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Adjoint models are powerful tools for inverse modeling. They are increas-
ingly being used in meteorology and oceanography for sensitivity studies,
data assimilation, and parameter estimation. Covering the range from sim-
ple box models to sophisticated General Circulation Models, they efficiently
compute the sensitivity of a few model output variables with respect to
arbitrarily many input variables. To the contrary, tangent linear models
efficiently compute the model output perturbation resulting from an initial
input perturbation. Mathematically, both models evaluate the first derivate
or Jacobian matrix of the mapping defined by the original model. Efficiency
is an important issue for sophisticated models and in practice often deter-
mine whether a problem is solvable or not. We discuss here the advantages
of tangent linear and adjoint models, as well as when to use either of them.
The construction of adjoint and tangent linear models by hand is tedious and
error prone. Computational Differentiation reduces this work substantially.
The basics of Computational Differentiation, its advantages and limitations
are presented. Three different kinds of sensitivities are shown: the sensitivi-
ty of a passive tracer concentration in the ocean to previous concentrations,
the sensitivity of atmospheric CO9 at Mauna Loa, Hawaii, to surface fluxes,
and the sensitivity of the North Atlantic meridional heat flux to subsurface
salinity. They are discussed in terms of the chains of cause and effect. For
biogeochemical models of passive tracers sensitivities can be explained by
advective and diffusive processes. However, for dynamically active tracers,
the sensitivities are modified by an additional path of influence.

1. INTRODUCTION

Adjoint model (ADM) and tangent linear models
(TLM) are increasingly being developed and used in
meteorology and physical oceanography. Typical ap-
plications are data assimilation, parameter estimation,
sensitivity analysis and determination of singular vec-
tors (Errico, 1997).

In canonical form, a model is a mapping of input
variables (independent variables) onto output variables
(dependent variables). If this mapping is differentiable,
its first derivative is the Jacobian matrix. A TLM is a
program to compute the action of the Jacobian matrix
on a vector. Here, the vector is mostly a perturba-
tion of the initial condition or the boundary forcing.
The TLM is linear and it depends on the model trajec-
tory at which the linearization took place. The TLM
simulates the development of perturbations with time



and can be used to analyze the impact of small distur-
bances. For instance, consider a TLM of the advection
of a passive tracer by horizontal currents. If the trac-
er concentration at one point is changed, this anomaly
is transported downstream and broadened by diffusion
(Fig. 1).

In contrast, an ADM is a program to compute the
action of the transposed Jacobian matrix on a vector.
It is adjoint to the tangent linear model! The ADM is
linear and depends on the model trajectory at which
the linearization took place in the same manner as the
TLM. The vector is an arbitrary sensitivity and the
ADM simulates the development of sensitivities back-
ward. The ADM can be used to analyze the origin of
any anomaly. As shown in Figure 2, a difference at one
location can be caused by propagation of an anomaly
from upstream. Thereby, due to the effect of diffusion,
the possible origin of the anomaly is located in a broader
area.

There are some limitations of TLMs and ADMs. If,
at some locations, the underlying function is non dif-
ferentiable, sensitivities cannot be determined or they
might be misleading. In ocean and atmospheric models
sub grid processes are often formulated in a non differ-
entiable way. If, e.g., convective adjustment is used for
unstable stratification in an ocean model the sensitivi-
ties do not represent a change in the convection pattern.
Thus, a revised formulation of the parametrization of
sub grid processes might be necessary (Xu, 1996a,b;
Zou, 1997).

TLM’s and ADM’s are based on the linear approxi-
mation. For non linear models the sensitivities are on-
ly valid at a certain point in phase space. For highly
non-linear or chaotic models the computed sensitivities
might change rapidly with a varying point of lineariza-
tion. In some extremes, this could make these sensitiv-
ities totally useless.

Direct coding of ADMs and TLMs of sophisticated
model is extremely time consuming and subject to er-
rors. Hence, automatic generation of ADMs and TLM-
s represents a distinct advantage. In computational
science this is known as reverse and forward mode of
Automatic or Computational Differentiation. A tool
of Computational Differentiation is the Tangent linear
and Adjoint Model Compiler (TAMC, R. Giering, un-
published manual, 1997). This tool has been used to
generate several ADMs and TLMs. The performance
of the generated code is comparable to hand written
models (Giering and Kaminski, 1998b).

