
Automatic Differentiation of FLOWer and

MUGRIDO

Ralf Giering1, Thomas Kaminski1, Bernhard Eisfeld2, Nicolas Gauger2,
Jochen Raddatz2, and Lars Reimer3

1 FastOpt, Hamburg (http://FastOpt.com)
2 DLR, Inst. for Aerodynamics and Flow Technology, Braunschweig

(http://DLR.de)
3 Mechanics Department (LFM), RWTH Aachen

(http://www.lufmech.rwth-aachen.de)

Giering et al.

Automatic Differentiation of FLOWer and MUGRIDO

1 Introduction

This chapter addresses the efficient computation of accurate sensitivity infor-
mation in the aerodynamic design process. Mathematically, this sensitivity
information is expressed by a derivative of a function that is defined via the
numerical model of the aerodynamic system. This function links a number
of independent variables to relevant target quantities such as lift, drag, or
pitching moment. Figure 1 illustrates such a function definition via the pro-
cess chain for a wing simulation. Independent parameters are the coordinates
of the wing contours (see, e.g., [56]). In an automated design procedure, the
space of wing coordinates can then be searched for a point that yields the opti-
mum of the target quantity. The sensitivity of the target quantity with respect
to the wing coordinates enables the use of powerful gradient algorithms for
optimisation.

Fig. 1. Aerodynamic design chain. Oval boxes denote data and rectangular boxes
numerical operations

For extracting such sensitivity information there are two major approaches.
The first approach, often referred to as continuous approach, applies perturba-

2

tion theory [38] to the equations underlying the numerical model. This results
in linearised equations, which are discretised and then numerically integrated
by the so-called tangent code. The computational cost of running the tan-
gent code is roughly proportional to the number of independent variables. For
most problems this number is much larger than that of the target quantities.
For computationally demanding numerical models, sensitivity computation is
then only feasible by means of adjoint code. In the continuous approach, ad-
joint code numerically integrates the discretisation of the adjoint version of
the linearised model equations [39]. Lacking adjoint code, the inverse problem
can only be tackled by reducing the complexity of the numerical model or the
number of independent variables. The reduction of the design space is typi-
cally achieved via a parametrisation of the contour with only a few parameters.
This would extend the chain of figure 1 by prepending the parametrisation,
and the parameters would take the role of the independent variables and span
the reduced design space. This regularisation of the inverse problem will typi-
cally yield a suboptimal solution, as the solution is to some degree prescribed
by the parametrisation [55, 37].

The alternative route to sensitivity information applies Automatic Differ-
entiation (AD, [27]). directly to the code of the original model: To generate
the derivative code (tangent or adjoint code), the model code is decomposed
into elementary functions (such as +,−, sin(·)), which (more or less) corre-
spond to the individual statements in the code. These elementary functions
are differentiated; this derivative is called local Jacobian. According to the
chain rule, the product of the local Jacobians yields the derivative of the com-
posite function. As opposed to derivative approximation by finite differences
(also known as numerical differentiation), AD provides sensitivity information
that is accurate within round-off error.

Like the continuous approach, AD can construct both tangent and ad-
joint codes. The tangent code uses the order in which the original model code
evaluates the statements to evaluate the product of their local Jacobians. The
adjoint code performs this evaluation in reverse order. In AD terminology, the
tangent code operates in forward mode, and the adjoint code operates in re-
verse mode. Similar to the finite difference approximation, the computational
resources needed in forward mode increase with the number of independent
variables. In reverse mode, they are roughly proportional to the number of
target quantities, but virtually independent of the number of independent
variables.

The continuous approach involves the choice of a discretisation scheme for
the adjoint equations. Typically it is not trivial to identify the scheme that
yields, on the discretised level, the adjoint of the tangent. Any other scheme
risks to produce sensitivity information that is inconsistent with the original
code. This is of particular concern [50], when the adjoint sensitivity is used
by an optimisation algorithm together with the target quantities provided by
the original code.

3

AD can be carried out by an AD tool (for an overview see
http://www.autodiff.org), but it is also common to apply the basic princi-
ples of derivative code construction [52, 19] by hand (see, e.g., [61, 58, 26]).
The present paper describes AD of two Fortran codes that cover the design
chain in figure 1: the DLR’s RANS solver FLOWer [44], including a num-
ber of turbulence models, and the RWTH’s flow grid deformator MUGRIDO
[7, 33, 45]. For a number of CFD codes in Fortran, tangent (e.g. [9, 35, 16, 8, 5])
adjoint (e.g. [43]) and Hessian (e.g. [53]) codes have been generated by the
AD tool ADIFOR [6], and adjoint codes (e.g. [41, 31]) by the AD tool Odyssée
[46] and its successor TAPENADE [30]. Cusdin and Müller [13] compare the
performance of tangent and adjoint versions simple CFD codes that can be
handled by three AD tools.

