
1Tangent linear and adjoint biogeo
hemi
al modelsRalf GieringJet Propulsion LaboratoryCalifornia Institute of Te
hnology, CaliforniaAdjoint models are powerful tools for inverse modeling. They are in
reas-ingly being used in meteorology and o
eanography for sensitivity studies,data assimilation, and parameter estimation. Covering the range from sim-ple box models to sophisti
ated General Cir
ulation Models, they eÆ
iently
ompute the sensitivity of a few model output variables with respe
t toarbitrarily many input variables. To the 
ontrary, tangent linear modelseÆ
iently 
ompute the model output perturbation resulting from an initialinput perturbation. Mathemati
ally, both models evaluate the �rst derivateor Ja
obian matrix of the mapping de�ned by the original model. EÆ
ien
yis an important issue for sophisti
ated models and in pra
ti
e often deter-mine whether a problem is solvable or not. We dis
uss here the advantagesof tangent linear and adjoint models, as well as when to use either of them.The 
onstru
tion of adjoint and tangent linear models by hand is tedious anderror prone. Computational Di�erentiation redu
es this work substantially.The basi
s of Computational Di�erentiation, its advantages and limitationsare presented. Three di�erent kinds of sensitivities are shown: the sensitivi-ty of a passive tra
er 
on
entration in the o
ean to previous 
on
entrations,the sensitivity of atmospheri
 CO2 at Mauna Loa, Hawaii, to surfa
e 
uxes,and the sensitivity of the North Atlanti
 meridional heat 
ux to subsurfa
esalinity. They are dis
ussed in terms of the 
hains of 
ause and e�e
t. Forbiogeo
hemi
al models of passive tra
ers sensitivities 
an be explained byadve
tive and di�usive pro
esses. However, for dynami
ally a
tive tra
ers,the sensitivities are modi�ed by an additional path of in
uen
e.1. INTRODUCTIONAdjoint model (ADM) and tangent linear models(TLM) are in
reasingly being developed and used inmeteorology and physi
al o
eanography. Typi
al ap-pli
ations are data assimilation, parameter estimation,sensitivity analysis and determination of singular ve
-tors (Erri
o, 1997).In 
anoni
al form, a model is a mapping of inputvariables (independent variables) onto output variables(dependent variables). If this mapping is di�erentiable,its �rst derivative is the Ja
obian matrix. A TLM is aprogram to 
ompute the a
tion of the Ja
obian matrixon a ve
tor. Here, the ve
tor is mostly a perturba-tion of the initial 
ondition or the boundary for
ing.The TLM is linear and it depends on the model traje
-tory at whi
h the linearization took pla
e. The TLMsimulates the development of perturbations with time



2and 
an be used to analyze the impa
t of small distur-ban
es. For instan
e, 
onsider a TLM of the adve
tionof a passive tra
er by horizontal 
urrents. If the tra
-er 
on
entration at one point is 
hanged, this anomalyis transported downstream and broadened by di�usion(Fig. 1).In 
ontrast, an ADM is a program to 
ompute thea
tion of the transposed Ja
obian matrix on a ve
tor.It is adjoint to the tangent linear model! The ADM islinear and depends on the model traje
tory at whi
hthe linearization took pla
e in the same manner as theTLM. The ve
tor is an arbitrary sensitivity and theADM simulates the development of sensitivities ba
k-ward. The ADM 
an be used to analyze the origin ofany anomaly. As shown in Figure 2, a di�eren
e at onelo
ation 
an be 
aused by propagation of an anomalyfrom upstream. Thereby, due to the e�e
t of di�usion,the possible origin of the anomaly is lo
ated in a broaderarea.There are some limitations of TLMs and ADMs. If,at some lo
ations, the underlying fun
tion is non dif-ferentiable, sensitivities 
annot be determined or theymight be misleading. In o
ean and atmospheri
 modelssub grid pro
esses are often formulated in a non di�er-entiable way. If, e.g., 
onve
tive adjustment is used forunstable strati�
ation in an o
ean model the sensitivi-ties do not represent a 
hange in the 
onve
tion pattern.Thus, a revised formulation of the parametrization ofsub grid pro
esses might be ne
essary (Xu, 1996a,b;Zou, 1997).TLM's and ADM's are based on the linear approxi-mation. For non linear models the sensitivities are on-ly valid at a 
ertain point in phase spa
e. For highlynon-linear or 
haoti
 models the 
omputed sensitivitiesmight 
hange rapidly with a varying point of lineariza-tion. In some extremes, this 
ould make these sensitiv-ities totally useless.Dire
t 
oding of ADMs and TLMs of sophisti
atedmodel is extremely time 
onsuming and subje
t to er-rors. Hen
e, automati
 generation of ADMs and TLM-s represents a distin
t advantage. In 
omputationals
ien
e this is known as reverse and forward mode ofAutomati
 or Computational Di�erentiation. A toolof Computational Di�erentiation is the Tangent linearand Adjoint Model Compiler (TAMC, R. Giering, un-published manual, 1997). This tool has been used togenerate several ADMs and TLMs. The performan
eof the generated 
ode is 
omparable to hand writtenmodels (Giering and Kaminski , 1998b).Here we fo
us on the appli
ation of adjoint models forsensitivity studies. In three examples of biogeo
hemi
al



