
1Tangent linear and adjoint biogeohemial modelsRalf GieringJet Propulsion LaboratoryCalifornia Institute of Tehnology, CaliforniaAdjoint models are powerful tools for inverse modeling. They are inreas-ingly being used in meteorology and oeanography for sensitivity studies,data assimilation, and parameter estimation. Covering the range from sim-ple box models to sophistiated General Cirulation Models, they eÆientlyompute the sensitivity of a few model output variables with respet toarbitrarily many input variables. To the ontrary, tangent linear modelseÆiently ompute the model output perturbation resulting from an initialinput perturbation. Mathematially, both models evaluate the �rst derivateor Jaobian matrix of the mapping de�ned by the original model. EÆienyis an important issue for sophistiated models and in pratie often deter-mine whether a problem is solvable or not. We disuss here the advantagesof tangent linear and adjoint models, as well as when to use either of them.The onstrution of adjoint and tangent linear models by hand is tedious anderror prone. Computational Di�erentiation redues this work substantially.The basis of Computational Di�erentiation, its advantages and limitationsare presented. Three di�erent kinds of sensitivities are shown: the sensitivi-ty of a passive traer onentration in the oean to previous onentrations,the sensitivity of atmospheri CO2 at Mauna Loa, Hawaii, to surfae uxes,and the sensitivity of the North Atlanti meridional heat ux to subsurfaesalinity. They are disussed in terms of the hains of ause and e�et. Forbiogeohemial models of passive traers sensitivities an be explained byadvetive and di�usive proesses. However, for dynamially ative traers,the sensitivities are modi�ed by an additional path of inuene.1. INTRODUCTIONAdjoint model (ADM) and tangent linear models(TLM) are inreasingly being developed and used inmeteorology and physial oeanography. Typial ap-pliations are data assimilation, parameter estimation,sensitivity analysis and determination of singular ve-tors (Errio, 1997).In anonial form, a model is a mapping of inputvariables (independent variables) onto output variables(dependent variables). If this mapping is di�erentiable,its �rst derivative is the Jaobian matrix. A TLM is aprogram to ompute the ation of the Jaobian matrixon a vetor. Here, the vetor is mostly a perturba-tion of the initial ondition or the boundary foring.The TLM is linear and it depends on the model traje-tory at whih the linearization took plae. The TLMsimulates the development of perturbations with time



2and an be used to analyze the impat of small distur-banes. For instane, onsider a TLM of the advetionof a passive traer by horizontal urrents. If the tra-er onentration at one point is hanged, this anomalyis transported downstream and broadened by di�usion(Fig. 1).In ontrast, an ADM is a program to ompute theation of the transposed Jaobian matrix on a vetor.It is adjoint to the tangent linear model! The ADM islinear and depends on the model trajetory at whihthe linearization took plae in the same manner as theTLM. The vetor is an arbitrary sensitivity and theADM simulates the development of sensitivities bak-ward. The ADM an be used to analyze the origin ofany anomaly. As shown in Figure 2, a di�erene at oneloation an be aused by propagation of an anomalyfrom upstream. Thereby, due to the e�et of di�usion,the possible origin of the anomaly is loated in a broaderarea.There are some limitations of TLMs and ADMs. If,at some loations, the underlying funtion is non dif-ferentiable, sensitivities annot be determined or theymight be misleading. In oean and atmospheri modelssub grid proesses are often formulated in a non di�er-entiable way. If, e.g., onvetive adjustment is used forunstable strati�ation in an oean model the sensitivi-ties do not represent a hange in the onvetion pattern.Thus, a revised formulation of the parametrization ofsub grid proesses might be neessary (Xu, 1996a,b;Zou, 1997).TLM's and ADM's are based on the linear approxi-mation. For non linear models the sensitivities are on-ly valid at a ertain point in phase spae. For highlynon-linear or haoti models the omputed sensitivitiesmight hange rapidly with a varying point of lineariza-tion. In some extremes, this ould make these sensitiv-ities totally useless.Diret oding of ADMs and TLMs of sophistiatedmodel is extremely time onsuming and subjet to er-rors. Hene, automati generation of ADMs and TLM-s represents a distint advantage. In omputationalsiene this is known as reverse and forward mode ofAutomati or Computational Di�erentiation. A toolof Computational Di�erentiation is the Tangent linearand Adjoint Model Compiler (TAMC, R. Giering, un-published manual, 1997). This tool has been used togenerate several ADMs and TLMs. The performaneof the generated ode is omparable to hand writtenmodels (Giering and Kaminski , 1998b).Here we fous on the appliation of adjoint models forsensitivity studies. In three examples of biogeohemial