For the present application we use the commercial AD tool Transforma-
tion of Algorithms in Fortran (TAF [19]). TAF and its predecessor TAMC
generated tangent, adjoint, and Hessian codes, for a long list of applications
(over 150 papers), primarily for large codes from Earth Sciences (up to 300,000
lines of Fortran excluding comments). For the feasibility of most of these ap-
plications, flexibility and computational efficiency of the derivative code are
crucial and were, thus, in the focus of TAF development. Applications to CFD
codes started this decade and include design of aircraft [54], turbo machinery
[29], or cabin ventilation [42] as well as aeroacoustics [12]. Industrial CFD ap-
plications encompass design of race cars and aircraft. Generation of efficient
second derivative code [20] for an airfoil configuration has been demonstrated
by [24].

Use of an AD tool such as TAF is also favourable regarding the mainte-
nance of the derivative code for models that are under development. Once
the model code is TAF-compliant, the maintenance of the derivative code can
be automated: At least after small changes of the model, the corresponding
adjoint, tangent, and Hessian code can generally be updated automatically.
TAF-compliance means that the derivative code is both correct and efficient as
generated by TAF without any user intervention after the generation process.
The effort of achieving this compliance typically pays off rapidly via the au-
tomated derivative code maintenance. For examples of this new concept that
uses TAF as integrated component of the modelling system see [1, 28, 36, 42].

The remainder of this chapter is arranged as follows. Section 2 introduces
the AD tool TAF and is followed by the descriptions of the AD process for
FLOWer in section 3 and for MUGRIDO in section 4. Finally, section 5 draws
conclusions.

2 TAF

Transformation of Algorithms in Fortran (TAF, [19]) is an AD tool for pro-
grammes written in Fortran 77-95. TAF operates as a source-to-source trans-
formation tool. That is, from a given Fortran programme that evaluates a

4

function, TAF generates a second Fortran programme that evaluates the func-
tion’s derivative (gradient or Jacobian). TAF generates both forward and re-
verse mode derivative codes, i.e. tangent and adjoint models. In each mode,
TAF can generate code to evaluate Jacobian times vector products or the
full Jacobian. Second order derivative (Hessian) code is generated by invoking
TAF twice. Typically, the most efficient strategy of obtaining second deriva-
tive information for a scalar-valued target quantity is the so-called forward
over reverse mode of AD: TAF is invoked to generate the adjoint code, which
afterwards is resubmitted to TAF to be differentiated in forward mode [20].
TAF is accessed via a secure shell connection to the FastOpt servers.

Another TAF feature [23] is Automatic Sparsity Detection (ASD), i.e.
efficient determination of the sparsity structure of the Jacobian. This sparsity
information can be important, because the Jacobian’s sparsity pattern can
be exploited to render the evaluation of the Jacobian more efficient (see, e.g.,
[36] for an application). In a CFD context ASD is of particular interest for
evaluation of the sparse Jacobian representing the linearisation of a single
solver iteration [14].

Recent TAF enhancements include basic support of parallel programming,
namely the Message Passing Interface (MPI) and OpenMP (see [25, 32] for
large-scale applications) as well as a mode for generation of a divided adjoint,
which allows interruption and restart of the adjoint model run (see [32] for
details).

TAF performs an analysis of the data flow in the code to be differentiated,
which determines the active/passive variables. Active variables [4, 19] are all
variables that depend on the independent variables and have influence on the
target quantities. All non-active variables are called passive variables. Deriva-
tive information needs only be propagated and stored for active variables.

Required variables are all variables whose values are needed to evaluate
the local Jacobian. For example, in integrations of non-linear systems the
trajectory is part of the required variables. Their values can be provided by
recomputation or by storing them on disk or in memory in an initial integra-
tion and reading them in the course of the adjoint integration. Most efficient
adjoint code uses a combination of both [19, 21]. By default TAF inserts re-
computations; automatic generation of a store/read scheme is triggered by
TAF store directives. TAF can also generate a so-called checkpointing scheme
[27] for particularly efficient use of disk/memory at the cost of an additional
model integration.

For converging iterations, Christianson [10, 11] suggests an efficient alter-
native adjoint (based on the implicit function theorem), which only uses the
required values from the last iteration and, thus, compared to the general
adjoint considerably reduces the resources required for storing/recomputing.
TAF implements automatic generation of the Christianson scheme, triggered
by a TAF loop directive [24]. This is another feature of high interest in aero-
dynamic simulations, as these often address steady problems.

5

In case there are pieces of source code missing (black box routines), e.g.
library routines, the user can provide the relevant data flow information via
TAF flow directives [22, 24]. TAF flow directives are also applied to include
available derivative code into TAF-generated code, which is useful, e.g., in
case of self-adjoint routines, as demonstrated by [34, 25].