3models adjoint sensitivities of di�erent output variableswith respe
t to di�erent input variables are dis
ussed.For passive tra
ers in the o
ean and atmosphere sensi-tivities 
an be explained by horizontal adve
tion, verti-
al adve
tion, and di�usive pro
esses. In 
ontrast, ana
tive tra
er in
uen
es the model dynami
s and has anadditional in
uen
e on the system.The outline of the paper is as follows. After present-ing the mathemati
al ba
kground in se
tion 2 the ap-pli
ations of TLMs and ADMs are des
ribed in se
tion3. Se
tion 4 explains the di�erent methods of tangentlinear and adjoint 
ode 
onstru
tions and gives a shortintrodu
tion into Computational Di�erentiation. Fieldsof sensitivities for three di�erent models are presentedand explained in se
tion 5.2. MATHEMATICAL BACKGROUNDIn the following the mathemati
al ba
kground of tan-gent linear and adjoint models is des
ribed by the vari-ational formalism. In the literature other des
riptions
an be found, whi
h are 
ommonly based on the La-grange fun
tion (e.g. Tha
ker and Long , 1988; S
hr�oter ,1989). By using the variational formalism, the 
onne
-tion between adjoint models and the adjoint operatorof Linear Algebra is more obvious. Here we introdu
eadjoint models in terms of data assimilation for peda-gogi
al reasons.Consider a numeri
al model des
ribing a dynami
alsystem. Let yo 2 IRm (m 2 IN) be a set of observationsand y 2 IRm the 
orresponding model values. The mis�tbetween model and observations is usually quanti�ed bya quadrati
 
ost fun
tionJ := 12 (y � yo ; y � yo ) (1)by the 
hoi
e of an appropriate inner produ
t ( � ; � ).This implies that least-squares-�tting is intended: Thesmaller J is the better the model �ts the data. How 
anthe model be manipulated in order to obtain an opti-mal �t between observations and 
orresponding modelvalues?In order to manipulate the model, we spe
ify a setof n 2 IN parameters x, whi
h, in the following, willbe 
alled 
ontrol variables. The dependen
e of y on xwithin the model is given by the mappingF : IRn ! IRmx 7! y : (2)This mapping usually 
onsists of the time integrationof the model and a mapping of the state ve
tor to the



4observed values. Thus, J 
an be expressed in terms ofx byJ : IRn ! IRx 7! 12 (F(x)� yo ; F(x)� yo ) : (3)The problem we want to solve is to determine the setof 
ontrol variables x that minimizes J . EÆ
ient mini-mization algorithms make use of the gradient rxJ(xi)of J with respe
t to the 
ontrol variables at a givenpoint xi. To �rst order we write the Taylor expansionof J :J(x) = J(xi) + (rxJ(xi) ; x� xi ) + o(jx�xij) (4)or, equivalent, as variationÆJ = (rxJ(xi) ; Æx ) : (5)In the following we will use this shorthand notationwhenever linear approximations are involved. SupposeF is suÆ
iently regular, then for ea
h 
ontrol ve
tor xi,a variation of y 
an be approximated to �rst order byÆy = A(xi) Æx ; (6)where A(xi) denotes the Ja
obian of F at xi.Due to the symmetry of the inner produ
t and theprodu
t rule the di�erentiation of (3) yieldsÆJ = 12 (A(xi)Æx ; F(xi)� yo )+ 12 (F(xi)� yo ; A(xi)Æx )= (F(xi)� yo ; A(xi)Æx ) : (7)Using the de�nition of the adjoint operator A�:(v ; Aw ) = (A� v ; w ) ; (8)we obtainÆJ = (A�(xi)(F(xi)� yo) ; Æx ) : (9)Therefore, using to the de�nition of the gradient (5),the gradient of the 
ost fun
tion with respe
t to the
ontrol variables isrxJ(xi) = A�(xi) (F(xi)� yo) : (10)The linear operator A(xi) represents the tangent lin-ear model. Its adjoint A�(xi), whi
h is linear as well,represents the adjoint model. Both operators depend onthe point xi in phase spa
e, at whi
h the linearizationtook pla
e. A

ording to (10), the mis�t [F(xi) � yo℄represents the for
ing of the adjoint model.