Here we focus on the application of adjoint models for
sensitivity studies. In three examples of biogeochemical



models adjoint sensitivities of different output variables
with respect to different input variables are discussed.
For passive tracers in the ocean and atmosphere sensi-
tivities can be explained by horizontal advection, verti-
cal advection, and diffusive processes. In contrast, an
active tracer influences the model dynamics and has an
additional influence on the system.

The outline of the paper is as follows. After present-
ing the mathematical background in section 2 the ap-
plications of TLMs and ADMs are described in section
3. Section 4 explains the different methods of tangent
linear and adjoint code constructions and gives a short
introduction into Computational Differentiation. Fields
of sensitivities for three different models are presented
and explained in section 5.

2. MATHEMATICAL BACKGROUND

In the following the mathematical background of tan-
gent linear and adjoint models is described by the vari-
ational formalism. In the literature other descriptions
can be found, which are commonly based on the La-
grange function (e.g. Thacker and Long, 1988; Schrdter,
1989). By using the variational formalism, the connec-
tion between adjoint models and the adjoint operator
of Linear Algebra is more obvious. Here we introduce
adjoint models in terms of data assimilation for peda-
gogical reasons.

Consider a numerical model describing a dynamical
system. Let y° € R™ (m € N) be a set of observations
and y € R™ the corresponding model values. The misfit
between model and observations is usually quantified by
a quadratic cost function

J=-(y-y",y-y%) (1)

N | =

by the choice of an appropriate inner product (-, -).
This implies that least-squares-fitting is intended: The
smaller J is the better the model fits the data. How can
the model be manipulated in order to obtain an opti-
mal fit between observations and corresponding model
values?

In order to manipulate the model, we specify a set
of n € N parameters x, which, in the following, will
be called control variables. The dependence of y on x
within the model is given by the mapping

F:R* —- R
X = y.

(2)

This mapping usually consists of the time integration
of the model and a mapping of the state vector to the



observed values. Thus, J can be expressed in terms of
x by

J:R"

X

=

- (3)
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The problem we want to solve is to determine the set
of control variables x that minimizes .J. Efficient mini-
mization algorithms make use of the gradient V,J(x;)
of J with respect to the control variables at a given
point x;. To first order we write the Taylor expansion
of J:

J(x) = J(xi) + (VxJ (%), x = x;) + o(|x—x;]) (4)
or, equivalent, as variation
0J = (VxJ(x;), 0x) . (5)

In the following we will use this shorthand notation
whenever linear approximations are involved. Suppose
F is sufficiently regular, then for each control vector x;,
a variation of y can be approximated to first order by

oy = A(x;) 0x , (6)

where A(x;) denotes the Jacobian of F at x;.
Due to the symmetry of the inner product and the
product rule the differentiation of (3) yields

0 = < (A(xi)déx, F(xi) —y°)

+ 5 (F(xi) —y°, A(x;)0x) (7)
= (F(xi)—y°, A(xi)ox)

N[ o=

Using the definition of the adjoint operator A*:
(v,Aw) = (A'v,w) , (8)
we obtain
0J = (A*(xi)(F(xi) —y°), 0x) . (9)

Therefore, using to the definition of the gradient (5),
the gradient of the cost function with respect to the
control variables is

Vil (xi) = A™(x;) (F(xi) —y°) - (10)

The linear operator A (x;) represents the tangent lin-
ear model. Its adjoint A*(x;), which is linear as well,
represents the adjoint model. Both operators depend on
the point x; in phase space, at which the linearization
took place. According to (10), the misfit [F(x;) — y°]

represents the forcing of the adjoint model.



3. APPLICATIONS
3.1. Sensitivity analysis

3.1.1. Forward sensitivity. A standard procedure for
studying the impact of specific model parameters or
variables on the model trajectory or on derived quanti-
ties is to disturb this variable and compare the model
response to a ‘control run’ which was undisturbed. This
is a finite difference approximation to the exact sensi-
tivity and is commonly known as the Green’s function
approach. In contrast, the TLM provides the exact sen-
sitivity (in most cases almost up to machine precision),
requires comparable memory resources, but often needs
less run time. The integration of the TLM (operator A
in (6)) gives the development dy of an initial perturba-
tion dx.

