
Generating efficient derivative code with TAF:

Adjoint and tangent linear Euler flow around

an airfoil

R. Giering a, T. Kaminski a,∗, T. Slawig b

aFastOpt, Martinistr. 21, 20251 Hamburg, Germany
bTechnische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin,

Germany

Abstract

FastOpt’s new automatic differentiation tool TAF is applied to the two-dimensional
Navier-Stokes solver NSC2KE. For a configuration that simulates the Euler flow
around a NACA airfoil, TAF has generated the tangent linear and adjoint mod-
els as well as the second derivative (Hessian) code. Owing to TAF’s capability of
generating efficient adjoints of iterative solvers, the derivative code has a high per-
formance: Running both the solver and its adjoint requires 3.4 times as long as
running the solver only. Further examples of highly efficient tangent linear, adjoint,
and Hessian codes for large and complex three-dimensional Fortran 77-90 climate
models are listed. These examples suggest that the performance of the NSC2KE
adjoint may well be generalised to more complex three-dimensional CFD codes.
We also sketch how TAF can improve the adjoint’s performance by exploiting self-
adjointness, which is a common feature of CFD codes.

Key words:
PACS: 89.80, 02.70, 07.05.T

1 Introduction

Many applications in Computational Fluid Dynamics (CFD) do benefit from
availability of sensitivity information. Examples span the range from multi-

∗ Corresponding author.
Email addresses: Ralf.Giering@FastOpt.com (R. Giering),

Thomas.Kaminski@FastOpt.com (T. Kaminski), slawig@math.TU-Berlin.de
(T. Slawig).

Preprint submitted to Elsevier Science 2 April 2004

disciplinary shape design of airfoils or turbomachinery blades to modelling of
atmosphere or ocean dynamics [1–3]. Sensitivities quantify the impact of a
change in certain control variables on particular target quantities of interest.
In aerodynamics or aeroacoustics applications, lift and drag or kinetic energy
are examples of such target quantities, and the control variables define the
shape of the object under consideration. In atmosphere and ocean modelling,
typical target quantities are integrals of the large-scale circulation or the dif-
ference between observations and their model-simulated counterparts. Typical
control variables are the initial state, boundary values, or parameters in the
model formulation.

In some applications the sensitivity information is interpreted directly. In oth-
ers this interpretation is done by an optimisation algorithm, which iteratively
exploits sensitivity information to vary the control variables in order to im-
prove the value of the target quantity. Second-order sensitivity (Hessian) in-
formation [4] is important to speed up this search process and to analyse
robustness of the solution [5,6].

There are different strategies of deriving sensitivity information. A first ap-
proach, also called continuous approach, applies perturbation theory [7] to the
model: the model equations are linearised, discretised and the tangent linear
model is coded. For most problems, however, the desired number of control
variables is much larger than that of the target quantities. For many of these
problems, sensitivity computation is only computationally feasible via an ad-
joint formulation of the model equations [8]. The adjoint equations are then
discretised and coded, which yields the adjoint model.

An alternative strategy of obtaining sensitivity information applies Automatic
Differentiation (AD) (see [9] and references therein) directly to the code of the
model: To generate the derivative code (tangent linear or adjoint model), the
model code is decomposed into elementary functions, which more or less cor-
respond to the individual statements in the code. These elementary functions
are differentiated (this derivative is also called local Jacobian). The deriva-
tive code multiplies these local Jacobians, which, according to the chain rule,
yields the derivative of the composite function. As opposed to derivative ap-
proximation by divided differences (also known as numerical differentiation),
AD provides sensitivity information that is accurate within round-off error.

Like the continuous approach, AD can construct both tangent linear and ad-
joint models. The tangent linear model uses the order, in which the model
evaluates the statements, to evaluate the product of their Jacobians. The
adjoint model does this evaluation in reverse order. In AD terminology, the
tangent linear model operates in forward mode and the adjoint model operates
in reverse mode. Similar to the finite difference approximation, the computa-
tional resources needed in forward mode increase with the number of control

2

variables. In reverse mode, they are roughly proportional to the number of tar-
get quantities, but virtually independent of the number of control variables.
The availability of the reverse mode is another major advantage of AD over
the finite difference approximation.

Applying the continuous approach requires the choice of discretisation schemes
for both the model equations and the adjoint equations. Typically, in the dis-
cretisation step, the adjoint relation is only valid in an approximate sense.
Consequently, the sensitivity information that is provided by the adjoint code
is not fully consistent with the actual sensitivity of the model code. This
inconsistency, which does not occur when using AD, can be problematic in
an optimisation context [10]. Also, for particular applications, the rigorous
derivation of the adjoint equations that form the basis of the continuous ad-
joint approach can become a cumbersome piece of analysis [11,8]. For second
derivatives this analysis gets even more complex [4]. By contrast, using AD to
construct the adjoint code avoids this analytical effort at all.

AD can be carried out by hand or by an AD tool (e.g. [12–17] see also
http://www.autodiff.org). Applying an AD tool restricts the effort of devel-
opment and maintenance to the model itself: based on the model code, the
adjoint and tangent linear models as well as the Hessian code can be gener-
ated and maintained automatically. Especially for models under development,
this constitutes a significant advantage and calls for an AD tool as integral
component of a state-of-the-art modelling system [18,19]. By contrast, the
continuous approach requires coding and maintaining the derivative code by
hand. For CFD codes written in Fortran 77, AD-tools have been applied to
generate many tangent linear codes (e.g. [20–25]) and few adjoint (e.g. [26,28])
and Hessian (e.g. [29]) codes .