53. APPLICATIONS3.1. Sensitivity analysis3.1.1. Forward sensitivity. A standard pro
edure forstudying the impa
t of spe
i�
 model parameters orvariables on the model traje
tory or on derived quanti-ties is to disturb this variable and 
ompare the modelresponse to a '
ontrol run' whi
h was undisturbed. Thisis a �nite di�eren
e approximation to the exa
t sensi-tivity and is 
ommonly known as the Green's fun
tionapproa
h. In 
ontrast, the TLM provides the exa
t sen-sitivity (in most 
ases almost up to ma
hine pre
ision),requires 
omparable memory resour
es, but often needsless run time. The integration of the TLM (operator Ain (6)) gives the development Æy of an initial perturba-tion Æx. A Æx = Æy (11)The perturbation ve
tor Æx might 
onsist of only onevariable or of any linear 
ombination of variables thatthe model traje
tory depends on. The �nal perturba-tion ve
tor Æy 
an be the perturbation of the modelstate or of a number of derived quantities. The TLM
omputes any linear 
ombination of rows of the Ja
o-bian matrix.3.1.2. Reverse or ba
kward sensitivity. To answerquestions su
h as, where does a spe
i�
 anomaly 
omefrom or to what is a parti
ular feature most sensitive,a reverse or ba
kward sensitivity is required. Forwardsensitivities 
an hardly answer this eÆ
iently. The AD-M integrates sensitivities of a spe
i�
 feature from thee�e
t to the 
ause. For time evolving models this meansba
kward in time. The possible 
ause Æ�x� is the resultof the a
tion of the adjoint operator (A� in (10)) on thee�e
t Æ�y�. A� Æ�y� = Æ�x� (12)The ADM does not model physi
al quantities, e.g., 
on-
entrations of tra
ers; instead it models the sensitivitiesof a property to these quantities. Any linear 
ombina-tion of 
olumns of the Ja
obian matrix 
an be deter-mined by the ADM.Adjoint sensitivity analysis is well established in me-teorology (e.g. Hall et al., 1982; Erri
o and Vuki
evi
,1992; Rabier et al., 1992; Zou et al., 1993; Langlandet al., 1995). Kaminski et al. (1996) determined thesensitivity of the seasonal 
y
le of atmospheri
 CO2 atmonitoring stations to the seasonal 
y
le of surfa
e ex-
hange 
uxes. Oldenborgh et al. (1999) found adjointKelvin and Rossby waves in an adjoint pa
i�
 o
eanmodel, 
arrying sensitivities in the opposite dire
tionto their physi
al 
ounterparts. The sensitivity of the



6North Atlanti
 annual mean meridional heat 
ux to ini-tial temperature and salinity was dis
ussed by Maroztke(J. Maroztke et al., submitted manus
ript, 1999).3.2. Data assimilationWithin variational data assimilation, a 
ost fun
tionJ J(x) = (y � yo)tW(y � yo) (13)whi
h quanti�es the mis�t between model and data. isbeing minimized by varying 
ontrol variables x. Themis�t is weighted by a matrix W. Under the assump-tion of Gaussian error distribution of all 
ontributingerrors and when W is the sum of the asso
iated er-ror 
ovarian
e matri
es, min (J(x)) 
orresponds to themaximum likelihood solution. The most important er-rors are the measurement error, the representation er-ror, and the model error. The representation error isa result of the di�erent spatial and temporal s
ales re-solved by the model and the data. The 
ontrol variables
an be the initial 
onditions or the boundary 
ondition-s. Among the many methods of optimization, gradientmethods are the most eÆ
ient for di�erentiable fun
-tions. They require 
omputation of the gradient of the
ost fun
tion with respe
t to the 
ontrol variables atea
h iteration. This gradient is the sensitivity of the
ost fun
tion with respe
t to the 
ontrol variables. Itis most eÆ
iently 
omputed by the ADM. Thus, themethod is also known as adjoint data assimilation.This method was �rst applied in meteorology to sim-pli�ed models (Lewis and Derber , 1985) and is now im-plemented for weather predi
tion (e.g. Courtier et al.,1994).Tziperman et al. (1992b) applied the adjoint methodto assimilate hydrographi
 data into an Atlanti
 o
eanmodel. Several data sets have also been assimilatedinto a primitive equation global o
ean model by varyinginitial 
onditions and boundary for
ing (Stammer et al.,1997).3.3. Parameter estimationThe estimation of parameters in the underlying e-quations of a model is very similar to data assimilation.Here the 
ontrol variables are some of these parametersp and a 
ost fun
tion J(p) is minimized. Again, theADM provides the gradient rpJ of the 
ost fun
tionwith respe
t to the parameters. Usually, the numberof parameters determined are of the order 10-100. Thisallows use of more memory intensive optimization al-gorithm, for example the Newton algorithm. Navon(1997) re
ently reviewed the state of the art in param-eter estimation.