A ix = dy (11)

The perturbation vector dx might consist of only one
variable or of any linear combination of variables that
the model trajectory depends on. The final perturba-
tion vector dy can be the perturbation of the model
state or of a number of derived quantities. The TLM
computes any linear combination of rows of the Jaco-
bian matrix.

3.1.2. Reverse or backward sensitivity. To answer
questions such as, where does a specific anomaly come
from or to what is a particular feature most sensitive,
a reverse or backward sensitivity is required. Forward
sensitivities can hardly answer this efficiently. The AD-
M integrates sensitivities of a specific feature from the
effect to the cause. For time evolving models this means
backward in time. The possible cause 6*x* is the result
of the action of the adjoint operator (A* in (10)) on the
effect 0*y*.

A* 6"yt =46"x" (12)

The ADM does not model physical quantities, e.g., con-
centrations of tracers; instead it models the sensitivities
of a property to these quantities. Any linear combina-
tion of columns of the Jacobian matrix can be deter-
mined by the ADM.

Adjoint sensitivity analysis is well established in me-
teorology (e.g. Hall et al., 1982; Errico and Vukicevic,
1992; Rabier et al., 1992; Zou et al., 1993; Langland
et al., 1995). Kaminski et al. (1996) determined the
sensitivity of the seasonal cycle of atmospheric CO» at
monitoring stations to the seasonal cycle of surface ex-
change fluxes. Oldenborgh et al. (1999) found adjoint
Kelvin and Rossby waves in an adjoint pacific ocean
model, carrying sensitivities in the opposite direction
to their physical counterparts. The sensitivity of the



North Atlantic annual mean meridional heat flux to ini-
tial temperature and salinity was discussed by Maroztke
(J. Maroztke et al., submitted manuscript, 1999).

3.2. Data assimilation

Within variational data assimilation, a cost function

J

J(x) = (y-y)'W(y -y (13)
which quantifies the misfit between model and data. is
being minimized by varying control variables x. The
misfit is weighted by a matrix W. Under the assump-
tion of Gaussian error distribution of all contributing
errors and when W is the sum of the associated er-
ror covariance matrices, min (J(x)) corresponds to the
maximum likelihood solution. The most important er-
rors are the measurement error, the representation er-
ror, and the model error. The representation error is
a result of the different spatial and temporal scales re-
solved by the model and the data. The control variables
can be the initial conditions or the boundary condition-
s. Among the many methods of optimization, gradient
methods are the most efficient for differentiable func-
tions. They require computation of the gradient of the
cost function with respect to the control variables at
each iteration. This gradient is the sensitivity of the
cost function with respect to the control variables. It
is most efficiently computed by the ADM. Thus, the
method is also known as adjoint data assimilation.

This method was first applied in meteorology to sim-
plified models (Lewis and Derber, 1985) and is now im-
plemented for weather prediction (e.g. Courtier et al.,
1994).

Tziperman et al. (1992b) applied the adjoint method
to assimilate hydrographic data into an Atlantic ocean
model. Several data sets have also been assimilated
into a primitive equation global ocean model by varying
initial conditions and boundary forcing (Stammer et al.,
1997).

3.3. Parameter estimation

The estimation of parameters in the underlying e-
quations of a model is very similar to data assimilation.
Here the control variables are some of these parameters
p and a cost function J(p) is minimized. Again, the
ADM provides the gradient VJ of the cost function
with respect to the parameters. Usually, the number
of parameters determined are of the order 10-100. This
allows use of more memory intensive optimization al-
gorithm, for example the Newton algorithm. Navon
(1997) recently reviewed the state of the art in param-
eter estimation.



3.4. Singular vectors or most unstable modes

In order to forecast the time development of a system,
it is useful to know which initial perturbations amplify
most rapidly (e.g. Webster and Hopkins, 1994; Vukice-
vic, 1998). If norm || ||, is the measure of an initial
perturbation and norm || ||, that of the final perturba-
tion then we need to determine the maximum of:

19yle
(14)
[10x][a
Assuming that dx has fixed norm and that || ||, is de-
fined by an appropriate scalar product:
[Ix[[p := (x, x) (15)
we need to maximize
(by.dy) = (Aox,Adx) (16)
= (dx, A" A 6x) (17)

by varying only the direction of §x. This means that
one has to find the largest eigenvalues A; and the cor-
responding eigenvectors v; of A* A satisfying:

A*A v = >\l vy o. (18)

Thus, a perturbation éx of fixed norm implies the
largest possible perturbation dy if it is in the direc-
tion associated with the dominant eigenvector of the
operator A* A (adjoint times tangent linear operator).