3 Automatic Differentiation of FLOWer

FLOWer is a Reynolds-averaged Navier-Stokes (RANS) solver [44] developed
and maintained by DLR and used by its scientific and industrial partners. Ex-
cluding comments, the FLOWer code comprises over 100,000 lines of Fortran
77 (see Tab. 1) and can be run in a large variety of configurations [2], with a
suite of algebraic, one-, and two-equation turbulence models [15]. For an Eu-
ler configuration, an adjoint version derived via the continuous approach [17]
was available to the project. The initial strategy was to couple TAF-generated
adjoint turbulence code with the continuous adjoint of the FLOWer core. In
the course of the project, however, it turned out to be favourable to apply
TAF to the entire FLOWer code.

Table 1. Performance of FLOWer’s derivative code

Component # of code lines memory CPU rel. accuracy

Primal 166,000 1 1
TLM 268,000 ≈ 2 ≈ 3 ≈ 10−8

ADM steady 310,000 2–3 6–10 ≈ 10−5

ADM general 310,000 variable <10 ≈ 10−8

When rendering the FLOWer code TAF-compliant, we met a number of
challenges. One is the use of large super-arrays for an implementation of
(pseudo) dynamic memory management, a typical feature of legacy codes de-
signed in the pre-Fortran-90 period. Another challenge is the implementation
of an error-exit procedure via goto statements in every routine, which consid-
erably complicates the programme’s control flow structure. For the adjoint, an
efficient store/read scheme has been devised. From the TAF-compliant solver
code, a tangent and two adjoint versions were generated. The tangent code is
mainly an intermediate result and is used for verification of the two adjoints.
The first adjoint version (general adjoint) uses a flexible checkpointing scheme
(see section 2) that stores required values on disk and in memory. It provides
the exact gradient for steady and unsteady computations. The second ver-
sion of the adjoint (steady adjoint) assumes convergence of the solver to a
steady flow (see section 2) and stores this flow in memory. As an example of
TAF-generated code, the Appendix shows the adjoint of FLOWer’s LEA k-ω
routine [47].

6

Fig. 2. Comparison of the derivative evaluated by the adjoint to finite difference
approximations for a range of finite difference intervals.

The generated code has been verified for a 2d test configuration simulating
the turbulent flow around a NACA 12 airfoil with 2000 iterations on a single
fine grid. We evaluate the derivative of lift with respect to angle of attack. Fig-
ure 2 shows the relative difference of the general adjoint to the finite difference
approximations for a range of finite difference intervals. Since we are running
the evaluation in double precision with about 16 significant digits, a relative
accuracy of the best finite difference approximation in the order of 10−8 is all
we can expect. Lower accuracies usually indicate errors in the derivative code.
The inaccuracy of the steady adjoint (see Tab. 1) is probably due to insuf-
ficient convergence of the primal integration. The relative difference between
tangent and standard adjoint is in the order of 10−12.

Tab. 1 lists the performances of the tangent and both adjoint versions
for the test configuration with k-ω turbulence scheme [59, 60]. Owing to the
flexibility of the checkpointing scheme (see section 2) the memory requirement
for the general adjoint is variable. The CPU time is listed in multiples of
primal solver integrations, and refers to the evaluation of the target function
plus its derivative. For the adjoints this derivative refers to the full gradient,
and for the tangent this refers to a directional derivative. CPU times vary
with platform, compiler, and compiler options.

7

In addition to the Euler configuration, We have verified the derivative for
the following five turbulence models:

• Baldwin and Lomax [3]
• Wilcox k-ω [59, 60]
• LLR k-ω [48]
• SST k-ω [40]
• LEA k-ω [47]

Curiously, for the one equation model of Spallart and Allmaras [51] the gen-
erated adjoint code produced a wrong gradient. We did not look into details
but expect the problem is not too hard to identify and correct.

Fig. 3. Sensitivities of lift with respect to angle of attack computed by the adjoint
of FLOWer with Wilcox [59, 60] turbulence formulation.

As an example of an adjoint sensitivity evaluation, figure 3 displays the
sensitivity of lift with respect to angle of attack over the number of iterations in
the adjoint solver. The computation uses the turbulence formulation according
to Wilcox [59, 60].

8

4 Automatic Differentiation of MUGRIDO

Table 2. Performance of FLOWer’s derivative code

Component # of code lines memory CPU rel. accuracy

Primal 25,000 1.0 1.0
TLM scalar 42,800 2.1 1.0 ≈ 10−9

TLM 5 columns 43,400 3.4 1.2 ≈ 10−9

TLM 10 columns 43,400 5.8 1.5 ≈ 10−9

TLM 15 columns 43,400 8.3 2.2 ≈ 10−9

The Multiblock Grid Deformation Tool (MUGRIDO, [7, 33, 45]), was de-
veloped at RWTH Aachen. It can handle block-structured grid topologies,
especially those used by FLOWer, and thus is well-suited for the design chain
depicted in figure 1. MUGRIDO generates a fictitious beam framework by
modelling block boundaries of the flow grid and a given percentage of ad-
ditional grid lines as massless Timoshenko beams. After applying the Finite
Element method the resulting linear system of equations is solved using the
SPARSKIT utility for sparse matrices [49]. The right hand side to this system
is supplied by deflections of the wetted surface relative to the undeformed
grid. A well-shaped flow grid is finally reconstructed from the deformed beam
framework by transfinite interpolation. MUGRIDO is written entirely in For-
tran 77, and its coding concept is similar to FLOWer’s, with the same super-
array stucture for pseudo dynamic memory managment.

