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Abstract. An inverse modeling method is presented to evaluate the sources and sinks

of atmospheric methane. An adjoint version of a global transport model has been used to

estimate these fluxes at a relatively high spatial and temporal resolution. Measurements from

34 monitoring stations and 11 locations along two ship cruises by the National Oceanographic

and Atmospheric Administration have been used as input. Recent estimates of methane

sources, including a number of minor ones, have been used as a priori constraints. For the

target period 1993–1995 our inversion reduces the a priori assumed global methane emissions

of 528 to 505 Tg(CH4) yr−1 a posteriori. Further, the relative contribution of the Northern

Hemispheric sources decreases from 77% a priori to 67% a posteriori. In addition to making

the emission estimate more consistent with the measurements, the inversion helps to reduce

the uncertainties in the sources. Uncertainty reductions vary from 75% on the global scale to

∼1% on the grid-scale (8◦x10◦), indicating that the grid scale variability is not resolved by

the measurements. Large scale features such as the interhemispheric methane concentration

gradient are relatively well resolved and therefore impose strong constraints on the estimated

fluxes. The capability of the model to reproduce this gradient is critically dependent on the

accuracy at which the interhemispheric tracer exchange and the large-scale hydroxyl radical

distribution are represented. As a consequence, the inversion-derived emission estimates are

sensitive to errors in the transport model and the calculated hydroxyl radical distribution. In

fact, a considerable contribution of these model errors cannot be ignored. This underscores

that source quantification by inverse modeling is limited by the extent to which the rate of

interhemispheric transport and the hydroxyl radical distribution can be validated. We show

that the use of temporal and spatial correlations of emissions may significantly improve our

results; however, at present the experimental support for such correlations is lacking. Our

results further indicate that uncertainty reductions reported in previous inverse studies of

methane have been overestimated.



3

1. Introduction

Our understanding of atmospheric methane is to a large extent limited by a poor

quantification of its sources. Although the dominant methane-producing processes seem to

be identified, their global distributions as well as globally integrated source strengths are

still highly uncertain. Some sources for which relatively reliable statistics exist, for instance,

emissions by domestic ruminants, are relatively well constrained by integrating or scaling-up

the sources. For sources that have a large natural variability, for example, emissions from rice

paddies and natural wetlands, the opposite is true. Despite considerable effort to constrain

these important sources, progress is slow. For example, the amount of methane released from

rice paddies has recently been estimated at 80 ±50 Tg(CH4) yr−1 [Lelieveld et al., 1998],

indicating an uncertainty range similar to the IPCC [1990] estimate of nearly a decade ago

(20–150 Tg(CH4)/yr). Recent estimates of global methane emissions from natural wetlands,

the largest single source of methane, by Lelieveld et al. [1998] and Hein et al. [1997] disagree

strangely (145 ±30 and 232 ±27 Tg(CH4) yr−1, respectively).

Measurements over the past decade show a significant variability of the globally averaged

methane trend. The fluctuations in the early 1990s have been merely attributed to the

Mount Pinatubo eruption, but the underlying processes remain unclear [Dlugokencky et al.,

1994a, 1996]. Recent measurements indicate that the methane trend continues to decline

[Dlugokencky et al., 1998]. For the changes observed so far the sources and sinks of methane

are not well enough constrained to provide a reliable explanation. As a consequence, the

foundation for any future scenario of methane in the atmosphere is weak. It is important to

improve our understanding of the atmospheric budget of methane since it plays an important

role in radiative and chemical balances in the atmosphere.

In addition to upscaling techniques, inverse modeling can be used to estimate sources.

This method makes use of measurements of trace gas concentrations, which are translated to

constraints on the sources by means of an atmospheric transport model. Generally, the number

of available measurements is a limiting factor in this approach. For such an inverse problem
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to have a single solution either the number of emission parameters to be estimated must be

adjusted according to the available measurements, or different constraints must be introduced.

Often it is required that the solution be close to existing knowledge by introducing first guess

or a priori information of the sources. This can be done in a consistent way by adopting a

so-called Bayesian approach, in which all parameters are expressed as statistical probability

distributions. A solution in the form of a superposition of all statistical distributions involved

can be computed, from which means and covariances can be derived.

Until now a number of studies have quantified global-scale sources using inverse

methods aiming at different trace gases, such as CFCs [Brown, 1993; Hartley and Prinn,

1993; Plumb and Zheng, 1996; Mulquiney and Norton, 1998; Mulquiney et al., 1998], CH4

[Brown, 1993, 1995; Hein et al., 1997], CO2 [Enting et al., 1995; Rayner et al., 1996; Law

and Simmonds, 1996; Kaminski et al., 1999b]. In all these studies except the last, fluxes

are aggregated into a few large regions. This “big region” approach has the disadvantage

that emission distributions over predefined regions are assumed to be perfectly well known,

which, in practice, is justified by computational limitations rather than by knowledge about

the sources. In fact, such an approach may lead to significant biases in the estimated emissions

caused by nonhomogeneous sampling by the measurement network as shown by Trampert

and Snieder [1996]. Presently, it is unknown at which resolution fluxes should be represented

in order to reduce this bias to an insignificant size. Sensitivity studies, however, show that

significant biases occur when continental-scale regions are applied (T. Kaminski, personal

communication, 1998).