3models adjoint sensitivities of di�erent output variableswith respet to di�erent input variables are disussed.For passive traers in the oean and atmosphere sensi-tivities an be explained by horizontal advetion, verti-al advetion, and di�usive proesses. In ontrast, anative traer inuenes the model dynamis and has anadditional inuene on the system.The outline of the paper is as follows. After present-ing the mathematial bakground in setion 2 the ap-pliations of TLMs and ADMs are desribed in setion3. Setion 4 explains the di�erent methods of tangentlinear and adjoint ode onstrutions and gives a shortintrodution into Computational Di�erentiation. Fieldsof sensitivities for three di�erent models are presentedand explained in setion 5.2. MATHEMATICAL BACKGROUNDIn the following the mathematial bakground of tan-gent linear and adjoint models is desribed by the vari-ational formalism. In the literature other desriptionsan be found, whih are ommonly based on the La-grange funtion (e.g. Thaker and Long , 1988; Shr�oter ,1989). By using the variational formalism, the onne-tion between adjoint models and the adjoint operatorof Linear Algebra is more obvious. Here we introdueadjoint models in terms of data assimilation for peda-gogial reasons.Consider a numerial model desribing a dynamialsystem. Let yo 2 IRm (m 2 IN) be a set of observationsand y 2 IRm the orresponding model values. The mis�tbetween model and observations is usually quanti�ed bya quadrati ost funtionJ := 12 (y � yo ; y � yo ) (1)by the hoie of an appropriate inner produt ( � ; � ).This implies that least-squares-�tting is intended: Thesmaller J is the better the model �ts the data. How anthe model be manipulated in order to obtain an opti-mal �t between observations and orresponding modelvalues?In order to manipulate the model, we speify a setof n 2 IN parameters x, whih, in the following, willbe alled ontrol variables. The dependene of y on xwithin the model is given by the mappingF : IRn ! IRmx 7! y : (2)This mapping usually onsists of the time integrationof the model and a mapping of the state vetor to the



4observed values. Thus, J an be expressed in terms ofx byJ : IRn ! IRx 7! 12 (F(x)� yo ; F(x)� yo ) : (3)The problem we want to solve is to determine the setof ontrol variables x that minimizes J . EÆient mini-mization algorithms make use of the gradient rxJ(xi)of J with respet to the ontrol variables at a givenpoint xi. To �rst order we write the Taylor expansionof J :J(x) = J(xi) + (rxJ(xi) ; x� xi ) + o(jx�xij) (4)or, equivalent, as variationÆJ = (rxJ(xi) ; Æx ) : (5)In the following we will use this shorthand notationwhenever linear approximations are involved. SupposeF is suÆiently regular, then for eah ontrol vetor xi,a variation of y an be approximated to �rst order byÆy = A(xi) Æx ; (6)where A(xi) denotes the Jaobian of F at xi.Due to the symmetry of the inner produt and theprodut rule the di�erentiation of (3) yieldsÆJ = 12 (A(xi)Æx ; F(xi)� yo )+ 12 (F(xi)� yo ; A(xi)Æx )= (F(xi)� yo ; A(xi)Æx ) : (7)Using the de�nition of the adjoint operator A�:(v ; Aw ) = (A� v ; w ) ; (8)we obtainÆJ = (A�(xi)(F(xi)� yo) ; Æx ) : (9)Therefore, using to the de�nition of the gradient (5),the gradient of the ost funtion with respet to theontrol variables isrxJ(xi) = A�(xi) (F(xi)� yo) : (10)The linear operator A(xi) represents the tangent lin-ear model. Its adjoint A�(xi), whih is linear as well,represents the adjoint model. Both operators depend onthe point xi in phase spae, at whih the linearizationtook plae. Aording to (10), the mis�t [F(xi) � yo℄represents the foring of the adjoint model.