To demonstrate the applicability of TAF to a grid deformation tool, we
rendered MUGRIDO TAF-compliant and generated its tangent in a fully au-
tomated procedure. For more efficient use of the tangent in the design chain,
in addition to the standard (scalar) tangent, we also provided a vector mode
version of the tangent, which simultaneously evaluates multiple directional
derivatives. Tab. 2 lists the performance for the scalar tangent and the vec-
tor tangent for different numbers of directional derivatives. The CPU time
refers to evaluation of the function plus the derivative. Increasing the num-
ber of directional derivatives does only marginally increase the CPU time.
The agreement with the best finite difference approximation (last column) is
excellent.

5 Conclusions

We demonstrated the feasibility of adjoint code generation for the CFD code
FLOWer including a number of advanced turbulence models. The adjoint
has been generated in two forms, one for steady simulations and a general
one, which is suitable, e.g., for time-dependent simulations. The generated

9

code is ready for applications, without any posterior modifications. The TAF-
compliant FLOWer version is an excellent basis for further development of
FLOWer, minimising the effort for updating the adjoint. The generated ad-
joint is efficient both in terms of memory usage and CPU time.

We also generated tangent code of the grid deformation tool MUGRIDO.
The tangent is available in two forms, a scalar version for evaluation of a single
directional derivate and a vector version for evaluation of multiple directional
derivatives. The derivative code is highly efficient.

Many of the TAF algorithms can be ported without or with little modifi-
cation to other programming languages. TAC++ [57] is the equivalent to TAF
for differentiation of codes written in C(++). For a routine in the simplified
Euler version of the DLR’s RANS solver TAU [18], the tool generates highly
efficient adjoint code in a fully automated procedure [57].

Appendix: Adjoint Code Example

Below we show the adjoint of LEA k-ω model [47], as an example of adjoint
code generated by TAF. The declaration block, comment and blank lines
are removed, to save space. Adjoint variables are denoted by the suffix ad.
The adjoint subroutine takes the sensitivity of fmuet (held in fmuet ad) with
respect to the target variable (e.g. lift) as input and propagates it back to
the sensitivities of r (held in r ad) and shearvar) (held in shearvar ad with
respect to the target variable. Note the recomputations before the nested loop
and at the beginning of its kernel. For details in the generated code consult
[19].

subroutine turb26_ad(r, r_ad, swshear, shearvar, shearvar_ad,
$fmuet_ad)

... (declarations, comments removed)
help_h = epsma*1.e+8
if (help_h .lt. 9.9999999999999e-31) then

tolepsma = 9.9999999999999e-31
else

tolepsma = help_h
endif

twothird = 2./3.
fothird = 4./3.
cmu = 0.09

c3 = 1.25
c4 = 0.45

do k = k2, 2, -1
do j = j2, 2, -1
do i = i2, 2, -1

rho = r(i,j,k,1)
help_j = r(i,j,k,it1)/rho

if (help_j .ge. 0) then
help_i = help_j

else
help_i = -help_j

endif

ka = help_i+tolepsma
help_l = r(i,j,k,it2)/rho

if (help_l .ge. 0) then
help_k = help_l

else

10

help_k = -help_l

endif
om = help_k+tolepsma

s = shearvar(i,j,k,1)/cmu/om
st = shearvar(i,j,k,2)/cmu/om
help_m = 1.5*st**1.7/(17.1+1.875*st**1.7)

if (0.4 .lt. help_m) then
c2 = help_m

else
c2 = 0.4

endif

arg1 = sqrt(0.8*s*s+0.2*st*st)
arg2 = st*st/4.6225

if (arg2 .lt. 1000.) then
fact1 = 1.+0.95*(1.-tanh(arg2))

else
fact1 = 1.+0.95

endif

gr = 1./(1.6*fact1+st*st/(4.+1.83*arg1))
beta1 = (fothird-c2)*gr*0.5

beta2 = (2.-c4)*gr*0.5
beta3 = (2.-c3)*gr
xi2 = 0.5*beta2*beta2*s*s

eta2 = 0.125*beta3*beta3*st*st
cmust = beta1/(1.-twothird*eta2+2.*xi2)

if (0.12 .gt. cmust) then
help_n = cmust

else
help_n = 0.12

endif

if (0.04 .lt. help_n) then
cmust = help_n

else
cmust = 0.04

endif

cmust_ad = cmust_ad+fmuet_ad(i,j,k)*(rho*ka/om/cmu)
ka_ad = ka_ad+fmuet_ad(i,j,k)*(rho*cmust/om/cmu)

om_ad = om_ad-fmuet_ad(i,j,k)*(rho*ka*cmust/(om*om)/cmu)
rho_ad = rho_ad+fmuet_ad(i,j,k)*(ka*cmust/om/cmu)