The aim of this paper is to study the sources and sinks of methane on a global scale and to

assess the usefulness of the existing measurement data as constraints. In this study, as opposed

to previous studies, biases are minimized using the method of Kaminski et al. [1999a]. To

compute efficiently the large number of sensitivities needed to perform an inversion in this

approach, an adjoint model is used. Except for the definition of the fluxes and the method

to derive the sensitivities the method we adopt resembles the method by Hein et al. [1997].
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Compared with this study, the measurements and first-guess assumptions have been extended

and updated.

Using our method, the inverse problem is strongly underdetermined because of the large

increase in the number of unknown compared with Hein et al. [1997], whereas the number

of constraints (measurements) is about the same. This can be interpreted as a reduction of a

priori information since temporal and spatial distributions of the sources and sinks within the

regions are no longer assumed to be well known. In fact, we choose the opposite starting point

by assuming that the uncertainties in the fluxes are fully uncorrelated. From this viewpoint the

big region approach can be considered as a case in which all fluxes over a region are assumed

to be fully correlated. Hence our confidence in the a priori emission distributions can be

expressed in the spatial and temporal correlation of source and sink uncertainties. Our method

allows different scenarios for treating these correlations.

In the next section the inverse modeling technique will be explained. We describe the

model in section 3, a priori knowledge on sources and sinks and measurements in sections 4

and 5, and the relevant chemistry in section 6. In section 7 the results of the methane inversion

are presented, focusing on differences between a priori and a posteriori estimates. The impact

of correlated uncertainties is studied in section 8, where we also present results using different

scenarios. Sensitivity tests have been performed to investigate the potential influence of the

major assumptions on the estimated sources and sinks. Finally, the ability of this method to

solve questions related to different emissions scenarios has been studied with rice paddies as a

test case in section 9.

2. Inversion Method and Unknowns

To deduce information about surface emissions from measured concentrations, we

use a global atmospheric chemistry transport model (CTM) that relates these emissions to

concentrations. In mathematical terminology the CTM defines a mapping (or function) of a

parameter set (including the emissions) on the simulated concentrations. For any measured
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methane concentration di,t at location i and month t this function can be written in the form

di,t = di,t[f,Q(f,sOH,sstra,c0),R(f,soh,sstra,c0),c0], (1)

where any component f j,m of the vector f represents the integrated surface emission over

region j and month m. Since f j,m may either represent a surface source or sink, in the following

the term “flux” will be used to denote exchange between the surface and the atmosphere. The

sOH parameterizes the chemical removal of methane Q due to the reaction with the hydroxyl

radical in each tropospheric grid box. Similarly, sstra and R refer to stratospheric methane loss

as a result of the reactions with O(1D), Cl, Br, OH radicals, and methane photolysis. Finally,

c0 is defined as the global mean methane concentration at the start of a simulation. The aim

of the inversion is to find the set of most probable values for the parameters f, sOH , sstra, and

c0. For this purpose we iteratively apply a linear inversion procedure that combines the set of

observations d and a set of a priori estimates f̃, s̃OH , s̃stra, and c̃0 using (1).

We need to iterate because the chemistry introduces a nonlinearity as explained below.

The amount of methane Qk,l oxidized by hydroxyl radicals in a particular tropospheric grid

box k and month l can be represented as

Qk,l = sOHkOH(T )[OH]k,l[CH4]k,l, (2)

where kOH is the temperature-dependent rate constant for the reaction between the hydroxyl

radical and methane. The dependency of the amount of methane oxidized on its concentration

[CH4]k,l causes a nonlinear response to the fluxes at the observational sites. Since tropospheric

methane oxidation influences the hydroxyl radical concentration, there is also a feedback

mechanism through changes of [OH]k,l. Similar nonlinearities occur because of the

stratospheric sink.

Different strategies can be adopted to define the fluxes represented by the parameters

f j,m. One approach is to classify fluxes geographically, for example, per continent or country

[see, e.g., Hartley and Prinn [1993]; Mulquiney et al. [1998]]. Alternatively, a classification
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distinguishing different flux-producing processes can be used, as is done, for instance, by Hein

et al. [1997]. Unless both the emission distributions over the specified regions and the model

are perfect, non homogeneous sampling by the sparse network will lead to biased emission

estimates [Trampert and Snieder, 1996]. This bias can be reduced by decreasing the size of the

regions or by defining the regions such that the uncertainty in the flux distribution over each

region is minimal. Because of the large spatial variability of CH4 emissions, we lack such

well-defined regions. Therefore, over the continents we choose to represent the surface flux in

every continental surface grid box of our CTM by a separate flux parameter. In contrast, ocean

grid boxes without linkages to continents or continental shelfs are aggregated into one single

region. For all fluxes, including those from the oceans, a temporal resolution of 1 month is

used; hence seasonal cycles are also subject to optimization.