This paper introduces the relatively new AD tool Transformation of Algo-
rithms in Fortran (TAF, [16]), which handles Fortran 77-95 code. For almost
a decade, TAF’s predecessor TAMC ([17]) has been generating tangent linear
and adjoint models, as well as Hessian code of an ever increasing number of,
among others, large models of atmosphere and ocean dynamics. The perfor-
mance of the derivative code generated by TAMC and TAF is very high, which
is crucial for the feasibility of most applications.

Recently, the first TAMC and TAF applications to Navier-Stokes solvers for
shape design and instantaneous control have been completed ([30–34]). Using
an example of a two-dimensional Navier-Stokes solver (NSC2KE, [35]), this
paper describes how TAF can be applied to generate highly efficient adjoint
and tangent linear and Hessian code. As many other CFD codes, NSC2KE
uses an iterative solver. We show how to trigger generation of efficient adjoint
code for iterative solvers.

3

The remainder of this paper is organised as follows: We first give a brief in-
troduction to TAF, followed by a description of TAF’s handling of iterative
solvers. Next we describe NSC2KE and its differentiation. We then compare
the performance of NSC2KE’s derivative code to that of further TAF appli-
cations.

2 TAF overview

Transformation of Algorithms in Fortran (TAF, [16]) is an AD tool for Fortran
77-95 programs. TAF operates as a source-to-source transformation tool. That
is, from a given Fortran program, which evaluates a function, TAF generates
a second Fortran program, which evaluates the function’s derivative (gradient
or Jacobian). TAF generates both forward and reverse mode derivative codes,
i.e. tangent linear and adjoint models. In each mode TAF can generate code
to evaluate Jacobian times vector products or the full Jacobian. Second order
derivative (Hessian) code is generated by invoking TAF twice. Typically, the
most efficient strategy of obtaining second derivative information for a scalar
valued target quantity is the so-called forward over reverse mode of AD: TAF
is invoked to generate the adjoint code, which afterwards is resubmitted to
TAF to be differentiated in forward mode.

Another TAF feature is Automatic Sparsity Detection (ASD), i.e. efficient de-
termination of the sparsity structure of the Jacobian. This sparsity information
can be important, because the Jacobian’s sparsity pattern can be exploited to
render the evaluation of the Jacobian more efficient.

Recent TAF enhancements include basic support of parallel programming,
namely the Message Passing Interface (MPI) and OpenMP, as well as a mode
for generation of a divided adjoint, which allows interruption and restart of
the adjoint model run (see [36] for details).

TAF performs an analysis of the data flow in the code to be differentiated,
which determines the active/passive variables. Active variables are all vari-
ables that depend on the control variables and have influence on the target
quantities. All non active variables are called passive variables. Required vari-
ables are all variables whose values are needed to evaluate the local Jacobian.
For example, in time integrations of non-linear systems the trajectory is part
of the required variables. In case there are pieces of source code missing (black
box routines), e.g. for library routines, the user can provide the relevant data
flow information via TAF flow directives. TAF flow directives are also applied
to include available derivative code into TAF generated code, which is ex-
tremely useful, e.g., in case of self-adjoint routines. We will show an example
in section 3.

4

The current TAF version (1.4) marks an important progress as compared to
the final version of TAF’s predecessor TAMC. TAF is much more robust, since
we have identified and avoided a large number of TAMC bugs and problems.
Owing to a superior internal structure, the derivative code generation was
speeded up considerably and uses less memory: Differentiating the 100,000
lines of the MIT GCM [37] on a Linux-PC with Athlon XP 1600 MHz proces-
sor takes less than a minute. Furthermore, TAF supports the Fortran 77-95
language standard. As of May 2002, operator overloading, pointers, named
arguments and generic functions are still excepted. Also there are a few minor
restrictions in handling allocatable arrays (complex allocation/deallocation
sequence with varying size for the same array) and derived types (when a
component is itself a derived type). By contrast, TAMC is restricted to For-
tran 77 with only a few basic Fortran 90 extensions. Also, for the reverse mode,
TAF can handle more complex control flows than TAMC, which it normalises
and then differentiates [38]. Another important advantage of TAF is that it is
maintained, continuously improved, and customised for its users. For instance,
the number of exceptions and restrictions is constantly decreasing.

3 Efficient adjoints of iterative solvers

In order for adjoint code to achieve a high performance, it is essential to
provide required variables efficiently. In tangent linear code, required variables
are easily provided by integrating the model with the derivative code. For
adjoint code, it is much more complicated to provide required variables since
they are needed in reverse order as compared to the order of their computation
in the model. There are two ways of providing a required variable to an adjoint
integration:

(1) storing/reading: The required values are stored on disk or in memory
during an initial model integration and read during the adjoint integra-
tion.

(2) recomputation: The required values are recomputed by inserting a suit-
able fraction of the model code into the adjoint code.

For large-scale applications, storing/reading is usually prohibitively disk or
memory consuming. By default, TAF applies recomputation, for which it uses
an advanced version of the efficient recomputation algorithm ERA described
in [39]. For large-scale applications, however, relying only on recomputation is
too expensive in terms of CPU time. Most efficient adjoint code always uses a
balance of recomputation and storing/reading [40]. In its log file, TAF reports
any extensive recomputation. The user can easily trigger storing/reading of
selected required values by inserting TAF store directives. All necessary book-
keeping is arranged automatically by TAF. We will show examples of store

5

directives in section 4.