fmuet_ad(i,j,k) = 0.
if (0.04 .lt. help_n) then

help_n_ad = help_n_ad+cmust_ad

cmust_ad = 0.
else

cmust_ad = 0.
endif
cmust = beta1/(1.-twothird*eta2+2.*xi2)

if (0.12 .gt. cmust) then
cmust_ad = cmust_ad+help_n_ad

help_n_ad = 0.
else

help_n_ad = 0.
endif
beta1_ad = beta1_ad+cmust_ad/(1.-twothird*eta2+2.*xi2)

eta2_ad = eta2_ad+cmust_ad*(beta1*twothird/((1.-twothird*
$eta2+2.*xi2)*(1.-twothird*eta2+2.*xi2)))

xi2_ad = xi2_ad-cmust_ad*(2*beta1/((1.-twothird*eta2+2.*xi2)
$*(1.-twothird*eta2+2.*xi2)))

cmust_ad = 0.

beta3_ad = beta3_ad+0.25*eta2_ad*beta3*st*st
st_ad = st_ad+0.25*eta2_ad*beta3*beta3*st

eta2_ad = 0.
beta2_ad = beta2_ad+xi2_ad*beta2*s*s

s_ad = s_ad+xi2_ad*beta2*beta2*s
xi2_ad = 0.
gr_ad = gr_ad+beta3_ad*(2.-c3)

beta3_ad = 0.

11

gr_ad = gr_ad+0.5*beta2_ad*(2.-c4)

beta2_ad = 0.
c2_ad = c2_ad-0.5*beta1_ad*gr

gr_ad = gr_ad+0.5*beta1_ad*(fothird-c2)
beta1_ad = 0.
arg1_ad = arg1_ad+gr_ad*(1.*(1.83*st*st/((4.+1.83*arg1)*(4.+

$1.83*arg1)))/((1.6*fact1+st*st/(4.+1.83*arg1))*(1.6*fact1+st*st/(
$4.+1.83*arg1))))

fact1_ad = fact1_ad-gr_ad*(1.6/((1.6*fact1+st*st/(4.+1.83*
$arg1))*(1.6*fact1+st*st/(4.+1.83*arg1))))

st_ad = st_ad-gr_ad*(1.*(2*st/(4.+1.83*arg1))/((1.6*fact1+

$st*st/(4.+1.83*arg1))*(1.6*fact1+st*st/(4.+1.83*arg1))))
gr_ad = 0.

if (arg2 .lt. 1000.) then
arg2_ad = arg2_ad-0.95*fact1_ad*(1./cosh(arg2)**2)

fact1_ad = 0.
else

fact1_ad = 0.

endif
st_ad = st_ad+arg2_ad*(2*st/4.6225)

arg2_ad = 0.
s_ad = s_ad+1.6*arg1_ad*1./(2.*sqrt(0.8*s*s+0.2*st*st))*s
st_ad = st_ad+0.4*arg1_ad*1./(2.*sqrt(0.8*s*s+0.2*st*st))*st

arg1_ad = 0.
if (0.4 .lt. help_m) then

help_m_ad = help_m_ad+c2_ad
c2_ad = 0.

else
c2_ad = 0.

endif

st_ad = st_ad+help_m_ad*(2.55*st**0.7/(17.1+1.875*st**1.7)-
$3.1875*1.5*st**1.7*st**0.7/((17.1+1.875*st**1.7)*(17.1+1.875*st**

$1.7)))
help_m_ad = 0.
om_ad = om_ad-st_ad*(shearvar(i,j,k,2)/cmu/(om*om))

shearvar_ad(i,j,k,2) = shearvar_ad(i,j,k,2)+st_ad*(1/cmu/om)
st_ad = 0.

om_ad = om_ad-s_ad*(shearvar(i,j,k,1)/cmu/(om*om))
shearvar_ad(i,j,k,1) = shearvar_ad(i,j,k,1)+s_ad*(1/cmu/om)

s_ad = 0.
help_k_ad = help_k_ad+om_ad
om_ad = 0.

if (help_l .ge. 0) then
help_l_ad = help_l_ad+help_k_ad

help_k_ad = 0.
else

help_l_ad = help_l_ad-help_k_ad

help_k_ad = 0.
endif

r_ad(i,j,k,it2) = r_ad(i,j,k,it2)+help_l_ad/rho
rho_ad = rho_ad-help_l_ad*(r(i,j,k,it2)/(rho*rho))

help_l_ad = 0.
help_i_ad = help_i_ad+ka_ad
ka_ad = 0.

if (help_j .ge. 0) then
help_j_ad = help_j_ad+help_i_ad

help_i_ad = 0.
else

help_j_ad = help_j_ad-help_i_ad

help_i_ad = 0.
endif

r_ad(i,j,k,it1) = r_ad(i,j,k,it1)+help_j_ad/rho
rho_ad = rho_ad-help_j_ad*(r(i,j,k,it1)/(rho*rho))

help_j_ad = 0.
r_ad(i,j,k,1) = r_ad(i,j,k,1)+rho_ad
rho_ad = 0.