The dominant eigenvectors are called singular vec-
tors or the most unstable modes. They are the solution
to a generalized stability problem (Farrel and Ioannou,
1996a,b).

3.5. Posterior error estimates

The results of adjoint data assimilation and parame-
ter estimation, the optimal control variables, have un-
certainties. These uncertainties are proportional to the
curvature of the cost function at its minimum: Strong
curvature implies smaller error. Estimates of the errors
of optimal control variables are useful for several pur-
poses. For example, to use the results in a statistically
optimal sense one needs to quantify their errors to build
their probability density distribution.

For Gaussian error distribution and in the linear ap-
proximation the posterior error covariance matrix Pf
of the control variables is the inverse Hessian matrix of
the cost function J at its minimum, i.e. for the optimal
set of control variables x,,; (Thacker, 1989). The Hes-
sian matrix is the second order derivative of the cost
function.

(Pf)_l = viJ(Xopt) =V (VxJ (Xopt)) (19)



The full error covariance matrix can be huge and, in
general, cannot be computed with present available re-
sources for sophisticated ocean or atmospheric models
that have a large number of control variables (O(10%)).
However, products of this matrix with arbitrary vectors
cost only about twice as much as an ADM integration.
These products provide a module to extract some fea-
tures of the Hessian matrix, e.g., the leading eigenvec-
tors. Details about the number of operations for an
ADM, TDM, and Hessian vector products compared to
the number of operations for the cost function are given
by Griewank (1993).

4. METHODS OF CONSTRUCTIONS

Applications described above obviously require a nu-
merical code of the model, its adjoint, and its tangent
linear. In the following we focus on adjoint code con-
struction because it is much more complicated than the
construction of the tangent linear model. A descrip-
tion of the construction of tangent linear models (for-
ward mode of Computational Differentiation) is given
by Bischof et al. (1992). The question is how practical
coding of adjoint models can be done.

Suppose we want to simulate a dynamical system nu-
merically. The development of a numerical simulation
program is usually done in three steps. First, the an-
alytical differential equations are formulated. Then a
discretization scheme is chosen and the discrete equa-
tions are constructed. The last step is to implement an
algorithm that solves the discrete equations in a pro-
gramming language. The construction of the tangent
linear and adjoint model code may start after any of
these three steps.

4.1. Adjoint of analytical equations

The analytical model equations are transformed into
the adjoint equations by applying the rules for analyt-
ical adjoint operators. These equations subsequently
are discretized and solved using a numerical algorithm.
However, since the product rule is not valid for dis-
crete operators, one has to be careful in constructing
the discrete adjoint operators. This method is mostly
applied to box models having simple boundary condi-
tions (Schrdter, 1989).

4.2. Adjoint of discretized equations

Constructing the adjoint model from the discrete
model equations is usually done by defining a Lagrange
Function. The derivatives of the Euler-Lagrange equa-
tions with respect to the model variables yield the dis-
crete adjoint equations. Applying this method, no ad-



joint operator has to be constructed explicitly. Howev-
er, extensive and cumbersome coding is necessary. The
boundary conditions are handled separately in most
cases.

Thacker has introduced this concept into oceanog-
raphy (Thacker, 1987; Thacker and Long, 1988; Long
and Thacker, 1989a,b). and constructed the adjoint
code of the GFDL ocean model this way (Tziperman
and Thacker, 1989; Tziperman et al., 1992a.b).