53. APPLICATIONS3.1. Sensitivity analysis3.1.1. Forward sensitivity. A standard proedure forstudying the impat of spei� model parameters orvariables on the model trajetory or on derived quanti-ties is to disturb this variable and ompare the modelresponse to a 'ontrol run' whih was undisturbed. Thisis a �nite di�erene approximation to the exat sensi-tivity and is ommonly known as the Green's funtionapproah. In ontrast, the TLM provides the exat sen-sitivity (in most ases almost up to mahine preision),requires omparable memory resoures, but often needsless run time. The integration of the TLM (operator Ain (6)) gives the development Æy of an initial perturba-tion Æx. A Æx = Æy (11)The perturbation vetor Æx might onsist of only onevariable or of any linear ombination of variables thatthe model trajetory depends on. The �nal perturba-tion vetor Æy an be the perturbation of the modelstate or of a number of derived quantities. The TLMomputes any linear ombination of rows of the Jao-bian matrix.3.1.2. Reverse or bakward sensitivity. To answerquestions suh as, where does a spei� anomaly omefrom or to what is a partiular feature most sensitive,a reverse or bakward sensitivity is required. Forwardsensitivities an hardly answer this eÆiently. The AD-M integrates sensitivities of a spei� feature from thee�et to the ause. For time evolving models this meansbakward in time. The possible ause Æ�x� is the resultof the ation of the adjoint operator (A� in (10)) on thee�et Æ�y�. A� Æ�y� = Æ�x� (12)The ADM does not model physial quantities, e.g., on-entrations of traers; instead it models the sensitivitiesof a property to these quantities. Any linear ombina-tion of olumns of the Jaobian matrix an be deter-mined by the ADM.Adjoint sensitivity analysis is well established in me-teorology (e.g. Hall et al., 1982; Errio and Vukievi,1992; Rabier et al., 1992; Zou et al., 1993; Langlandet al., 1995). Kaminski et al. (1996) determined thesensitivity of the seasonal yle of atmospheri CO2 atmonitoring stations to the seasonal yle of surfae ex-hange uxes. Oldenborgh et al. (1999) found adjointKelvin and Rossby waves in an adjoint pai� oeanmodel, arrying sensitivities in the opposite diretionto their physial ounterparts. The sensitivity of the



6North Atlanti annual mean meridional heat ux to ini-tial temperature and salinity was disussed by Maroztke(J. Maroztke et al., submitted manusript, 1999).3.2. Data assimilationWithin variational data assimilation, a ost funtionJ J(x) = (y � yo)tW(y � yo) (13)whih quanti�es the mis�t between model and data. isbeing minimized by varying ontrol variables x. Themis�t is weighted by a matrix W. Under the assump-tion of Gaussian error distribution of all ontributingerrors and when W is the sum of the assoiated er-ror ovariane matries, min (J(x)) orresponds to themaximum likelihood solution. The most important er-rors are the measurement error, the representation er-ror, and the model error. The representation error isa result of the di�erent spatial and temporal sales re-solved by the model and the data. The ontrol variablesan be the initial onditions or the boundary ondition-s. Among the many methods of optimization, gradientmethods are the most eÆient for di�erentiable fun-tions. They require omputation of the gradient of theost funtion with respet to the ontrol variables ateah iteration. This gradient is the sensitivity of theost funtion with respet to the ontrol variables. Itis most eÆiently omputed by the ADM. Thus, themethod is also known as adjoint data assimilation.This method was �rst applied in meteorology to sim-pli�ed models (Lewis and Derber , 1985) and is now im-plemented for weather predition (e.g. Courtier et al.,1994).Tziperman et al. (1992b) applied the adjoint methodto assimilate hydrographi data into an Atlanti oeanmodel. Several data sets have also been assimilatedinto a primitive equation global oean model by varyinginitial onditions and boundary foring (Stammer et al.,1997).3.3. Parameter estimationThe estimation of parameters in the underlying e-quations of a model is very similar to data assimilation.Here the ontrol variables are some of these parametersp and a ost funtion J(p) is minimized. Again, theADM provides the gradient rpJ of the ost funtionwith respet to the parameters. Usually, the numberof parameters determined are of the order 10-100. Thisallows use of more memory intensive optimization al-gorithm, for example the Newton algorithm. Navon(1997) reently reviewed the state of the art in param-eter estimation.