end do

12

end do

end do
end subroutine turb26_ad

References

1. Adcroft, A., Campin, J.M., Heimbach, P., Hill, C., Marshall, J.: The MITgcm.
Online documentation, Massachusetts Institute of Technology, USA (2002)

2. Aumann, P., Bartelheimer, W., Bleecke, H., Eisfeld, J., Lieser, J., Heinrich, R.,
Kroll, N., Kuntz, M., Monsen, E., Raddatz, J., Reisch, U., Roll, B.: FLOWer
Installation and USER Handbook Release 116. Tech. Rep. MEGAFLOW-1001,
DLR (2000)

3. Baldwin, B., Lomax, H.: Thin-layer approximation and algebraic model for sep-
arated turbulent flows. IAAA Paper 1978-0257, AIAA, Reston Va, USA (1978)

4. Bischof, C., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Automatic differ-
entiation of Fortran 77 programs. IEEE Computational Science & Engineering
3(3), 18–32 (1996)

5. Bischof, C.H., Bücker, H.M., Lang, B., Rasch, A., Slusanschi, E.: Efficient and
accurate derivatives for a software process chain in airfoil shape optimization.
Tech. Rep. RWTH-CS-SC-02-06, Institute for Scientific Computing, Aachen
University of Technology, Aachen (2002)

6. Bischof, C.H., Carle, A., Corliss, G.F., Griewank, A., Hovland, P.D.: ADIFOR:
Generating derivative codes from Fortran programs. Scientific Programming 1,
11–29 (1992)

7. Boucke, A.: Kopplungswerkzeuge für aeroelastische simulationen. Ph.D. thesis,
RWTH Aachen (2003)

8. Bücker, H.M., Lang, B., Rasch, A., Bischof, C.H.: Computation of sensitiv-
ity information for aircraft design by automatic differentiation. In: P.M.A.
Sloot, C.J.K. Tan, J.J. Dongarra, A.G. Hoekstra (eds.) Computational Science –
ICCS 2002, Proceedings of the International Conference on Computational Sci-
ence, Amsterdam, The Netherlands, April 21–24, 2002. Part II, Lecture Notes

in Computer Science, vol. 2330, pp. 1069–1076. Springer, Berlin (2002)
9. Carle, A., Green, L., Bischof, C.H., Newman, P.: Applications of automatic dif-

ferentiation in CFD. In: Proceedings of the 25th AIAA Fluid Dynamics Confer-
ence, AIAA Paper 94-2197. American Institute of Aeronautics and Astronautics
(1994)

10. Christianson, B.: Reverse accumulation and attractive fixed points. Optimiza-
tion Methods and Software 3, 311–326 (1994)

11. Christianson, B.: Reverse accumulation and implicit functions. Optimization
Methods and Software 9(4), 307–322 (1998)

12. Collis, S.S., Ghayour, K., Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: To-
wards Adjoint-Based Methods for Aeroacoustic Control. IAAA Paper 2001-
0821, AIAA, Reston Va, USA (2001)

13. Cusdin, P., Müller, J.D.: Improving the performance of code generated by auto-
matic differentiation. Tech. Rep. QUB-SAE-03-04, QUB School of Aeronautical
Engineering (2003)

14. Dwight et al., R.: Development of Adjoint Methods for Hybrid RANS Solver
TAU. In: this issue. Springer (2008)

13

15. Eisfeld, B.: Turbulence Models in FLOWer. In: J.K. Kroll Norbert; Fassbender
(ed.) MEGAFLOW- Numerical Flow Simulation for Aircraft Design, Notes on

Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89, pp. 63–77.
Springer Verlag (2005)

16. Forth, S.A., Evans, T.P.: Aerofoil Optimisation via AD of a Multigrid Cell-
Vertex Euler Flow Solver. In: G. Corliss, C. Faure, A. Griewank, L. Hascoët,
U. Naumann (eds.) Automatic Differentiation: From Simulation to Optimiza-
tion, Computer and Information Science, chap. 17, pp. 153–160. Springer, New
York (2001)

17. Gauger, N.: Das Adjungiertenverfahren in der aerodynamischen Formopti-
mierung. Ph.D. thesis, TU Braunschweig (2004)

18. Gerhold, T.: Overview of the hybrid rans code tau. In: J.K. Kroll Norbert; Fass-
bender (ed.) MEGAFLOW- Numerical Flow Simulation for Aircraft Design,
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 89, pp.
81 – 92. Springer Verlag (2005)

19. Giering, R., Kaminski, T.: Recipes for Adjoint Code Construction. ACM Trans.
Math. Software 24(4), 437–474 (1998)

20. Giering, R., Kaminski, T.: Using TAMC to generate efficient adjoint code: Com-
parison of automatically generated code for evaluation of first and second order
derivatives to hand written code from the minpack-2 collection. In: C. Faure
(ed.) Automatic Differentiation for Adjoint Code Generation, pp. 31–37. INRIA,
Sophia Antipolis, France (1998)