4.3. Adjoint of model code

This article is concerned with the third method,
where the adjoint code is developed directly from the
numerical code of the model. A numerical model is an
algorithm that can be viewed as a composition of dif-
ferentiable functions F, each representing a statement
in the numerical code:

y = F(x) := (FhoFu_10 ... o Fa0F)(x) (20)
with intermediate results:
zl = Fio ... o Fi(x) (21)

The composition is differentiated by application of the
chain rule:
F'(x) = Falgnor - Fosi lgn—z oo - Fo [ Fi I (22)

z! x

The resulting multiple product of Jacobian matrices can
by evaluated in any order, since matrix multiply is an
associative operation!. Operating in forward mode, the
intermediate derivatives are computed in the same order
as the model computes the composition. In contrast,
the adjoint model operates in reverse mode, i.e. the
intermediate derivatives are computed in reverse order.
A detailed introduction to differentiation of algorithms
is given by Griewank (1989). This method is feasible
even for highly sophisticated models with complicated
boundary conditions.

In reverse mode, a distinct adjoint model code frag-
ment corresponds to each model code statement. The
adjoint code fragments are composed in reverse order
compared to the model code. For each kind of statement
simple rules can be formulated for constructing adjoin-
t statements (Talagrand, 1991; Thacker, 1991; Giering
and Kaminski, 1998a). This simplifies considerably the
adjoint code construction and subsequent debugging.
Two examples of adjoint code constructions are given
in section A.

INote, matrix multiply does not commute.



4.4. The TAMC: a source-to-source translator

The Tangent linear and Adjoint Model Compiler
(TAMC) is a source-to-source translator for Fortran
programs (TAMC, R. Giering, unpublished manual,
1997). It generates Fortran routines for computation of
the first-order derivatives out of Fortran routines com-
puting a function. The derivatives are computed in the
reverse mode (adjoint model) or in the forward mode
(tangent-linear model). In both modes Jacobian-Matrix
products can be computed. TAMC is an implementa-
tion of the rules described by Giering and Kaminski
(1998a).

TAMC reads the program code and constructs an
internal abstract representation. The code is checked
for semantical correctness and several analysises are ap-
plied. Most importantly the data flow analysis detect-
s all active variables: Given the independent and de-
pendent variables and the top-level subroutine TAMC
determines all variables which carry derivative informa-
tion. Derivative code is only generated for those vari-
ables. An abstract representation to compute deriva-
tives is generated and finally this is transformed to For-
tran code.

The code generation can be influenced by compiler
options and directives. In reverse mode the TAMC gen-
erates by default recalculations of required variables.
Alternatively, these variables can be store and restored
if specific compiler directives are provided in the code.
Black-box routines for which the code is not available
are handled by the TAMC if sufficient flow information
about this routines is given in form of directives.

5. SENSITIVITIES
5.1. Passive tracer in the ocean

The MIT GCM solves the incompressible Navier-
Stokes equations on a C-grid, with optional hydrostat-
ic approximation. The model has been applied to a
large range of scales of ocean dynamics ranging from
studies of convective chimneys to global ocean circula-
tion estimation (Marshall et al., 1997b,a) and has been
developed specifically for use on modern parallel com-
puting platforms. For coarse resolution, global ocean
circulation studies, mesoscale eddy transfer effects are
achieved using schemes related to the parameterization
of Gent and McWilliams (1990) but with spatially and
temporally variable mixing coefficients ( Visbeck et al.,
1997). A convective adjustment scheme is used to pa-
rameterize vertical mixing due to static instabilities.

For tracer simulations we use an “off-line” tracer
model, based on the MIT ocean GCM (Follows et al.,
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1996). Velocity, temperature, salinity and convective
mixing parameters are stored periodically during a
prognostic integration of the GCM, and used to drive
the tracer model off-line. This represents a considerable
economy in computational requirements and allows an
efficient implementation of the tracer model using High
Performance Fortran.

The off-line model for the tracer distribution, C, takes
the form:

9 N

EC‘FV(U C)+V(KVC)+Q, =S (23)
where u* is the transformed Eulerian mean velocity (fol-
lowing Gent and McWilliams (1990)) that advects trac-
ers and the tensor K constrains sub grid scale mixing to
be along isopycnal surfaces. Convective mixing in the
off-line model, represented by Q., uses the statistics
of vertical convection events in the GCM to control ap-
propriate vertical mixing of the off-line tracer. External
sources and sinks (such as air—sea fluxes) are represent-
ed by S. Applications of the off-line tracer model (in
slightly different configurations) are illustrated in the
publications Follows et al. (1996); Follows and Marshall
(1996), and Williams and Follows (1998).