73.4. Singular vetors or most unstable modesIn order to foreast the time development of a system,it is useful to know whih initial perturbations amplifymost rapidly (e.g. Webster and Hopkins , 1994; Vukie-vi, 1998). If norm k ka is the measure of an initialperturbation and norm k kb that of the �nal perturba-tion then we need to determine the maximum of:kÆykbkÆxka (14)Assuming that Æx has �xed norm and that k kb is de-�ned by an appropriate salar produt:kxkb := (x ; x ) (15)we need to maximize( Æy ; Æy ) = (A Æx ; A Æx ) (16)= ( Æx ; A�A Æx ) (17)by varying only the diretion of Æx. This means thatone has to �nd the largest eigenvalues �i and the or-responding eigenvetors vi of A�A satisfying:A�A vl = �l vl : (18)Thus, a perturbation Æx of �xed norm implies thelargest possible perturbation Æy if it is in the dire-tion assoiated with the dominant eigenvetor of theoperator A�A (adjoint times tangent linear operator).The dominant eigenvetors are alled singular ve-tors or the most unstable modes. They are the solutionto a generalized stability problem (Farrel and Ioannou,1996a,b).3.5. Posterior error estimatesThe results of adjoint data assimilation and parame-ter estimation, the optimal ontrol variables, have un-ertainties. These unertainties are proportional to theurvature of the ost funtion at its minimum: Strongurvature implies smaller error. Estimates of the errorsof optimal ontrol variables are useful for several pur-poses. For example, to use the results in a statistiallyoptimal sense one needs to quantify their errors to buildtheir probability density distribution.For Gaussian error distribution and in the linear ap-proximation the posterior error ovariane matrix Pfof the ontrol variables is the inverse Hessian matrix ofthe ost funtion J at its minimum, i.e. for the optimalset of ontrol variables xopt (Thaker , 1989). The Hes-sian matrix is the seond order derivative of the ostfuntion.(Pf )�1 = r2xJ(xopt) = r (rxJ(xopt)) (19)



8The full error ovariane matrix an be huge and, ingeneral, annot be omputed with present available re-soures for sophistiated oean or atmospheri modelsthat have a large number of ontrol variables (O(106)).However, produts of this matrix with arbitrary vetorsost only about twie as muh as an ADM integration.These produts provide a module to extrat some fea-tures of the Hessian matrix, e.g., the leading eigenve-tors. Details about the number of operations for anADM, TDM, and Hessian vetor produts ompared tothe number of operations for the ost funtion are givenby Griewank (1993).4. METHODS OF CONSTRUCTIONSAppliations desribed above obviously require a nu-merial ode of the model, its adjoint, and its tangentlinear. In the following we fous on adjoint ode on-strution beause it is muh more ompliated than theonstrution of the tangent linear model. A desrip-tion of the onstrution of tangent linear models (for-ward mode of Computational Di�erentiation) is givenby Bishof et al. (1992). The question is how pratialoding of adjoint models an be done.Suppose we want to simulate a dynamial system nu-merially. The development of a numerial simulationprogram is usually done in three steps. First, the an-alytial di�erential equations are formulated. Then adisretization sheme is hosen and the disrete equa-tions are onstruted. The last step is to implement analgorithm that solves the disrete equations in a pro-gramming language. The onstrution of the tangentlinear and adjoint model ode may start after any ofthese three steps.4.1. Adjoint of analytial equationsThe analytial model equations are transformed intothe adjoint equations by applying the rules for analyt-ial adjoint operators. These equations subsequentlyare disretized and solved using a numerial algorithm.However, sine the produt rule is not valid for dis-rete operators, one has to be areful in onstrutingthe disrete adjoint operators. This method is mostlyapplied to box models having simple boundary ondi-tions (Shr�oter , 1989).4.2. Adjoint of disretized equationsConstruting the adjoint model from the disretemodel equations is usually done by de�ning a LagrangeFuntion. The derivatives of the Euler-Lagrange equa-tions with respet to the model variables yield the dis-rete adjoint equations. Applying this method, no ad-