The CFD code NSC2KE [35] uses a two-dimensional Navier-Stokes solver that
integrates the simulated system to a steady flow. The steady flow is insensitive
to a change in the initial flow, unless the integration is terminated before
convergence. TAF cannot know at compile time whether a loop computes
a converging sequence. It will detect a data flow dependence between the
initial flow and the steady flow. In the non-linear case, this will render the
integration’s entire flow trajectory a part of the required variables, such that
it has to be provided to the adjoint integration. This slows down the adjoint
integration considerably. Christianson [41,42] came up with an alternative
adjoint formulation, which is based on the convergence assumption. Instead
of the entire flow trajectory, Christianson’s formulation only requires the final
steady flow. TAF is capable of generating the corresponding alternative adjoint
code [40]. The user triggers this by inserting a TAF iteration directive, which
declares the respective loop to be converging. The loop must be either a do or
a do-while loop. We will show an example in section 4.

Time integrations that converge to a steady state are merely one of the ap-
plications for the efficient alternative adjoint code of converging sequences.
Another common example are iterative solvers for algebraic equations.

In case of self-adjoint routines, it is highly efficient and common practise in
hand coding to call the original routine in the adjoint code. An operator A
acting in a finite dimensional Euclidean space with inner product [·, ·] is called
self-adjoint if [x, Ay] = [Ax, y] for any elements x and y of that space. A
self-adjoint routine is an implementation of a self-adjoint operator.

TAF supports the reuse of self-adjoint routines in the adjoint. Hinze and Slawig
[32] took advantage of this feature, when applying TAF to generate the ad-
joint of their suboptimal control algorithm [43] for the unsteady Navier-Stokes
equation. The state equation in every optimisation step of the algorithm is of
quasi-Stokes type and thus linear. Moreover it can be equivalently written in
a self-adjoint form. Therefore the model solver itself can be used in the adjoint
code. Generation of the proper interface in the calling unit of the adjoint code
is triggered by only 5 TAF flow directives. These flow directives provide all
information needed in TAF’s data flow analysis and adjoint code generation
phases. The quasi-Stokes solver is a subroutine with the following parameter
list:

subroutine qst(aup,agp,y,scalgp,scalup,du,yh,irw,dt,1.d0,dt,stime)

where yh is the input and y the output variable. The TAF flow directives have
the following form:

c$taf subroutine qst input = 1,2, 4,5,6,7,8,9,10,11,12

6

c$taf subroutine qst output = 3

c$taf subroutine qst active = 3, 7

c$taf subroutine qst depend = 1,2, 4,5,6, 8,9,10,11,12

c$taf subroutine qst adname = qst

As all TAF directives, the flow directives start with the string (sentinel) c$taf
in Fortran 77 or !$taf in Fortran 90-95, respectively, i.e. they are comments
for the Fortran compiler. The flow directives name the routine the flow infor-
mation refers to. The numbers in the first four directives refer to the position
of variables in the subroutine’s parameter list. The first four directives name
input variables, output variables, active variables and required variables, re-
spectively. The final directive provides the name to be used by the adjoint
subroutine call, which in the generated code looks as follows:

call qst(aup,agp,adyh_h,scalgp,scalup,du,ady,irw,dt,1.d0,dt,stime)

adyh = adyh + adyh_h

As compared to the active input and output variables yh and y the corre-
sponding adjoint variables adyh h and ady have swapped their positions in
the argument list, where adyh h is an auxiliary array. In general it is not save
to generate the call which directly has adyh as input argument, because its
value might be overwritten by qst. The positions of the required variables
remain unchanged. Note that this strategy of handling self-adjointness is re-
stricted to routines with only one active input and one active output variable.

The MITGCM uses a CG solver, which is also self-adjoint. A set of flow
directives similar to the one above has been employed to reuse the solver in
the TAF generated adjoint [44]. The performance gain via flow directives is not
restricted to self-adjoint routines. The strategy can be applied whenever the
adjoint of a routine is available in the model code (or can be easily extracted
from it). Another standard example is the Fourier Transform (or Fast Fourier
Transform, FFT), which (with proper normalisation) is a unitary operator.
This means its adjoint equals its inverse. These properties have been exploited
for the adjoint of the NASA-DAO finite volume GCM’s [45–47] FFT. With
flow directives similar to those shown above, TAF has generated an adjoint
which reuses the model’s FFT subroutine.

4 Differentiation of the Navier-Stokes Solver NSC2KE

NSC2KE is a mixed finite volume-finite element Galerkin Computational Fluid
Dynamics (CFD) model implemented in Fortran 77 ([35]). It simulates a two-
dimensional flow on an unstructured grid. The model provides the options
to solve the Euler or the full compressible Navier-Stokes equation with a k-ε

7

turbulence model. In the Euler part Roe-, Osher-, or kinematic solvers can be
chosen. The time integration is based on a fourth-order Runge-Kutta scheme.