For the sensitivity study provided here, the model do-
main is the North Atlantic and extends from 100W-10E
and 5S-80N. The dependent variable is the concentra-
tion of a passive tracer at 75W,29N in the upper layer
at a specific time. The adjoint of the off-line tracer
model has been generated by TAMC and is integrated
for one year. The sensitivity to concentrations a few
months before have been monitored. One month earlier
the sensitivity are still concentrated at one place but
the diffusivity has already begun to broadened it (Fig.
3). If the adjoint model is integrated further (backward
in time) the maximum of sensitivity starts to move up-
stream. (Fig. 4). This means the concentration in this
area influences the final concentration at the specific
point the most. But surprisingly 8 month earlier the
largest sensitivity is found in the original area again.
(Fig. 5). This can be understood by looking at the
sensitivity in a deeper layer. (Fig. 6). Here the sen-
sitivity is much larger than in the upper layer. Thus,
in this case vertical mixing of sensitivities increases the
sensitivity in an upper layer, where otherwise the sen-
sitivity would be low, because it has been advected to
other regions by the much faster velocities. In the first
month the still large sensitivity has been mixed to lower
layers and not moved very much because of the small
velocities.
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5.2. Passive tracer in the atmosphere

TM2 is a three-dimensional atmospheric transport
model which solves the continuity equation for an arbi-
trary number of tracers on an Eulerian grid spanning
the entire globe (Heimann, 1995). It is driven by stored
meteorological fields derived from analyses of a weather
forecast model. Tracer advection is calculated using the
"slopes scheme” of Russel and Lerner (1981). Vertical
transport due to convective clouds is parameterized by
the cloud mass flux scheme of Tiedtke (1989). Source
and sink processes are calculated for each tracer fol-
lowed by the transports. The model has a regular grid
horizontally (8° x 10°) and sigma coordinates in the ver-
tical (9 layers). The time-step of the model is 4 hours.
The adjoint code has been generated by TAMC and is
used for sensitivity studies (Kaminski et al., 1996) and
data assimilation (Kaminski et al., 1998a,b).

In the present study the model is forced with mete-
orological fields of the year 1987, derived from analy-
ses of the European Center for Medium Range Weath-
er Forecast (ECMWF) updated every 12 hours. Only
one passive tracer (CO;) is modeled for the particular
year. Here, the sensitivity of the December mean trac-
er concentration at the mountain Mauna Loa, Hawaii
in December 1987 to monthly mean surface fluxes is of
interest. This is a linear setup and the sensitivity are
computed efficiently by means of the adjoint model be-
cause there is only one dependent variable and many
independent.

The fields of sensitivity one to six months earlier are
shown in Fig. 7. In December the concentration at
Mauna Loa is most sensitive to surface sources around
Hawaii. The main peak is East of the islands proba-
bly due to eastwards winds during this month. Anoth-
er peak is in South Asia caused by the overall wester-
ly winds in higher latitudes. The sensitivity to fluxes
in November are distributed over the whole northern
hemisphere. The southern hemisphere has still very lit-
tle effect on the tracer concentration at Mauna Loa in
December. The only exception is a tong from Mauna
Loa to the west coast of South America. Going further
backward in time the two hemisphere are still different
because there is little inter hemisphere exchange of air
masses. Inside the hemispheres the sensitivities become
more and more equally distributed by strong westerly
winds.

5.3. North Atlantic meridional heat flux sensitivity

The adjoint of the MIT GCM described above has
been generated by TAMC. A few technique code adap-
tations were necessary in order to apply TAMC. A sim-

12



plified checkpointing technique (Griewank, 1992) is ap-
plied to reduce the memory requirements for storing the
model trajectory. This technique essentially divides the
time interval the adjoint model is integrated into subin-
tervals. For each of them the original model is integrat-
ed first to store intermediate results followed by the ad-
joint run which requires the intermediate results. The
subintervals are processed in reverse order starting from
previous stored checkpoints written by a previous model
integration. In summary an additional model integra-
tion is required compared to a standard adjoint model
integration and the memory requirements are reduced
by about a square root of the time-steps. Without this
technique, adjoint models of sophisticated ocean or at-
mospheric models could not be integrated on todays
computers. Details of the adjoint model and its perfor-
mance are described in (J. Maroztke et al., submitted
manuscript, 1999). The adjoint model is used for data
assimilation (Stammer et al., 1997) and sensitivity stud-
ies. Code to compute second order derivatives has been
generated by TAMC (forward over reverse mode) and
is used for error estimation of adjoint data assimilation
results (R. Giering, unpublished manuscript, 1998).