9joint operator has to be onstruted expliitly. Howev-er, extensive and umbersome oding is neessary. Theboundary onditions are handled separately in mostases.Thaker has introdued this onept into oeanog-raphy (Thaker , 1987; Thaker and Long , 1988; Longand Thaker , 1989a,b). and onstruted the adjointode of the GFDL oean model this way (Tzipermanand Thaker , 1989; Tziperman et al., 1992a,b).4.3. Adjoint of model odeThis artile is onerned with the third method,where the adjoint ode is developed diretly from thenumerial ode of the model. A numerial model is analgorithm that an be viewed as a omposition of dif-ferentiable funtions F , eah representing a statementin the numerial ode:y = F(x) := (Fn Æ Fn�1 Æ : : : Æ F2 Æ F1) (x) (20)with intermediate results:zl := Fl Æ : : : Æ F1(x) (21)The omposition is di�erentiated by appliation of thehain rule:F 0(x) = Fn jzn�1 �F 0n�1 jzn�2 � : : : �F 02 jz1 �F 01 jx (22)The resulting multiple produt of Jaobian matries anby evaluated in any order, sine matrix multiply is anassoiative operation1. Operating in forward mode, theintermediate derivatives are omputed in the same orderas the model omputes the omposition. In ontrast,the adjoint model operates in reverse mode, i.e. theintermediate derivatives are omputed in reverse order.A detailed introdution to di�erentiation of algorithmsis given by Griewank (1989). This method is feasibleeven for highly sophistiated models with ompliatedboundary onditions.In reverse mode, a distint adjoint model ode frag-ment orresponds to eah model ode statement. Theadjoint ode fragments are omposed in reverse orderompared to the model ode. For eah kind of statementsimple rules an be formulated for onstruting adjoin-t statements (Talagrand , 1991; Thaker , 1991; Gieringand Kaminski , 1998a). This simpli�es onsiderably theadjoint ode onstrution and subsequent debugging.Two examples of adjoint ode onstrutions are givenin setion A.1Note, matrix multiply does not ommute.



104.4. The TAMC: a soure-to-soure translatorThe Tangent linear and Adjoint Model Compiler(TAMC) is a soure-to-soure translator for Fortranprograms (TAMC, R. Giering, unpublished manual,1997). It generates Fortran routines for omputation ofthe �rst-order derivatives out of Fortran routines om-puting a funtion. The derivatives are omputed in thereverse mode (adjoint model) or in the forward mode(tangent-linear model). In both modes Jaobian-Matrixproduts an be omputed. TAMC is an implementa-tion of the rules desribed by Giering and Kaminski(1998a).TAMC reads the program ode and onstruts aninternal abstrat representation. The ode is hekedfor semantial orretness and several analysises are ap-plied. Most importantly the data ow analysis detet-s all ative variables: Given the independent and de-pendent variables and the top-level subroutine TAMCdetermines all variables whih arry derivative informa-tion. Derivative ode is only generated for those vari-ables. An abstrat representation to ompute deriva-tives is generated and �nally this is transformed to For-tran ode.The ode generation an be inuened by ompileroptions and diretives. In reverse mode the TAMC gen-erates by default realulations of required variables.Alternatively, these variables an be store and restoredif spei� ompiler diretives are provided in the ode.Blak-box routines for whih the ode is not availableare handled by the TAMC if suÆient ow informationabout this routines is given in form of diretives.5. SENSITIVITIES5.1. Passive traer in the oeanThe MIT GCM solves the inompressible Navier-Stokes equations on a C-grid, with optional hydrostat-i approximation. The model has been applied to alarge range of sales of oean dynamis ranging fromstudies of onvetive himneys to global oean irula-tion estimation (Marshall et al., 1997b,a) and has beendeveloped spei�ally for use on modern parallel om-puting platforms. For oarse resolution, global oeanirulation studies, mesosale eddy transfer e�ets areahieved using shemes related to the parameterizationof Gent and MWilliams (1990) but with spatially andtemporally variable mixing oeÆients (Visbek et al.,1997). A onvetive adjustment sheme is used to pa-rameterize vertial mixing due to stati instabilities.For traer simulations we use an \o�-line" traermodel, based on the MIT oean GCM (Follows et al.,