NSC2KE has already served as a test code for other AD tools. Mohammadi
et al. [26] and Ulbrich [27] have generated adjoint versions of NSC2KE using
Odyssée [15] and TAMC [40], respectively. Hovland et al. [21] and Slawig [22]
have generated tangent linear models with ADIFOR [13]. We have generated
the tangent linear, adjoint, and Hessian codes for a configuration using the
Euler model with Roe Solver, which simulates the steady-state flow around the
wing NACA 0012. The grid has 801 vertices, 1516 triangles, and 2317 edges.
In this configuration, the model converges in less than 500 time steps. We use
the free stream Mach number and the angle of attack as control variables, and
the lift as target quantity.

We have slightly rearranged the model structure by splitting initialisation and
postprocessing off the main loop. The main loop is executed in a subroutine,
which has the control variables and the target quantity as arguments. The
structure of the main loop has been transformed to a do loop, which schemat-
ically looks as follows:

c$taf init tape1 = static, 1

c$taf loop = iteration, ua, un, pres

do ktout = 1, ktmax

kt = kt0 + ktout

c$taf store pres,reyturb,ua,t = tape1

call caldtl(dtmin,dt)

c$taf store reylam,dtl = tape1

call runge(kt0, som)

end do

As described in section 3 the TAF iteration directive right before the do loop
triggers generation of the efficient alternative adjoint loop. The variable names
ua, un, and pres comprise the flow, i.e. their values converge. The TAF init
directive triggers generation of a tape termed tape1, which is static (i.e. re-
alised in a common block) and only needs to hold 1 record of each of the vari-
ables pres,reyturb,ua, and t. Note that TAF also offers tapes in dynamic
memory or on file. tape1 records the values that the variables named in the
two TAF store directives converge to. They are required variables to the ad-
joint Runge-Kutta solver in subroutine runge. To trigger the adjoint model’s
entire storing/reading scheme there are two more tapes (two more TAF init
directives) and 14 TAF store directives not shown here. The model uses a
Newton solver for the boundary conditions, which also computes a converg-
ing sequence. After changing the loop to a do-while structure, another TAF
iteration directive triggers generation of an efficient adjoint for this Newton
solver. All tapes for storing required variables have been realised as common

8

blocks in core memory. This demonstration configuration uses about 1.5 MB
of memory. Including the tapes for the required variables, the adjoint uses
about 3.2 MB of memory and the Hessian code about 5.0 MB.

Slight rearrangements of the initial model code at a few places further helped
to support the TAF analysis: An if-then structure was extended by an else

branch, and the code for reading of restart fields was removed. In a nested
if condition construct, logical operators have been rearranged. At another
place, three if-then statements with mutually excluding conditions have been
transformed to a single if-then-else structure. These modifications helped
to save recomputations of required values and thus provided an additional
gain of efficiency. We would like to point out that these preparations affect
only a few rather obvious parts of the code, which were mostly indicated by
the TAF log file (see section 3).

At an additional location, we speeded up a slow model code fragment, which
does and undoes a scaling of the model state, by introducing a loop over the
state variables. This modification also speeded up the corresponding derivative
code.

Without comments, the model comprises 2,485 lines of Fortran code the tan-
gent linear model comprises 4,232 lines, the adjoint model 7,472 lines, and the
Hessian code 19,384 lines. The gradient computations by the tangent linear
and the adjoint model have been verified against each other and against finite
differences of model evaluations. In double precision, with a finite difference
interval of 10−8, the finite difference approximations of the angle of attack and
the Mach number are accurate to less than a permil. The Hessian code has
been verified against finite differences of the adjoint. Again, finite differences
are accurate to less than a permil.

As an example, Figure 1 depicts the sensitivity of the lift with respect to the
vertical velocity of the flow. This illustrative intermediate result of the back-
propagation of sensitivities from the lift to the control variables is a byproduct
of the adjoint integration.

5 Performance

This section presents the performance of the derivative code of NSC2KE, and,
for comparison, that of further TAF applications. Table 1 summarises the
characteristics of the respective models. The first two columns name the model
and give a reference for the model. Columns 3 and 4 indicate the number of the
model’s source code lines without comments and the programming language.
Column 5 characterises the main loop, where ”steady” refers to convergence to

9

Fig. 1. Example: Adjoint sensitivity of lift to vertical velocity of the flow. Negative
sensitivities are blue, positive sensitivities range from yellow to red

a steady (or stationary) flow and ”evolving” refers to the forward integration
of a time-evolving system. Columns 6 to 8 indicate whether the tangent linear
model (TLM), the adjoint (ADM) or Hessian code have been generated. The
last column lists the references for the derivative codes.

NSC2KE has been presented in detail in the section 4. The Navier-Stokes
solver by Hinze [43] solves a time-dependent optimisation problem for the
Navier-Stokes equation by a so-called instantaneous strategy: In every time
step, a stationary control problem is solved approximately. The generated
temporal sequence of controls turns out to be an effective suboptimal control.
The code is mostly Fortran 77 with about 450 lines for the stationary solver
(excluding the self-adjoint routine described in section 3). Carbon-BETHY is a
coupled model consisting of a reduced version of the terrestrial biosphere model
BETHY [48] and the atmospheric transport model TM2 [55] as represented by
its Jacobian matrix [56]. The Modular Ocean Model version 3 (MOM3, also
known as Bryan-Cox model or GFDL model, see [50]) and the MITGCM [37]
are models of the three-dimensional general oceanic circulation. The biomag