The meridional North Atlantic heat flux and its vari-
ability is very important for climate in Europe. The
sensitivity of the zonal integrated annual mean heat
flux with respect to initial temperature and salinity of
the year 1993 has been determined by the adjoint MIT
GCM. The trajectory used for linearization has been
computed by adjoint data assimilation (Stammer et al.,
1997). The initial model state and the boundary forc-
ing have been varied. The trajectory is an optimal fit
to surface data (sea surface height from altimeter, wind
stress, heat and fresh water fluxes), and subsurface da-
ta (analyzed temperature and salinity fields (Levitus,
1989)) which is also consistent with the model equa-
tions.

In Fig. 8 the sensitivity to salinity in 1160m depth
is shown. The largest sensitivities can be found in the
western boundary undercurrent. The water masses in
this region are transported southwards across the sec-
tion where we computed the heat flux. But salinity does
not influence the flux of temperature directly, instead
larger salinity means higher density and this influences
the velocities. The higher the density inside the un-
dercurrent the larger the southward velocity. Larger
southward velocities of cold water masses increase the
northward heat flux. This chain of reasons and causes
is the explanation for the northward extend of sensi-
tivities. Transport processes alone are to slow to bring
water masses from the Labrador Sea down to 29N in

13



only one year.

6. CONCLUSIONS

An introduction into tangent linear (TLM) and ad-
joint models (ADM) was given. The theory is based on
simple linear algebra. and the connection to tangen-
t linear and adjoint operators has been made. Various
applications of TLM’s and ADM'’s have been explained.

TLM’s and ADM’s are the implementation of the for-
ward and reverse mode of Computational Differentia-
tion. Automatic differentiation is probably the most
efficient way to construct these models especially for
large and complex codes of sophisticated biogeochemi-
cal models. Several tools exists, they differ in the pro-
gramming language they can handle and algorithmical-
ly. The TLM’s and ADM’s presented here have been
generated by the Tangent linear and Adjoint Model
Compiler (TAMC).

Sensitivities have been shown for three different bio-
geochemical models. The sensitivities can be explained
by the processes in the corresponding system. Sensitiv-
itiy fields provided by adjoint models can give a new
insights to these processes. The interpretation of these
fields is still in its infancy. But with upcoming studies in
oceanography and meteorology the full potential of ad-
joint sensitivities will probably be examined. Tangent
linear and adjoint models will become standard tools
for the study of processes in all kind of biogeochemical
systems.
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APPENDIX A: TAMC EXAMPLE

The construction of adjoint code by TAMC is
demonstrated by the simple Fortran-90 subroutine
(costfunc.f) shown below.
subroutine costfunc( n, x, fc )
integer n, i, niter
real x(n), fc, y(n)

y = X
do i = 1, niter

y = sin( y )
end do

fc = sum( y*y )
end
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The top-level routine is costfunc, it does not call any
other subroutines. The dependent variable is fc, the
value of a cost function and the independent variable
is the vector of control variables x . The adjoint code
(reverse mode) is generated by the command:

tamc -module costfunc -input x -output fc
-reverse -pure -f90 costfunc.f

The option pure suppresses the computation of the
cost function itself. Declarations in the adjoint code
(costfunc_ad.f) have been removed and comments were
added for demonstration purposes.

subroutine adcostfunc( n, x, adx, adfc )

--- declarations ---
ady(:) =0 Ireset local adjoints
y =X !recompute last y
do i = 1, niter I,

y = sin(y) ..
end do ..
ady = ady+2*adfcx*y 'adjoint to
adfc = 0 I..fc = sum( y*y )
do i = niter, 1, -1

y =X !recomputation

do i1l =1, i-1 !'..of actual y

y = sin(y) ..

end do LI

ady = ady*cos(y) ladjoint loop kernel
end do
adx = adx+ady 'adjoint to
ady = 0 'y = x
end

First of all all local adjoint variables are reset. Then
the final value of y is recomputed for the following ad-
joint assignment. The adjoint loop operates in reverse
order and every path begins with the recomputation of
the required intermediate value of y. This recomputa-
tion is itself a loop and it is very expensive in terms of
run-time.