111996). Veloity, temperature, salinity and onvetivemixing parameters are stored periodially during aprognosti integration of the GCM, and used to drivethe traer model o�-line. This represents a onsiderableeonomy in omputational requirements and allows aneÆient implementation of the traer model using HighPerformane Fortran.The o�-line model for the traer distribution, C, takesthe form:��tC+r (u�C) +r (KrC) +Q = S (23)where u� is the transformed Eulerian mean veloity (fol-lowing Gent and MWilliams (1990)) that advets tra-ers and the tensorK onstrains sub grid sale mixing tobe along isopynal surfaes. Convetive mixing in theo�-line model, represented by Q, uses the statistisof vertial onvetion events in the GCM to ontrol ap-propriate vertial mixing of the o�-line traer. Externalsoures and sinks (suh as air{sea uxes) are represent-ed by S. Appliations of the o�-line traer model (inslightly di�erent on�gurations) are illustrated in thepubliations Follows et al. (1996); Follows and Marshall(1996), and Williams and Follows (1998).For the sensitivity study provided here, the model do-main is the North Atlanti and extends from 100W-10Eand 5S-80N. The dependent variable is the onentra-tion of a passive traer at 75W,29N in the upper layerat a spei� time. The adjoint of the o�-line traermodel has been generated by TAMC and is integratedfor one year. The sensitivity to onentrations a fewmonths before have been monitored. One month earlierthe sensitivity are still onentrated at one plae butthe di�usivity has already begun to broadened it (Fig.3). If the adjoint model is integrated further (bakwardin time) the maximum of sensitivity starts to move up-stream. (Fig. 4). This means the onentration in thisarea inuenes the �nal onentration at the spei�point the most. But surprisingly 8 month earlier thelargest sensitivity is found in the original area again.(Fig. 5). This an be understood by looking at thesensitivity in a deeper layer. (Fig. 6). Here the sen-sitivity is muh larger than in the upper layer. Thus,in this ase vertial mixing of sensitivities inreases thesensitivity in an upper layer, where otherwise the sen-sitivity would be low, beause it has been adveted toother regions by the muh faster veloities. In the �rstmonth the still large sensitivity has been mixed to lowerlayers and not moved very muh beause of the smallveloities.



125.2. Passive traer in the atmosphereTM2 is a three-dimensional atmospheri transportmodel whih solves the ontinuity equation for an arbi-trary number of traers on an Eulerian grid spanningthe entire globe (Heimann, 1995). It is driven by storedmeteorologial �elds derived from analyses of a weatherforeast model. Traer advetion is alulated using the"slopes sheme" of Russel and Lerner (1981). Vertialtransport due to onvetive louds is parameterized bythe loud mass ux sheme of Tiedtke (1989). Soureand sink proesses are alulated for eah traer fol-lowed by the transports. The model has a regular gridhorizontally (8Æ�10Æ) and sigma oordinates in the ver-tial (9 layers). The time-step of the model is 4 hours.The adjoint ode has been generated by TAMC and isused for sensitivity studies (Kaminski et al., 1996) anddata assimilation (Kaminski et al., 1998a,b).In the present study the model is fored with mete-orologial �elds of the year 1987, derived from analy-ses of the European Center for Medium Range Weath-er Foreast (ECMWF) updated every 12 hours. Onlyone passive traer (CO2) is modeled for the partiularyear. Here, the sensitivity of the Deember mean tra-er onentration at the mountain Mauna Loa, Hawaiiin Deember 1987 to monthly mean surfae uxes is ofinterest. This is a linear setup and the sensitivity areomputed eÆiently by means of the adjoint model be-ause there is only one dependent variable and manyindependent.The �elds of sensitivity one to six months earlier areshown in Fig. 7. In Deember the onentration atMauna Loa is most sensitive to surfae soures aroundHawaii. The main peak is East of the islands proba-bly due to eastwards winds during this month. Anoth-er peak is in South Asia aused by the overall wester-ly winds in higher latitudes. The sensitivity to uxesin November are distributed over the whole northernhemisphere. The southern hemisphere has still very lit-tle e�et on the traer onentration at Mauna Loa inDeember. The only exeption is a tong from MaunaLoa to the west oast of South Ameria. Going furtherbakward in time the two hemisphere are still di�erentbeause there is little inter hemisphere exhange of airmasses. Inside the hemispheres the sensitivities beomemore and more equally distributed by strong westerlywinds.5.3. North Atlanti meridional heat ux sensitivityThe adjoint of the MIT GCM desribed above hasbeen generated by TAMC. A few tehnique ode adap-tations were neessary in order to apply TAMC. A sim-