10

Table 1
Overview of TAF applications

Model Model Ref Lines Language Main Loop TLM ADM HES AD Ref

NSC2KE [35] 2,500 F77 steady yes yes yes

NS-Solver [43] 450 F77 steady - yes - [32]

Carbon-BETHY [48] 5,400 F90 evolving yes yes yes [49]

MOM3 [50] 50,000 F77 evolving yes yes - [51]

MITGCM [37] 100,000 F77 evolving yes yes yes [52,44]

Biomag code [53] 83 F77 - yes yes - [54]

NASA-DAO [45–47] 87,000 F90 evolving yes yes -

Table 2
Performance of TAF generated adjoint models

Model RelCPU Handling

NSC2KE 3.4 iteration directive

NS-Solver 2.0 flow directives

Carbon-BETHY 3.6 2 level checkpointing

MOM3 4.6 2 level checkpointing

MITGCM 5.5 3 level checkpointing

Biomag code 3.1

NASA-DAO 7.1 2 level checkpointing

code simulates the magnetic field from a density distribution in a human
head (see [53] for details). The NASA-DAO finite volume GCM ([45–47]), is
a full three-dimensional model of the atmospheric circulation. Adjoint and
tangent linear code have only been generated for the GCM’s dynamical core.
The Hinze solver, MOM3, and the MITGCM have been differentiated with
TAMC first, and the respective groups have since switched to TAF. In a pre-
processing step, most of the orginal MOM3 code’s Fortran 90 statements had
been replaced by corresponding Fortran 77 statements, in order to render the
code TAMC-compliant.

Table 2 shows the performance of the ADMs of the models listed in 1. All
performance ratios refer to the gradient of a scalar valued target quantity.
The first column names the model, and the second column gives the ratio of
the CPU times for an evaluation of gradient plus function to an evaluation of
the function only.

11

The third column indicates the way the main loop is handled in order to
achieve memory/disk-efficient code. A TAF iteration directive has triggered
generation of efficient alternative adjoint code for NSC2KE, and the adjoint
of the Hinze solver exploits self-adjointness via TAF flow directives (see sec-
tion 3). For time-evolving systems TAF can automatically generate a so-called
checkpointing scheme [57], in its linear form [58]: During an initial model in-
tegration, the state of the system is periodically saved on a first tape (outer
tape) in intervals of a fixed number of time steps. The adjoint integration
then goes backwards interval by interval. For each of these intervals, first the
model is integrated over the interval, and required variables are stored on a
second tape (inner tape). During the corresponding adjoint integration over
this interval, the required values are then read from the inner tape. This inner
tape is reused for the next interval, which considerably reduces disk/memory
requirements. Carbon-BETHY, for instance, typically simulates a period of
20 years with one checkpoint per month. The inner tape has about 50 MB,
which fits well in the memory of a Linux PC, while the outer tape of about 140
MB fits well on the machine’s hard disk. Without checkpointing one would
need 50*21*12 MB, i.e. about 12 GB of tape space. The cost of this scheme,
however, is (in total) about one additional model integration. Automatic gen-
eration of a checkpointing scheme is triggered, after splitting up the main time
stepping loop into an inner and an outer loop, by inserting a TAF store di-
rective plus TAF initialisation directives for both the inner and outer tape. A
more elaborate description is given in [58]. The scheme sketched above uses
two-level checkpointing. Some applications call even for a three-level check-
pointing scheme, in which the main loop is split into three nested loops and
three tapes are used. Triggering its generation works analogously to the two-
level case. For example, the performance ratio of 5.5 for the MITGCM with
three-level checkpointing thus means that a short integration (without the
need of a checkpointing scheme) has a performance ratio of about 3.4 for the
run times of adjoint model plus model to model only.

For the Navier-Stokes solver by Hinze, an ADM has also been hand-coded via
the continuous approach. The relative performance of that ADM is about 1.8
([32]). Note that the ADM of the NASA-DAO finite volume GCM is not yet
fully optimised for performance.

Table 3 shows the performance of the tangent linear models of the various
models named in the first column. The second column gives the number of
control variables. Except for the biomag code, the performance has been mea-
sured in a Jacobian times vector mode, which is equivalent to having one
control variable. The data locality of TAF-generated tangent linear code in-
creases with the number of control variables. Thus, on cache-based machines,
the number of cache misses per control variable is decreasing. Consequently,
also the CPU time per control variable decreases with the number of control
variables.

12

Table 3
Performance of TAF generated tangent linear models

Model # of control variables RelCPU

NSC2KE 1 2.4

Carbon-BETHY 1 1.5

MITGCM 1 1.8

Biomag code 1,098 548

NASA-DAO 1 2.7

The Hessians of NSC2KE, Carbon-BETHY, and the MITGCM are computed
in forward over reverse mode (see section 2). Evaluating the product of the
NSC2KE’s Hessian with a vector takes 9.8 times the CPU time of a model run.
For the MITGCM, that ratio is 11.0. The full Hessian of Carbon-BETHY has
been computed in chunks of five columns per run to fit in the available memory.
Per column, the computation takes 2.5 times the CPU time of a model run.
When computing only two columns per run, this per column CPU time ratio
goes up from 2.5 to 5.1. This has two reasons: First, in this forward over reverse
mode, the adjoint integration constitutes a fraction of the Hessian computation
which is independent of the number of columns. Second, as described above
for the tangent linear code, when increasing the number of columns per run,
the increased data locality further increases the “per-column performance” of
the Hessian code.

