x(m), y
call mysqrt(n,x,y)
end

The above set of TAF flow directives provides all necessary information. The numbers in the first 4 directives refer
to the position of variables in the subroutine’s argument list. The first two determine input and output variables,
the next the required variables, and the fourth the active variables, i.e. those for which derivative information has
to be propagated by the derivative code. The last one sets the name of the corresponding adjoint subroutine to
admysqrt. The generated adjoint code then calls admysqrt (again with declarations removed to save space):

subroutine admodel( n, x, adx, y, ady )
. declarations removed by hand ...

call admysqrt( n,x,adx,ady )

end
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The user has to add hand written code for admysqrt to the generated derivative code. TAF flow directives may
also be used for routines of which the code is submitted to TAF. In this case, TAF ignores the routine’s source code
and uses the flow information. We exploit this feature whenever we want to use a routines’s hand written derivative
code instead of generating it. This is useful, e.g. to exploit self adjointness [5].

6. Further recommendations

In addition to the above mentioned user interventions and preparations, we would like to give a few more
recommendations to TAF users: In time integrations often values such as boundary conditions are read in every
time step from a sequential file. For generating the corresponding adjoint these should be replaced by direct access
files, which allow access in arbitrary order. Also initialisations should be split off the function code, because they can
complicate the dependency analysis. Furthermore, the allocation/deallocation structure of Fortran 90 allocatable
arrays should be kept simple.

7. Conclusions

We have presented a number of typical challenges that an AD tool must face and have shown how TAF
approaches these challenges. We have provided examples of situations in which the user needs to modify the
function code or should insert TAF directives. A large number of successful applications demonstrate that the user
can well handle all typical complexities with some preparation of the function code. Since we are rapidly progressing
in TAF development, the number of required preparations is constantly decreasing. We are also going to transfer
the TAF concepts from Fortran to C and build the AD tool Transformation of Algorithms in C (TAC).
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