73.4. Singular ve
tors or most unstable modesIn order to fore
ast the time development of a system,it is useful to know whi
h initial perturbations amplifymost rapidly (e.g. Webster and Hopkins , 1994; Vuki
e-vi
, 1998). If norm k ka is the measure of an initialperturbation and norm k kb that of the �nal perturba-tion then we need to determine the maximum of:kÆykbkÆxka (14)Assuming that Æx has �xed norm and that k kb is de-�ned by an appropriate s
alar produ
t:kxkb := (x ; x ) (15)we need to maximize( Æy ; Æy ) = (A Æx ; A Æx ) (16)= ( Æx ; A�A Æx ) (17)by varying only the dire
tion of Æx. This means thatone has to �nd the largest eigenvalues �i and the 
or-responding eigenve
tors vi of A�A satisfying:A�A vl = �l vl : (18)Thus, a perturbation Æx of �xed norm implies thelargest possible perturbation Æy if it is in the dire
-tion asso
iated with the dominant eigenve
tor of theoperator A�A (adjoint times tangent linear operator).The dominant eigenve
tors are 
alled singular ve
-tors or the most unstable modes. They are the solutionto a generalized stability problem (Farrel and Ioannou,1996a,b).3.5. Posterior error estimatesThe results of adjoint data assimilation and parame-ter estimation, the optimal 
ontrol variables, have un-
ertainties. These un
ertainties are proportional to the
urvature of the 
ost fun
tion at its minimum: Strong
urvature implies smaller error. Estimates of the errorsof optimal 
ontrol variables are useful for several pur-poses. For example, to use the results in a statisti
allyoptimal sense one needs to quantify their errors to buildtheir probability density distribution.For Gaussian error distribution and in the linear ap-proximation the posterior error 
ovarian
e matrix Pfof the 
ontrol variables is the inverse Hessian matrix ofthe 
ost fun
tion J at its minimum, i.e. for the optimalset of 
ontrol variables xopt (Tha
ker , 1989). The Hes-sian matrix is the se
ond order derivative of the 
ostfun
tion.(Pf )�1 = r2xJ(xopt) = r (rxJ(xopt)) (19)



8The full error 
ovarian
e matrix 
an be huge and, ingeneral, 
annot be 
omputed with present available re-sour
es for sophisti
ated o
ean or atmospheri
 modelsthat have a large number of 
ontrol variables (O(106)).However, produ
ts of this matrix with arbitrary ve
tors
ost only about twi
e as mu
h as an ADM integration.These produ
ts provide a module to extra
t some fea-tures of the Hessian matrix, e.g., the leading eigenve
-tors. Details about the number of operations for anADM, TDM, and Hessian ve
tor produ
ts 
ompared tothe number of operations for the 
ost fun
tion are givenby Griewank (1993).4. METHODS OF CONSTRUCTIONSAppli
ations des
ribed above obviously require a nu-meri
al 
ode of the model, its adjoint, and its tangentlinear. In the following we fo
us on adjoint 
ode 
on-stru
tion be
ause it is mu
h more 
ompli
ated than the
onstru
tion of the tangent linear model. A des
rip-tion of the 
onstru
tion of tangent linear models (for-ward mode of Computational Di�erentiation) is givenby Bis
hof et al. (1992). The question is how pra
ti
al
oding of adjoint models 
an be done.Suppose we want to simulate a dynami
al system nu-meri
ally. The development of a numeri
al simulationprogram is usually done in three steps. First, the an-alyti
al di�erential equations are formulated. Then adis
retization s
heme is 
hosen and the dis
rete equa-tions are 
onstru
ted. The last step is to implement analgorithm that solves the dis
rete equations in a pro-gramming language. The 
onstru
tion of the tangentlinear and adjoint model 
ode may start after any ofthese three steps.4.1. Adjoint of analyti
al equationsThe analyti
al model equations are transformed intothe adjoint equations by applying the rules for analyt-i
al adjoint operators. These equations subsequentlyare dis
retized and solved using a numeri
al algorithm.However, sin
e the produ
t rule is not valid for dis-
rete operators, one has to be 
areful in 
onstru
tingthe dis
rete adjoint operators. This method is mostlyapplied to box models having simple boundary 
ondi-tions (S
hr�oter , 1989).4.2. Adjoint of dis
retized equationsConstru
ting the adjoint model from the dis
retemodel equations is usually done by de�ning a LagrangeFun
tion. The derivatives of the Euler-Lagrange equa-tions with respe
t to the model variables yield the dis-
rete adjoint equations. Applying this method, no ad-