6 Conclusions and Perspectives

We have applied TAF to the Navier-Stokes solver NSC2KE. For a configura-
tion that simulates the Euler flow around a NACA airfoil, TAF has generated
the solver’s tangent linear and adjoint models. The high performance ratios
of 2.4 for the tangent linear model, 3.4 for the adjoint model, and 9.8 for the
Hessian code are in the range of TAF applications, e.g. to large-scale models
of ocean and atmosphere dynamics. It has been demonstrated that TAF gen-
erates efficient alternative adjoints of iterative solvers. Furthermore, we have
sketched how TAF can exploit self-adjointness to improve the performance of
the adjoint code. While NSC2KE is written in Fortran 77, a number of recent
applications demonstrate TAF’s additional capability of handling Fortran 90
codes.

Future TAF developments will be directed towards further improving the per-
formance of the generated derivative code, robustness of the tool, and its
user friendliness. In practise, this means we will be working on topics such as

13

further improving our transformation algorithms, following future extensions
of the language standard, enhancing TAF interactions with common parallel
programming extensions/libraries, as well as improving our algorithms to re-
duce complex control flows, and introducing an automatic decision between
recomputing and storing/reading.

Another future FastOpt project is to transfer the TAF concepts from Fortran
to C and build an AD tool for programs written in C, which will be called
Transformation of Algorithms in C (TAC).

Acknowledgments

FastOpt wishes to thank the following colleagues: Wolfgang Knorr, Peter
Rayner, and Marko Scholze for the pleasant collaboration in composing a
Carbon Cycle DataAssimilation and prediction System (CCDAS), which in-
cludes the derivative code of Carbon-BETHY. Ricardo Todling, S-J Lin and
their colleagues at the Data Assimilation Office for the good collaboration in
our joint work on the derivative code of the NASA-DAO GCM. Eli Galanti
and Eli Tziperman for providing the performance ratios of their MOM adjoint.
Ralf Giering wishes to thank the ECCO consortium, in whose framework the
MIT GCM was differentiated, for their collaboration. The authors wish to
thank Bijan Mohammadi for providing his CFD code NSC2KE and Johannes
Werner for proofreading the manuscript.

References

[1] A. Jameson, Aerodynamic design via control theory, J. of Scientific Computing
3 (1987) 233–260.

[2] O. Talagrand, P. Courtier, Variational assimilation of meteorological
observations with the adjoint vorticity equation – Part I. Theory, Q. J. R.
Meteorol. Soc. 113 (1987) 1311–1328.

[3] Z. Sirkes, E. Tziperman, C. W. Thacker, Combining data and a global
primitive equation ocean general circulation model using the adjoint method,
in: P. Malanotte-Rizzoli (Ed.), Modern approaches to data assimilation in ocean
modeling, Elsevier, 1996, pp. 119–145.

[4] F.-X. LeDimet, I. Navon, D. Daescu, Second order information in data
assimilation, Monthly Weather Review 130 (3) (2002) 629–648.

[5] J. Reuther, Aerodynamic Shape Optimization Using Control Theory, Ph.D.
thesis, University of California, Davis, USA (1996).

14

[6] E. Arian, S. Ta’asan, Analysis of the Hessian for aerodynamic optimization:
inviscid flow, Advances in Engineering Software 28 (7) (1999) 853–877.

[7] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1966.

[8] G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems, Kluwer,
Dordrecht, 1995.

[9] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, SIAM, Philadelphia, 2000.

[10] P. Shah, Application of adjoint equations to estimation of parameters in
distributed dynamic systems, in: A. Griewank, G. F. Corliss (Eds.), Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, SIAM,
Philadelphia, Penn., 1991, pp. 181–190.

[11] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional
analysis, Academic Press, New York, 1980.

[12] C. Bischof, L. Roh, A. Mauer, ADIC — An extensible automatic differentiation
tool for ANSI-C, Software: Practice and Experience 27 (12) (1997) 1427–1456.

[13] C. H. Bischof, A. Carle, P. Khademi, A. Mauer, ADIFOR 2.0: Automatic
Differentiation of Fortran 77 Programs, IEEE Computational Science &
Engineering 3 (3) (1996) 18–32.

[14] A. Griewank, D. Juedes, J. Utke, ADOL-C, a package for the automatic
differentiation of algorithms written in C/C++, ACM Trans. Math. Softw.
22 (2) (1996) 131–167.

[15] N. Rostaing, S. Dalmas, A. Galligo, Automatic differentiation in Odyssée, Tellus
45A (1993) 558–568.

[16] FastOpt, Transformation of Algorithms in Fortran, http://www.FastOpt.com.
URL http://www.FastOpt.com

[17] R. Giering, Tangent linear and Adjoint Model Compiler,
http://www.autodiff.com/tamc.
URL http://www.autodiff.com/tamc

[18] A. Adcroft, J.-M. Campin, P. Heimbach, C. Hill, J. Marshall, The MITgcm,
Online documentation, Massachusetts Institute of Technology, USA (2002).
URL http://mitgcm.org/sealion/online documents

[19] S. M. Griffies, M. J. Harrison, R. C. Pacanowski, A. Rosati, The FMS MOM4-
beta User Guide, Tech. rep., NOAA/Geophysical Fluid Dynamics Laboratory
(2002).
URL
http://www.gfdl.noaa.gov/∼lat/fms public release/public manual fms/mom4beta manual.html

[20] A. Carle, L. Green, C. H. Bischof, P. Newman, Applications of automatic
differentiation in CFD, in: Proceedings of the 25th AIAA Fluid Dynamics
Conference, AIAA Paper 94-2197, American Institute of Aeronautics and
Astronautics, 1994.