In the second example (costfunc2.f) a few directives
have been inserted to make the code more efficient by
avoiding recomputations.
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subroutine costfunc2( n, x, fc )
integer n, i, niter
real x(n), fc, y(n)
CADJ INIT ftape = ’tp’
CADJ INIT ctape = common, niter
y =X
do i = 1, niter
CADJ STORE y = ctape
y = sin( y )
end do
CADJ STORE y = ftape
fc = sum( y*y )
end
The first two directives define tapes where values can
be stored. The first tape (ftape) is realized as a di-
rect access file on disc and the second (ctape) as static
memory with a fixed number of records (niter). The
storage itself is done at the places where the other two
directives occur.
The new adjoint code (costfunc2.ad.f) is generated
by the command:

tamc -module costfunc2 -input x -output fc
-reverse -pure -f90 costfunc2.f

Again the code shown below has been edited.
subroutine adcostfunc2( n, adx, adfc )

--- declarations ---
open(60,ACCESS="DIRECT’ ,RECL=8)
ady(:) =0 Ireset local adjoints
read(60,REC=1) y Irestore last y
ady = ady+2*adfc*y 'adjoint to
adfc = 0 I..fc = sum( y*y )
do i = niter, 1, -1
y(:) = yh(:,1) Irestore actual y
ady = ady*cos(y) ladjoint loop kernel
end do
adx = adx+ady 'adjoint to
ady = 0. 'y = x
close(60) Iclose files
end

In contrast to the first adjoint code the required inter-
mediate results are now restored from the tapes. The
file which implements the first tape is opened and closed
at the beginning and end of the subroutine. Record-
s are read from this tape by direct access. Because
Input/Output operations are usually slow access to
records on this tape is slow. The second tape is a static
array (yh), its last dimension extend is the number of
records to be stored. Records are stored and restored
by assignments, a very fast operation.

Compared to the first adjoint code this one needs
much less run-time. Intermediate results are restored
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from different tapes where in the first example they are
recomputed. Thus, the penalty for the faster code is
the higher memory requirements. In practice there is a
trade-off between run-time and memory resources which
depends on many parameters of the computer architec-
ture the code is running on.

*
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Figure 1. Tangent linear model : advection and diffusion
of perturbations

Figure 1. Tangent linear model : advection and diffusion of perturbations

Figure 2.  Adjoint model : advection and diffusion of
influence

Figure 2. Adjoint model : advection and diffusion of influence

Figure 3. Seunsitivity of top layer (25m) tracer concentra-
tion to the top layer concentration one month earlier.

Figure 3. Sensitivity of top layer (25m) tracer concentration to the top layer concentration one month
earlier.

Figure 4. Sensitivity of top layer (25m) tracer concentra-
tion to the top layer concentration 5 month earlier.

Figure 4. Sensitivity of top layer (25m) tracer concentration to the top layer concentration 5 month
earlier.

Figure 5. Sensitivity of top layer (25m) tracer concentra-
tion to the top layer concentration 8 month earlier.

Figure 5. Sensitivity of top layer (25m) tracer concentration to the top layer concentration 8 month
earlier.

Figure 6. Sensitivity of top layer (25m) tracer concentra-
tion to the top layer concentration 8 month earlier.

Figure 6. Sensitivity of top layer (25m) tracer concentration to the top layer concentration 8 month
earlier.

Figure 7. Sensitivity of December mean concentration at
Mauna Loa to monthly fluxes.

Figure 7. Sensitivity of December mean concentration at Mauna Loa to monthly fluxes.

Figure 8. Sensitivity of the annual mean, zonal integrat-
ed, meridional heat flux at 29N in the North Atlantic to
salinity in 1160m depth at the beginning of the year (from
J. Maroztke et al., submitted manuscript, 1999).

Figure 8. Sensitivity of the annual mean, zonal integrated, meridional heat flux at 29N in the North
Atlantic to salinity in 1160m depth at the beginning of the year (from J. Maroztke et al., submitted
manuscript, 1999).
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