9joint operator has to be 
onstru
ted expli
itly. Howev-er, extensive and 
umbersome 
oding is ne
essary. Theboundary 
onditions are handled separately in most
ases.Tha
ker has introdu
ed this 
on
ept into o
eanog-raphy (Tha
ker , 1987; Tha
ker and Long , 1988; Longand Tha
ker , 1989a,b). and 
onstru
ted the adjoint
ode of the GFDL o
ean model this way (Tzipermanand Tha
ker , 1989; Tziperman et al., 1992a,b).4.3. Adjoint of model 
odeThis arti
le is 
on
erned with the third method,where the adjoint 
ode is developed dire
tly from thenumeri
al 
ode of the model. A numeri
al model is analgorithm that 
an be viewed as a 
omposition of dif-ferentiable fun
tions F , ea
h representing a statementin the numeri
al 
ode:y = F(x) := (Fn Æ Fn�1 Æ : : : Æ F2 Æ F1) (x) (20)with intermediate results:zl := Fl Æ : : : Æ F1(x) (21)The 
omposition is di�erentiated by appli
ation of the
hain rule:F 0(x) = Fn jzn�1 �F 0n�1 jzn�2 � : : : �F 02 jz1 �F 01 jx (22)The resulting multiple produ
t of Ja
obian matri
es 
anby evaluated in any order, sin
e matrix multiply is anasso
iative operation1. Operating in forward mode, theintermediate derivatives are 
omputed in the same orderas the model 
omputes the 
omposition. In 
ontrast,the adjoint model operates in reverse mode, i.e. theintermediate derivatives are 
omputed in reverse order.A detailed introdu
tion to di�erentiation of algorithmsis given by Griewank (1989). This method is feasibleeven for highly sophisti
ated models with 
ompli
atedboundary 
onditions.In reverse mode, a distin
t adjoint model 
ode frag-ment 
orresponds to ea
h model 
ode statement. Theadjoint 
ode fragments are 
omposed in reverse order
ompared to the model 
ode. For ea
h kind of statementsimple rules 
an be formulated for 
onstru
ting adjoin-t statements (Talagrand , 1991; Tha
ker , 1991; Gieringand Kaminski , 1998a). This simpli�es 
onsiderably theadjoint 
ode 
onstru
tion and subsequent debugging.Two examples of adjoint 
ode 
onstru
tions are givenin se
tion A.1Note, matrix multiply does not 
ommute.



104.4. The TAMC: a sour
e-to-sour
e translatorThe Tangent linear and Adjoint Model Compiler(TAMC) is a sour
e-to-sour
e translator for Fortranprograms (TAMC, R. Giering, unpublished manual,1997). It generates Fortran routines for 
omputation ofthe �rst-order derivatives out of Fortran routines 
om-puting a fun
tion. The derivatives are 
omputed in thereverse mode (adjoint model) or in the forward mode(tangent-linear model). In both modes Ja
obian-Matrixprodu
ts 
an be 
omputed. TAMC is an implementa-tion of the rules des
ribed by Giering and Kaminski(1998a).TAMC reads the program 
ode and 
onstru
ts aninternal abstra
t representation. The 
ode is 
he
kedfor semanti
al 
orre
tness and several analysises are ap-plied. Most importantly the data 
ow analysis dete
t-s all a
tive variables: Given the independent and de-pendent variables and the top-level subroutine TAMCdetermines all variables whi
h 
arry derivative informa-tion. Derivative 
ode is only generated for those vari-ables. An abstra
t representation to 
ompute deriva-tives is generated and �nally this is transformed to For-tran 
ode.The 
ode generation 
an be in
uen
ed by 
ompileroptions and dire
tives. In reverse mode the TAMC gen-erates by default re
al
ulations of required variables.Alternatively, these variables 
an be store and restoredif spe
i�
 
ompiler dire
tives are provided in the 
ode.Bla
k-box routines for whi
h the 
ode is not availableare handled by the TAMC if suÆ
ient 
ow informationabout this routines is given in form of dire
tives.5. SENSITIVITIES5.1. Passive tra
er in the o
eanThe MIT GCM solves the in
ompressible Navier-Stokes equations on a C-grid, with optional hydrostat-i
 approximation. The model has been applied to alarge range of s
ales of o
ean dynami
s ranging fromstudies of 
onve
tive 
himneys to global o
ean 
ir
ula-tion estimation (Marshall et al., 1997b,a) and has beendeveloped spe
i�
ally for use on modern parallel 
om-puting platforms. For 
oarse resolution, global o
ean
ir
ulation studies, mesos
ale eddy transfer e�e
ts area
hieved using s
hemes related to the parameterizationof Gent and M
Williams (1990) but with spatially andtemporally variable mixing 
oeÆ
ients (Visbe
k et al.,1997). A 
onve
tive adjustment s
heme is used to pa-rameterize verti
al mixing due to stati
 instabilities.For tra
er simulations we use an \o�-line" tra
ermodel, based on the MIT o
ean GCM (Follows et al.,