15

[21] P. D. Hovland, B. Mohammadi, C. H. Bischof, Automatic differentiation of
Navier-Stokes computations, Tech. Rep. MCS-P687-0997, Argonne National
Laboratory (1997).

[22] T. Slawig, Domain optimization of a multi-element airfoil using automatic
differentiation, Advances in Engineering Software 32 (2001) 225–237.

[23] S. A. Forth, T. P. Evans, Aerofoil Optimisation via AD of a Multigrid
Cell-Vertex Euler Flow Solver, in: G. Corliss, C. Faure, A. Griewank,
L. Hascoët, U. Naumann (Eds.), Automatic Differentiation: From Simulation to
Optimization, Computer and Information Science, Springer, New York, 2001,
Ch. 17, pp. 153–160.

[24] H. M. Bücker, B. Lang, A. Rasch, C. H. Bischof, Computation of sensitivity
information for aircraft design by automatic differentiation, in: P. M. A. Sloot,
C. J. K. Tan, J. J. Dongarra, A. G. Hoekstra (Eds.), Computational Science
– ICCS 2002, Proceedings of the International Conference on Computational
Science, Amsterdam, The Netherlands, April 21–24, 2002. Part II, Vol. 2330 of
Lecture Notes in Computer Science, Springer, Berlin, 2002, pp. 1069–1076.

[25] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, E. Slusanschi, Efficient and
accurate derivatives for a software process chain in airfoil shape optimization,
Tech. Rep. RWTH-CS-SC-02-06, Institute for Scientific Computing, Aachen
University of Technology, Aachen (2002).

[26] B. Mohammadi, J.-M. Malé, N. Rostaing-Schmidt, Automatic differentiation
in direct and reverse modes: Application to optimum shapes design in fluid
mechanics, in: M. Berz, C. H. Bischof, G. F. Corliss, A. Griewank (Eds.),
Computational Differentiation: Techniques, Applications, and Tools, SIAM,
Philadelphia, Penn., 1996, pp. 309–318.

[27] S. Ulbrich, Optimal Control of Nonlinear Hyperbolic Conservation Laws with
Source Terms , Habilitationsschrift, Fakultät für Mathematik, Technische
Universität München, Germany, 2002.
URL http://www-m1.mathematik.tu-muenchen.de/m1/personen/sulbrich

[28] M. A. Park, L. L. Green, R. C. Montgomery, D. L. Raney, Determination of
Stability and Control Derivatives Using Computational Fluid Dynamics and
Automatic Differentiation, IAAA Paper 1999-3136, AIAA, Reston Va, USA
(1999).

[29] A. C. Taylor III, L. L. Green, P. A. Newman, M. M. Putko, Some Advanced
Concepts in Discrete Aerodynamic Sensitivity Analysis, IAAA Paper 2001-2529,
AIAA, Reston Va, USA (2001).

[30] S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, S. Ulbrich, Towards
Adjoint-Based Methods for Aeroacoustic Control, IAAA Paper 2001-0821,
AIAA, Reston Va, USA (2001).
URL http://www.mems.rice.edu/∼collis/papers

[31] S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, S. Ulbrich, Optimal
control of unsteady compressible viscous flows, Int. J. Numer. Meth. Fluids

16

40 (11) (2002) 1401–1429.
URL http://www.mems.rice.edu/∼collis/papers

[32] M. Hinze, T. Slawig, Adjoint Gradients Compared To Gradients From
Algorithmic Differentiation In Instantaneous Control Of The Navier-Stokes
Equations, Optimization Methods & Software 18 (3) (2003) 299–315.

[33] K. C. Hall, J. P. Thomas, J. P. Clark, Computation of unsteady nonlinear flows
in cascades using a harmonic balance technique, AIAA Journal 40 (5) (2002)
879–886.

[34] J. P. Thomas, E. H. Dowell, K. C. Hall, Nonlinear inviscid aerodynamic effects
on transonic divergence, flutter and limit cycle oscillations, AIAA Journal 40 (4)
(2002) 638–646.

[35] B. Mohamadi, Fluid Dynamics Computation with NSC2KE, User-Guide,
Release 1.0, Tech. Rep. RT-0164, INRIA (May 1994).

[36] P. Heimbach and C. Hill and R. Giering, An efficient exact adjoint of the
parallel MIT general circulation model, generated via automatic differentiation,
to appear in Future Generation Computer Systems .
URL http://www.mit.edu/afs/athena.mit.edu/user/h/e/heimbach/www

[37] J. Marshall, A. Adcroft, C. Hill, L. Perelman, C. Heisey, A Finite-Volume,
Incompressible Navier Stokes Model for Studies of the ocean on Parallel
Computers, Technical Report 36, Massachusetts Institut of Technology, Center
for Global Change Science, Cambridge, MA 02139, USA (1995).