13pli�ed hekpointing tehnique (Griewank , 1992) is ap-plied to redue the memory requirements for storing themodel trajetory. This tehnique essentially divides thetime interval the adjoint model is integrated into subin-tervals. For eah of them the original model is integrat-ed �rst to store intermediate results followed by the ad-joint run whih requires the intermediate results. Thesubintervals are proessed in reverse order starting fromprevious stored hekpoints written by a previous modelintegration. In summary an additional model integra-tion is required ompared to a standard adjoint modelintegration and the memory requirements are reduedby about a square root of the time-steps. Without thistehnique, adjoint models of sophistiated oean or at-mospheri models ould not be integrated on todaysomputers. Details of the adjoint model and its perfor-mane are desribed in (J. Maroztke et al., submittedmanusript, 1999). The adjoint model is used for dataassimilation (Stammer et al., 1997) and sensitivity stud-ies. Code to ompute seond order derivatives has beengenerated by TAMC (forward over reverse mode) andis used for error estimation of adjoint data assimilationresults (R. Giering, unpublished manusript, 1998).The meridional North Atlanti heat ux and its vari-ability is very important for limate in Europe. Thesensitivity of the zonal integrated annual mean heatux with respet to initial temperature and salinity ofthe year 1993 has been determined by the adjoint MITGCM. The trajetory used for linearization has beenomputed by adjoint data assimilation (Stammer et al.,1997). The initial model state and the boundary for-ing have been varied. The trajetory is an optimal �tto surfae data (sea surfae height from altimeter, windstress, heat and fresh water uxes), and subsurfae da-ta (analyzed temperature and salinity �elds (Levitus ,1989)) whih is also onsistent with the model equa-tions.In Fig. 8 the sensitivity to salinity in 1160m depthis shown. The largest sensitivities an be found in thewestern boundary underurrent. The water masses inthis region are transported southwards aross the se-tion where we omputed the heat ux. But salinity doesnot inuene the ux of temperature diretly, insteadlarger salinity means higher density and this inuenesthe veloities. The higher the density inside the un-derurrent the larger the southward veloity. Largersouthward veloities of old water masses inrease thenorthward heat ux. This hain of reasons and ausesis the explanation for the northward extend of sensi-tivities. Transport proesses alone are to slow to bringwater masses from the Labrador Sea down to 29N in



14only one year. 6. CONCLUSIONSAn introdution into tangent linear (TLM) and ad-joint models (ADM) was given. The theory is based onsimple linear algebra. and the onnetion to tangen-t linear and adjoint operators has been made. Variousappliations of TLM's and ADM's have been explained.TLM's and ADM's are the implementation of the for-ward and reverse mode of Computational Di�erentia-tion. Automati di�erentiation is probably the mosteÆient way to onstrut these models espeially forlarge and omplex odes of sophistiated biogeohemi-al models. Several tools exists, they di�er in the pro-gramming language they an handle and algorithmial-ly. The TLM's and ADM's presented here have beengenerated by the Tangent linear and Adjoint ModelCompiler (TAMC).Sensitivities have been shown for three di�erent bio-geohemial models. The sensitivities an be explainedby the proesses in the orresponding system. Sensitiv-itiy �elds provided by adjoint models an give a newinsights to these proesses. The interpretation of these�elds is still in its infany. But with upoming studies inoeanography and meteorology the full potential of ad-joint sensitivities will probably be examined. Tangentlinear and adjoint models will beome standard toolsfor the study of proesses in all kind of biogeohemialsystems. ACKNOWLEDGMENTSThe author thanks Mik Follows for his help run-ning the MIT o�-line oean traer model and ThomasKaminski for providing sensitivity �elds of the atmo-spheri traer model TM2.APPENDIX A: TAMC EXAMPLEThe onstrution of adjoint ode by TAMC isdemonstrated by the simple Fortran-90 subroutine(ostfun.f) shown below.subroutine ostfun( n, x, f )integer n, i, niterreal x(n), f, y(n)y = xdo i = 1, nitery = sin( y )end dof = sum( y*y )end



15The top-level routine is ostfun, it does not all anyother subroutines. The dependent variable is f, thevalue of a ost funtion and the independent variableis the vetor of ontrol variables x . The adjoint ode(reverse mode) is generated by the ommand:tam -module ostfun -input x -output f-reverse -pure -f90 ostfun.fThe option pure suppresses the omputation of theost funtion itself. Delarations in the adjoint ode(ostfun ad.f) have been removed and omments wereadded for demonstration purposes.subroutine adostfun( n, x, adx, adf )--- delarations ---ady(:) = 0 !reset loal adjointsy = x !reompute last ydo i = 1, niter !..y = sin(y) !..end do !..ady = ady+2*adf*y !adjoint toadf = 0 !..f = sum( y*y )do i = niter, 1, -1y = x !reomputationdo i1 = 1, i-1 !..of atual yy = sin(y) !..end do !..ady = ady*os(y) !adjoint loop kernelend doadx = adx+ady !adjoint toady = 0 !..y = xendFirst of all all loal adjoint variables are reset. Thenthe �nal value of y is reomputed for the following ad-joint assignment. The adjoint loop operates in reverseorder and every path begins with the reomputation ofthe required intermediate value of y. This reomputa-tion is itself a loop and it is very expensive in terms ofrun-time.In the seond example (ostfun2.f) a few diretiveshave been inserted to make the ode more eÆient byavoiding reomputations.