111996). Velo
ity, temperature, salinity and 
onve
tivemixing parameters are stored periodi
ally during aprognosti
 integration of the GCM, and used to drivethe tra
er model o�-line. This represents a 
onsiderablee
onomy in 
omputational requirements and allows aneÆ
ient implementation of the tra
er model using HighPerforman
e Fortran.The o�-line model for the tra
er distribution, C, takesthe form:��tC+r (u�C) +r (KrC) +Q
 = S (23)where u� is the transformed Eulerian mean velo
ity (fol-lowing Gent and M
Williams (1990)) that adve
ts tra
-ers and the tensorK 
onstrains sub grid s
ale mixing tobe along isopy
nal surfa
es. Conve
tive mixing in theo�-line model, represented by Q
, uses the statisti
sof verti
al 
onve
tion events in the GCM to 
ontrol ap-propriate verti
al mixing of the o�-line tra
er. Externalsour
es and sinks (su
h as air{sea 
uxes) are represent-ed by S. Appli
ations of the o�-line tra
er model (inslightly di�erent 
on�gurations) are illustrated in thepubli
ations Follows et al. (1996); Follows and Marshall(1996), and Williams and Follows (1998).For the sensitivity study provided here, the model do-main is the North Atlanti
 and extends from 100W-10Eand 5S-80N. The dependent variable is the 
on
entra-tion of a passive tra
er at 75W,29N in the upper layerat a spe
i�
 time. The adjoint of the o�-line tra
ermodel has been generated by TAMC and is integratedfor one year. The sensitivity to 
on
entrations a fewmonths before have been monitored. One month earlierthe sensitivity are still 
on
entrated at one pla
e butthe di�usivity has already begun to broadened it (Fig.3). If the adjoint model is integrated further (ba
kwardin time) the maximum of sensitivity starts to move up-stream. (Fig. 4). This means the 
on
entration in thisarea in
uen
es the �nal 
on
entration at the spe
i�
point the most. But surprisingly 8 month earlier thelargest sensitivity is found in the original area again.(Fig. 5). This 
an be understood by looking at thesensitivity in a deeper layer. (Fig. 6). Here the sen-sitivity is mu
h larger than in the upper layer. Thus,in this 
ase verti
al mixing of sensitivities in
reases thesensitivity in an upper layer, where otherwise the sen-sitivity would be low, be
ause it has been adve
ted toother regions by the mu
h faster velo
ities. In the �rstmonth the still large sensitivity has been mixed to lowerlayers and not moved very mu
h be
ause of the smallvelo
ities.



125.2. Passive tra
er in the atmosphereTM2 is a three-dimensional atmospheri
 transportmodel whi
h solves the 
ontinuity equation for an arbi-trary number of tra
ers on an Eulerian grid spanningthe entire globe (Heimann, 1995). It is driven by storedmeteorologi
al �elds derived from analyses of a weatherfore
ast model. Tra
er adve
tion is 
al
ulated using the"slopes s
heme" of Russel and Lerner (1981). Verti
altransport due to 
onve
tive 
louds is parameterized bythe 
loud mass 
ux s
heme of Tiedtke (1989). Sour
eand sink pro
esses are 
al
ulated for ea
h tra
er fol-lowed by the transports. The model has a regular gridhorizontally (8Æ�10Æ) and sigma 
oordinates in the ver-ti
al (9 layers). The time-step of the model is 4 hours.The adjoint 
ode has been generated by TAMC and isused for sensitivity studies (Kaminski et al., 1996) anddata assimilation (Kaminski et al., 1998a,b).In the present study the model is for
ed with mete-orologi
al �elds of the year 1987, derived from analy-ses of the European Center for Medium Range Weath-er Fore
ast (ECMWF) updated every 12 hours. Onlyone passive tra
er (CO2) is modeled for the parti
ularyear. Here, the sensitivity of the De
ember mean tra
-er 
on
entration at the mountain Mauna Loa, Hawaiiin De
ember 1987 to monthly mean surfa
e 
uxes is ofinterest. This is a linear setup and the sensitivity are
omputed eÆ
iently by means of the adjoint model be-
ause there is only one dependent variable and manyindependent.The �elds of sensitivity one to six months earlier areshown in Fig. 7. In De
ember the 
on
entration atMauna Loa is most sensitive to surfa
e sour
es aroundHawaii. The main peak is East of the islands proba-bly due to eastwards winds during this month. Anoth-er peak is in South Asia 
aused by the overall wester-ly winds in higher latitudes. The sensitivity to 
uxesin November are distributed over the whole northernhemisphere. The southern hemisphere has still very lit-tle e�e
t on the tra
er 
on
entration at Mauna Loa inDe
ember. The only ex
eption is a tong from MaunaLoa to the west 
oast of South Ameri
a. Going furtherba
kward in time the two hemisphere are still di�erentbe
ause there is little inter hemisphere ex
hange of airmasses. Inside the hemispheres the sensitivities be
omemore and more equally distributed by strong westerlywinds.5.3. North Atlanti
 meridional heat 
ux sensitivityThe adjoint of the MIT GCM des
ribed above hasbeen generated by TAMC. A few te
hnique 
ode adap-tations were ne
essary in order to apply TAMC. A sim-