[38] R. Giering, T. Kaminski, Applying TAF to generate efficient derivative code of
Fortran 77-95 programs, PAMM 2 (1) (2003) 54–57.
URL
http://www3.interscience.wiley.com/cgi-bin/issuetoc?ID=104084257

[39] R. Giering, T. Kaminski, Generating recomputations in reverse mode AD,
in: G. Corliss, A. Griewank, C. Fauré, L. Hascoet, U. Naumann (Eds.),
Automatic Differentiation of Algorithms: From Simulation to Optimization,
Springer Verlag, Heidelberg, 2002, Ch. 33, pp. 283–291.
URL
http://www.springer.de/cgi-bin/search book.pl?isbn=0-387-95305-1

[40] R. Giering, T. Kaminski, Recipes for adjoint code construction, ACM Trans.
Math. Softw. 24 (4) (1998) 437–474.

[41] B. Christianson, Reverse accumulation and attractive fixed points,
Optimization Methods and Software 3 (1994) 311–326.

[42] B. Christianson, Reverse accumulation and implicit functions, Optimization
Methods and Software 9 (4) (1998) 307–322.

[43] M. Hinze, Optimal and instantaneous control of the instationary Navier-
Stokes equations, Habilitationsschrift, Fachbereich Mathematik, Technische
Universität Berlin, 1999.

17

[44] P. Heimbach, C. Hill, R. Giering, Automatic generation of efficient adjoint
code for a parallel Navier-Stokes solver, in: P. M. A. Sloot, C. J. K.
Tan, J. J. Dongarra, A. G. Hoekstra (Eds.), Computational Science –
ICCS 2002, Proceedings of the International Conference on Computational
Science, Amsterdam, The Netherlands, April 21–24, 2002. Part II, Vol. 2330
of Lecture Notes in Computer Science, Springer, Berlin, 2002, pp. 1019–1028.
URL http://www.mit.edu/afs/athena.mit.edu/user/h/e/heimbach/www

[45] S.-J. Lin, R. B. Rood, Multidimensional flux-form semi-lagrangian transport
scheme, Mon. Wea. Rev. 124 (9) (1996) 2046–2070.

[46] S.-J. Lin, R. B. Rood, An explicit flux-form semi-lagrangian shallow-water
model on the sphere, Quart. J. Roy. Meteor. Soc. 123 (1997) 2477–2498.

[47] S.-J. Lin, A finite volume integration method for computing pressure gradient
force in general vertical coordinates, Quart. J. Roy. Meteor. Soc. 123 (1997)
1749–1762.

[48] W. Knorr, Annual and interannual CO 2 exchanges of the terrestrial biosphere:
process based simulations and uncertainties, Glob. Ecol. and Biogeogr. 9 (2000)
225–252.

[49] P. Rayner, W. Knorr, M. Scholze, R. Giering, T. Kaminski, M. Heimann, C. L.
Quere, Inferring terrestrial biosphere carbon fluxes from combined inversions
of atmospheric transport and process-based terrestrial ecosystem models, in:
Proceedings of 6th Carbon dioxide conference at Sendai, 2001, pp. 1015–1017.

[50] R. C. Pacanowski, S. M. Griffies, MOM 3.0 Manual, Tech. rep.,
NOAA/Geophysical Fluid Dynamics Laboratory (1999).
URL
http://www.gfdl.noaa.gov/∼smg/MOM/web/guide parent/guide parent.html

[51] E. Galanti, E. Tziperman, M. Harrison, A. Rosati, R. Giering, Z. Sirkes, The
equatorial thermocline outcropping - a seasonal control on the tropical pacific
ocean-atmosphere instability, Journal of Climate 15 (19) (2002) 2721–2739.

[52] J. Marotzke, R. Giering, Q. K. Zhang, D. Stammer, C. N. Hill, T. Lee,
Construction of the adjoint MIT ocean general circulation model and
application to atlantic heat transport sensitivity, J. Geophys. Res. 104 (1999)
29,529 – 29,548.
URL
http://jupiter.agu.org/epubs/jgr oceans/jc9912/1999JC900236/0.html

[53] M. Bücker, R. Beucker, C. Bischof, Using Automatic Differentiation for the
Minimal p-Norm solution of the Biogmagnetic Inverse Problem, in: A. Heemink,
L. Dekker, H. de Swaan, I. Smit, T. von Stijn (Eds.), Shaping Future with
Simulation, Proceedings of the 4-th International Eurosim 2001 Congress, Delft,
The Netherlands, June 26–29, 2001, Dutch Benelux Simulation Society, 2001.

[54] H. M. Bücker, R. Beucker, Using automatic differentiation for the solution of the
minimum p-norm estimation problem in magnetoencephalography, Simulation
Modelling Practice and Theory 12 (2004) 105–116.

18

[55] M. Heimann, The global atmospheric tracer model TM2, Technical Report No.
10, Max-Planck-Institut für Meteorologie, Hamburg, Germany (1995).

[56] T. Kaminski, M. Heimann, R. Giering, A coarse grid three dimensional global
inverse model of the atmospheric transport, 1, Adjoint model and Jacobian
matrix, J. Geophys. Res. 104 (D15) (1999) 18,535–18,553.

[57] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation, Optimization Methods and Software 1
(1992) 35–54.

[58] R. Giering, T. Kaminski, On the performance of derivative code generated by
TAMC, Manuscript, FastOpt, Hamburg, Germany, submitted to Optimization
Methods and Software. See www.FastOpt.de/papers/perftamc.ps.gz. (2000).

19