16subroutine ostfun2( n, x, f )integer n, i, niterreal x(n), f, y(n)CADJ INIT ftape = 'tp'CADJ INIT tape = ommon, nitery = xdo i = 1, niterCADJ STORE y = tapey = sin( y )end doCADJ STORE y = ftapef = sum( y*y )endThe �rst two diretives de�ne tapes where values anbe stored. The �rst tape (ftape) is realized as a di-ret aess �le on dis and the seond (tape) as statimemory with a �xed number of reords (niter). Thestorage itself is done at the plaes where the other twodiretives our.The new adjoint ode (ostfun2 ad.f) is generatedby the ommand:tam -module ostfun2 -input x -output f-reverse -pure -f90 ostfun2.fAgain the ode shown below has been edited.subroutine adostfun2( n, adx, adf )--- delarations ---open(60,ACCESS='DIRECT',RECL=8)ady(:) = 0 !reset loal adjointsread(60,REC=1) y !restore last yady = ady+2*adf*y !adjoint toadf = 0 !..f = sum( y*y )do i = niter, 1, -1y(:) = yh(:,i) !restore atual yady = ady*os(y) !adjoint loop kernelend doadx = adx+ady !adjoint toady = 0. !..y = xlose(60) !lose filesendIn ontrast to the �rst adjoint ode the required inter-mediate results are now restored from the tapes. The�le whih implements the �rst tape is opened and losedat the beginning and end of the subroutine. Reord-s are read from this tape by diret aess. BeauseInput/Output operations are usually slow aess toreords on this tape is slow. The seond tape is a statiarray (yh), its last dimension extend is the number ofreords to be stored. Reords are stored and restoredby assignments, a very fast operation.Compared to the �rst adjoint ode this one needsmuh less run-time. Intermediate results are restored
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22Figure 1. Tangent linear model : advetion and di�usionof perturbationsFigure 1. Tangent linear model : advetion and di�usion of perturbationsFigure 2. Adjoint model : advetion and di�usion ofinueneFigure 2. Adjoint model : advetion and di�usion of inueneFigure 3. Sensitivity of top layer (25m) traer onentra-tion to the top layer onentration one month earlier.Figure 3. Sensitivity of top layer (25m) traer onentration to the top layer onentration one monthearlier.Figure 4. Sensitivity of top layer (25m) traer onentra-tion to the top layer onentration 5 month earlier.Figure 4. Sensitivity of top layer (25m) traer onentration to the top layer onentration 5 monthearlier.Figure 5. Sensitivity of top layer (25m) traer onentra-tion to the top layer onentration 8 month earlier.Figure 5. Sensitivity of top layer (25m) traer onentration to the top layer onentration 8 monthearlier.Figure 6. Sensitivity of top layer (25m) traer onentra-tion to the top layer onentration 8 month earlier.Figure 6. Sensitivity of top layer (25m) traer onentration to the top layer onentration 8 monthearlier.Figure 7. Sensitivity of Deember mean onentration atMauna Loa to monthly uxes.Figure 7. Sensitivity of Deember mean onentration at Mauna Loa to monthly uxes.Figure 8. Sensitivity of the annual mean, zonal integrat-ed, meridional heat ux at 29N in the North Atlanti tosalinity in 1160m depth at the beginning of the year (fromJ. Maroztke et al., submitted manusript, 1999).Figure 8. Sensitivity of the annual mean, zonal integrated, meridional heat ux at 29N in the NorthAtlanti to salinity in 1160m depth at the beginning of the year (from J. Maroztke et al., submittedmanusript, 1999).TANGENT LINEAR AND ADJOINT MODELSGIERINGTANGENT LINEAR AND ADJOINT MODELSGIERINGTANGENT LINEAR AND ADJOINT MODELSGIERINGTANGENT LINEAR AND ADJOINT MODELSGIERING
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