13pli�ed 
he
kpointing te
hnique (Griewank , 1992) is ap-plied to redu
e the memory requirements for storing themodel traje
tory. This te
hnique essentially divides thetime interval the adjoint model is integrated into subin-tervals. For ea
h of them the original model is integrat-ed �rst to store intermediate results followed by the ad-joint run whi
h requires the intermediate results. Thesubintervals are pro
essed in reverse order starting fromprevious stored 
he
kpoints written by a previous modelintegration. In summary an additional model integra-tion is required 
ompared to a standard adjoint modelintegration and the memory requirements are redu
edby about a square root of the time-steps. Without thiste
hnique, adjoint models of sophisti
ated o
ean or at-mospheri
 models 
ould not be integrated on todays
omputers. Details of the adjoint model and its perfor-man
e are des
ribed in (J. Maroztke et al., submittedmanus
ript, 1999). The adjoint model is used for dataassimilation (Stammer et al., 1997) and sensitivity stud-ies. Code to 
ompute se
ond order derivatives has beengenerated by TAMC (forward over reverse mode) andis used for error estimation of adjoint data assimilationresults (R. Giering, unpublished manus
ript, 1998).The meridional North Atlanti
 heat 
ux and its vari-ability is very important for 
limate in Europe. Thesensitivity of the zonal integrated annual mean heat
ux with respe
t to initial temperature and salinity ofthe year 1993 has been determined by the adjoint MITGCM. The traje
tory used for linearization has been
omputed by adjoint data assimilation (Stammer et al.,1997). The initial model state and the boundary for
-ing have been varied. The traje
tory is an optimal �tto surfa
e data (sea surfa
e height from altimeter, windstress, heat and fresh water 
uxes), and subsurfa
e da-ta (analyzed temperature and salinity �elds (Levitus ,1989)) whi
h is also 
onsistent with the model equa-tions.In Fig. 8 the sensitivity to salinity in 1160m depthis shown. The largest sensitivities 
an be found in thewestern boundary under
urrent. The water masses inthis region are transported southwards a
ross the se
-tion where we 
omputed the heat 
ux. But salinity doesnot in
uen
e the 
ux of temperature dire
tly, insteadlarger salinity means higher density and this in
uen
esthe velo
ities. The higher the density inside the un-der
urrent the larger the southward velo
ity. Largersouthward velo
ities of 
old water masses in
rease thenorthward heat 
ux. This 
hain of reasons and 
ausesis the explanation for the northward extend of sensi-tivities. Transport pro
esses alone are to slow to bringwater masses from the Labrador Sea down to 29N in



14only one year. 6. CONCLUSIONSAn introdu
tion into tangent linear (TLM) and ad-joint models (ADM) was given. The theory is based onsimple linear algebra. and the 
onne
tion to tangen-t linear and adjoint operators has been made. Variousappli
ations of TLM's and ADM's have been explained.TLM's and ADM's are the implementation of the for-ward and reverse mode of Computational Di�erentia-tion. Automati
 di�erentiation is probably the mosteÆ
ient way to 
onstru
t these models espe
ially forlarge and 
omplex 
odes of sophisti
ated biogeo
hemi-
al models. Several tools exists, they di�er in the pro-gramming language they 
an handle and algorithmi
al-ly. The TLM's and ADM's presented here have beengenerated by the Tangent linear and Adjoint ModelCompiler (TAMC).Sensitivities have been shown for three di�erent bio-geo
hemi
al models. The sensitivities 
an be explainedby the pro
esses in the 
orresponding system. Sensitiv-itiy �elds provided by adjoint models 
an give a newinsights to these pro
esses. The interpretation of these�elds is still in its infan
y. But with up
oming studies ino
eanography and meteorology the full potential of ad-joint sensitivities will probably be examined. Tangentlinear and adjoint models will be
ome standard toolsfor the study of pro
esses in all kind of biogeo
hemi
alsystems. ACKNOWLEDGMENTSThe author thanks Mi
k Follows for his help run-ning the MIT o�-line o
ean tra
er model and ThomasKaminski for providing sensitivity �elds of the atmo-spheri
 tra
er model TM2.APPENDIX A: TAMC EXAMPLEThe 
onstru
tion of adjoint 
ode by TAMC isdemonstrated by the simple Fortran-90 subroutine(
ostfun
.f) shown below.subroutine 
ostfun
( n, x, f
 )integer n, i, niterreal x(n), f
, y(n)y = xdo i = 1, nitery = sin( y )end dof
 = sum( y*y )end



15The top-level routine is 
ostfun
, it does not 
all anyother subroutines. The dependent variable is f
, thevalue of a 
ost fun
tion and the independent variableis the ve
tor of 
ontrol variables x . The adjoint 
ode(reverse mode) is generated by the 
ommand:tam
 -module 
ostfun
 -input x -output f
-reverse -pure -f90 
ostfun
.fThe option pure suppresses the 
omputation of the
ost fun
tion itself. De
larations in the adjoint 
ode(
ostfun
 ad.f) have been removed and 
omments wereadded for demonstration purposes.subroutine ad
ostfun
( n, x, adx, adf
 )--- de
larations ---ady(:) = 0 !reset lo
al adjointsy = x !re
ompute last ydo i = 1, niter !..y = sin(y) !..end do !..ady = ady+2*adf
*y !adjoint toadf
 = 0 !..f
 = sum( y*y )do i = niter, 1, -1y = x !re
omputationdo i1 = 1, i-1 !..of a
tual yy = sin(y) !..end do !..ady = ady*
os(y) !adjoint loop kernelend doadx = adx+ady !adjoint toady = 0 !..y = xendFirst of all all lo
al adjoint variables are reset. Thenthe �nal value of y is re
omputed for the following ad-joint assignment. The adjoint loop operates in reverseorder and every path begins with the re
omputation ofthe required intermediate value of y. This re
omputa-tion is itself a loop and it is very expensive in terms ofrun-time.In the se
ond example (
ostfun
2.f) a few dire
tiveshave been inserted to make the 
ode more eÆ
ient byavoiding re
omputations.