21. Giering, R., Kaminski, T.: Recomputations in reverse mode AD. In: G. Corliss,
A. Griewank, C. Fauré, L. Hascoet, U. Naumann (eds.) Automatic Differenti-
ation of Algorithms: From Simulation to Optimization, chap. 33, pp. 283–291.
Springer Verlag, Heidelberg (2002)

22. Giering, R., Kaminski, T.: Applying TAF to generate efficient derivative code
of Fortran 77-95 programs. PAMM 2(1), 54–57 (2003)

23. Giering, R., Kaminski, T.: Automatic sparsity detetection implemented as
soruce-to-source transformation. In: V.N. Alexandrov, G.D. van Albada, P.M.A.
Sloot, J. Dongarra (eds.) Computational Science – ICCS 2006, Lecture Notes in

Computer Science, vol. 3394, pp. 591–598. Springer, Heidelberg (2006)
24. Giering, R., Kaminski, T., Slawig, T.: Generating Efficient Derivative Code

with TAF: Adjoint and Tangent Linear Euler Flow Around an Airfoil. Future
Generation Computer Systems 21(8), 1345–1355 (2005)

25. Giering, R., Kaminski, T., Todling, R., Errico, R., Gelaro, R., Winslow, N.: Gen-
erating tangent linear and adjoint versions of NASA/GMAO’s Fortran-90 global
weather forecast model. In: H.M. Bücker, G. Corliss, P. Hovland, U. Naumann,
B. Norris (eds.) Automatic Differentiation: Applications, Theory, and Tools,
Lecture Notes in Computational Science and Engineering. Springer (2005)

26. Giles, M., Duta, M., Mueller, J., Pierce, N.: Algorithm developments for discrete
adjoint methods. AIAA Journal 41(2), 198–205 (2003)

27. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optimization Methods and Software 1, 35–
54 (1992)

28. Griffies, S.M., Harrison, M.J., Pacanowski, R.C., Rosati, A.: The FMS MOM4-
beta User Guide. Tech. rep., NOAA/Geophysical Fluid Dynamics Laboratory
(2002)

29. Hall, K.C., Thomas, J.P.: Sensitivity analysis of coupled aerodynamic/structural
dynamic behavior of blade rows. Extended Abstract for the 7th National Turbine

14

Engine High Cycle Fatigue (HCF) Conference, Palm Beach Gardens, Florida,
14-17 May 2002 (2002)

30. Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technique 300,
INRIA, Sophia Antipolis (2004)

31. Hascoët, L., Vázquez, M., Dervieux, A.: Automatic differentiation for opti-
mum design, applied to sonic boom reduction. In: V. Kumar, M.L. Gavrilova,
C.J.K. Tan, P. L’Ecuyer (eds.) Computational Science and Its Applications –
ICCSA 2003, Proceedings of the International Conference on Computational
Science and its Applications, Montreal, Canada, May 18–21, 2003. Part II, Lec-

ture Notes in Computer Science, vol. 2668, pp. 85–94. Springer, Berlin (2003)
32. Heimbach, P., Hill, C., Giering, R.: An efficient exact adjoint of the parallel

MIT general circulation model, generated via automatic differentiation. Future
Generation Computer Systems 21(8), 1356–1371 (2005)

33. Hesse, M.: Entwicklung eines automatischen gitterdeformationsalgorithmus zur
stroemungsberechnung um komplexe konfiguration auf hexaeder-netzen. Ph.D.
thesis, RWTH Aachen (2006)

34. Hinze, M., Slawig, T.: Adjoint gradients compared to gradients from algorithmic
differentiation in instataneous control of the Navier-Stokes equations. Optimiza-
tion Methods & Software 18(3), 299–315 (2003)

35. Hovland, P.D., Mohammadi, B., Bischof, C.H.: Automatic differentiation of
Navier-Stokes computations. Tech. Rep. MCS-P687-0997, Argonne National
Laboratory (1997)

36. Kaminski, T., Giering, R., Scholze, M., Rayner, P., Knorr, W.: An example of an
automatic differentiation-based modelling system. In: V. Kumar, L. Gavrilova,
C.J.K. Tan, P. L’Ecuyer (eds.) Computational Science – ICCSA 2003, Interna-
tional Conference Montreal, Canada, May 2003, Proceedings, Part II, Lecture

Notes in Computer Science, vol. 2668, pp. 95–104. Springer, Berlin (2003)
37. Kaminski, T., Heimann, M.: Inverse modeling of atmospheric carbon dioxide

fluxes. Science 294(5541), 259 (2001)
38. Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1966)
39. Marchuk, G.I.: Adjoint Equations and Analysis of Complex Systems. Kluwer,