16subroutine 
ostfun
2( n, x, f
 )integer n, i, niterreal x(n), f
, y(n)CADJ INIT ftape = 'tp'CADJ INIT 
tape = 
ommon, nitery = xdo i = 1, niterCADJ STORE y = 
tapey = sin( y )end doCADJ STORE y = ftapef
 = sum( y*y )endThe �rst two dire
tives de�ne tapes where values 
anbe stored. The �rst tape (ftape) is realized as a di-re
t a

ess �le on dis
 and the se
ond (
tape) as stati
memory with a �xed number of re
ords (niter). Thestorage itself is done at the pla
es where the other twodire
tives o

ur.The new adjoint 
ode (
ostfun
2 ad.f) is generatedby the 
ommand:tam
 -module 
ostfun
2 -input x -output f
-reverse -pure -f90 
ostfun
2.fAgain the 
ode shown below has been edited.subroutine ad
ostfun
2( n, adx, adf
 )--- de
larations ---open(60,ACCESS='DIRECT',RECL=8)ady(:) = 0 !reset lo
al adjointsread(60,REC=1) y !restore last yady = ady+2*adf
*y !adjoint toadf
 = 0 !..f
 = sum( y*y )do i = niter, 1, -1y(:) = yh(:,i) !restore a
tual yady = ady*
os(y) !adjoint loop kernelend doadx = adx+ady !adjoint toady = 0. !..y = x
lose(60) !
lose filesendIn 
ontrast to the �rst adjoint 
ode the required inter-mediate results are now restored from the tapes. The�le whi
h implements the �rst tape is opened and 
losedat the beginning and end of the subroutine. Re
ord-s are read from this tape by dire
t a

ess. Be
auseInput/Output operations are usually slow a

ess tore
ords on this tape is slow. The se
ond tape is a stati
array (yh), its last dimension extend is the number ofre
ords to be stored. Re
ords are stored and restoredby assignments, a very fast operation.Compared to the �rst adjoint 
ode this one needsmu
h less run-time. Intermediate results are restored



17from di�erent tapes where in the �rst example they arere
omputed. Thus, the penalty for the faster 
ode isthe higher memory requirements. In pra
ti
e there is atrade-o� between run-time and memory resour
es whi
hdepends on many parameters of the 
omputer ar
hite
-ture the 
ode is running on.*Referen
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22Figure 1. Tangent linear model : adve
tion and di�usionof perturbationsFigure 1. Tangent linear model : adve
tion and di�usion of perturbationsFigure 2. Adjoint model : adve
tion and di�usion ofin
uen
eFigure 2. Adjoint model : adve
tion and di�usion of in
uen
eFigure 3. Sensitivity of top layer (25m) tra
er 
on
entra-tion to the top layer 
on
entration one month earlier.Figure 3. Sensitivity of top layer (25m) tra
er 
on
entration to the top layer 
on
entration one monthearlier.Figure 4. Sensitivity of top layer (25m) tra
er 
on
entra-tion to the top layer 
on
entration 5 month earlier.Figure 4. Sensitivity of top layer (25m) tra
er 
on
entration to the top layer 
on
entration 5 monthearlier.Figure 5. Sensitivity of top layer (25m) tra
er 
on
entra-tion to the top layer 
on
entration 8 month earlier.Figure 5. Sensitivity of top layer (25m) tra
er 
on
entration to the top layer 
on
entration 8 monthearlier.Figure 6. Sensitivity of top layer (25m) tra
er 
on
entra-tion to the top layer 
on
entration 8 month earlier.Figure 6. Sensitivity of top layer (25m) tra
er 
on
entration to the top layer 
on
entration 8 monthearlier.Figure 7. Sensitivity of De
ember mean 
on
entration atMauna Loa to monthly 
uxes.Figure 7. Sensitivity of De
ember mean 
on
entration at Mauna Loa to monthly 
uxes.Figure 8. Sensitivity of the annual mean, zonal integrat-ed, meridional heat 
ux at 29N in the North Atlanti
 tosalinity in 1160m depth at the beginning of the year (fromJ. Maroztke et al., submitted manus
ript, 1999).Figure 8. Sensitivity of the annual mean, zonal integrated, meridional heat 
ux at 29N in the NorthAtlanti
 to salinity in 1160m depth at the beginning of the year (from J. Maroztke et al., submittedmanus
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