Dordrecht (1995)
40. Menter, F.: Two-equation eddy-viscosity turbulence models for engineering ap-

plications. AIAA Journal 32(8), 1598–1605 (1994)
41. Mohammadi, B., Malé, J.M., Rostaing-Schmidt, N.: Automatic differentiation

in direct and reverse modes: Application to optimum shapes design in fluid
mechanics. In: M. Berz, C.H. Bischof, G.F. Corliss, A. Griewank (eds.) Com-
putational Differentiation: Techniques, Applications, and Tools, pp. 309–318.
SIAM, Philadelphia, Penn. (1996)

42. Othmer, C., Kaminski, T., Giering, R.: Computation of topological sensitivi-
ties in fluid dynamics: Cost function versatility. In: P. Wesseling, E.O. nate,
J. Périaux (eds.) ECCOMAS CFD 2006. TU Delft (2006)

43. Park, M.A., Green, L.L., Montgomery, R.C., Raney, D.L.: Determination of
Stability and Control Derivatives Using Computational Fluid Dynamics and
Automatic Differentiation. IAAA Paper 1999-3136, AIAA, Reston Va, USA
(1999)

44. Raddatz, J., Fassbender, J.: Block Structured Navier-Stokes Solver FLOWer. In:
J.K. Kroll Norbert; Fassbender (ed.) MEGAFLOW- Numerical Flow Simulation
for Aircraft Design, Notes on Numerical Fluid Mechanics and Multidisciplinary

Design, vol. 89, pp. 27–44. Springer Verlag (2005)

15

45. Reimer, L., Hesse, M.: Kurzdokumentation des Mehrblock-
Gitterdeformationsverfahrens MUGRIDO. Tech. rep., RWTH Aachen
(2006)

46. Rostaing, N., Dalmas, S., Galligo, A.: Automatic differentiation in Odyssée.
Tellus 45A, 558–568 (1993)

47. Rung, T., Luebcke, H., Franke, M., Xue, L., Thiele, F., Fu, S.: Assessment of
explicit algebraic stress models in transonic flows. In: Proceedings of the 4th
International Symposium on Engineering Turbulence Modelling and Measure-
ments, Ajaccio, France; 24-26 May 1999, pp. 659–668 (1999)

48. Rung, T., Thiele, F.: Computational modelling of complex boundary-layer flows.
In: Proceedings of the 9th Int. Symp. on Transport Phenomena in Thermal-Fluid
Engineering, Singapore (1996)

49. Saad, Y.: Sparskit: A Basic Tool Kit for Sparse Matrix Computation (1994)
50. Shah, P.: Application of adjoint equations to estimation of parameters in dis-

tributed dynamic systems. In: A. Griewank, G.F. Corliss (eds.) Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, pp.
181–190. SIAM, Philadelphia, Penn. (1991)

51. Spallart, P., Allmaras, S.: A One-Equation Model for Aerodynamic Flows’.
AIAA Journal 92(439) (1992)

52. Talagrand, O.: The use of adjoint equations in numerical modelling of the at-
mospheric circulation. In: A. Griewank, G.F. Corliss (eds.) Automatic Differen-
tiation of Algorithms: Theory, Implementation, and Application, pp. 169–180.
SIAM, Philadelphia, Penn. (1991)

53. Taylor III, A.C., Green, L.L., Newman, P.A., Putko, M.M.: Some Advanced
Concepts in Discrete Aerodynamic Sensitivity Analysis. IAAA Paper 2001-
2529, AIAA, Reston Va, USA (2001)

54. Thomas, J.P., Hall, K.C., Dowell, E.H.: A discrete adjoint approach for modeling
unsteady aerodynamic design sensitivities. AIAA Journal. 43(9), 1931–1936
(2005)

55. Trampert, J., Snieder, R.: Model estimations biased by truncated expansions:
Possible artifacts in seismic tomography. Science 271, 1257–1260 (1996)

56. Ulbrich, S.: Optimal Control of Nonlinear Hyperbolic Conservation Laws with
Source Terms , Habilitationsschrift. Fakultät für Mathematik, Technische Uni-
versität München, Germany (2002)

57. Voßbeck, M., Giering, R., Kaminski, T.: Development and First Applications
of TAC++. In: C. Bischof, H.M. Bücker, P.D. Hovland, U. Naumann, J. Utke
(eds.) to appear in Advances in Automatic Differentiation, Lecture Notes in
Computational Science and Engineering. Springer, Berlin (2008)

58. Weaver, A., Vialard, J., Anderson, D.: Three-and Four-Dimensional Variational
Assimilation with a General Circulation Model of the Tropical Pacific Ocean.
Part I: Formulation, Internal Diagnostics, and Consistency Checks. Monthly
Weather Review 131(7), 1360–1378 (2003)

59. Wilcox, D.: Reassessment of the scale-determining equation for advanced tur-
bulence models. AIAA, Aerospace Sciences Meeting 26, 1299–1310 (1988)

60. Wilcox, D.: Turbulence Modeling for CFD, DCW Industries. Inc., La Canada,
California (1993)

61. Zhu, J., Kamachi, M.: The Role of Time Step Size in Numerical Stability of
Tangent Linear Models. Monthly Weather Review 128(5), 1562–1572 (2000)