The open ocean source is mainly driven by a small methane supersaturation in the surface

layer, ranging from 0.95 to 1.17 over the oceans [Bates et al., 1996]. Although the methane

concentration in ocean water has been determined at a limited number of sites only, the

available data suggest that the net emission is only small and that the variability is not large

enough to influence significantly the atmospheric methane concentration distribution. The

north and south polar ice shields are treated similarly to the oceans, which is justified by the

absence of any known significant surface source or sink in these regions. As a result of both

flux aggregations, the total number of surface flux parameters is reduced by about a factor of

2.

In (2) we scale the amount of methane oxidized in every tropospheric grid box by a single

parameter sOH , which implies that the entire spatiotemporal distribution of the OH radical

field is kept constant. Unlike the ocean and polar sources, such a treatment of the OH sink is

not sustained by our knowledge of the tropospheric OH distribution. Treating the OH sink this

way is equivalent to assuming that the OH distribution is perfectly known, which is not the

case. In fact, we lack the tools to validate model-simulated OH distributions for aspects other

than large-scale averages. The fact that other reactive trace gases, such as carbon monoxide
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and ozone, are simulated realistically by our model [Houweling et al., 1998] indicates,

however, that the large-scale chemistry and transport are adequately represented. Therefore

we fix the OH distribution, assuring that the optimized methane flux fields are consistent with

our knowledge of global tropospheric chemistry. We return to this discussion in section 6.

For the stratospheric sink we used a fixed spatiotemporal CH4 loss distribution derived

from the two-dimensional (2-D) chemistry transport model of Brühl and Crutzen [1993] since

our CTM does not have an accurate representation of the stratosphere. The error introduced

by this method is expected to be small as it appears that surface methane concentrations are

relatively insensitive to changes in this distribution because of the relatively long exchange

time between the troposphere and stratosphere. Formally, the stratospheric sink also introduces

a nonlinearity. Since the CH4 loss distribution has been fixed, the feedback of the methane

concentration on stratospheric oxidation is neglected, which eliminates this nonlinearity.

The linearized form of (1), including the simplifications as discussed above, is represented

by

di,t = ∆c0 + ∑
j,m

∂di,t

∂ f j,m
∆ f j,m −

∂di,t

∂sstra
∆sstra

− ∑
k,l

∂di,t

∂Qk,l
(∑

k,l

∂Qk,l

∂[CH4]k,l
∆[CH4]k,l +

∂Qk,l

∂sOH
∆sOH)

+ di,t[f̃,Q( ˜[CH4], s̃OH), s̃stra, c̃0], (3)

where the tilde designates a first-guess estimate. In general, the relative changes in the CH4

concentration resulting from the inversion-derived changes in the fluxes are small (<5%), so

that the term
∂Qk,l

∂[CH4]k,l
∆[CH4]k,l in (3) can be neglected. In a second iteration of the inversion

procedure the changes in [CH4]k,l are taken into account by linearizing around the improved

values for f,sOH,sstra and c0. Generally, after the second iteration the changes in the results

have become insignificant (<1%).

In vector notation, (3) can be formulated as

∆d = T∆f−S∆s+∆c0, (4)
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where s includes both sOH and sstra. The Jacobian matrix T contains concentration responses

to the surface fluxes at the measurement sites as a result of atmospheric transport only.

This matrix is efficiently computed using the adjoint version of our CTM since the number

of measurement stations is small compared with the number of surface flux parameters

[Kaminski et al., 1999a]. Since the atmospheric transport acts linearly on the concentration

and the sources are assumed to be independent of the atmospheric methane mixing ratio, the

corresponding terms in (4) are linear.

The matrix S, representing the concentration response to methane sinks in the

atmosphere, is calculated using the standard “forward” model version. First, the tropospheric

OH distribution is computed using the full chemistry version [Houweling et al., 1998]. The

OH fields obtained are used in a methyl chloroform (CH3CCl3) simulation and scaled to

give an optimal fit to observed CH3CCl3 concentrations (see section 6). In a second model

run these scaled OH fields are used to compute the
∂Qk,l
∂sOH

using ˜[CH4]. The stratospheric sink

response is determined in a separate run of the forward model using the prescribed sink

distribution.

A model spin-up time of 3 years has been applied to derive both matrices in (4), with

the responses being stored in the fourth year. In each year of model simulation the same

sources and sinks are used. According to Hein et al. [1997] and Tans [1997] a period of 3

years is sufficiently long for the atmosphere to be well mixed. As a result, the global-scale

concentration gradients, caused by the constant fluxes, change little after this period, and the

initial concentrations contribute to the global mean only.

The solution to the inverse flux optimization is defined as the set of parameter values

that optimally satisfy two requirements. First, the optimized or a posteriori fluxes should

be as close as possible to the first-guess (a priori) fluxes. Second, the inversion-derived (a

posteriori) fluxes should lead to an as close as possible agreement between modeled and

measured concentrations. In both instances, misfits are quantified as sums of squares in units

of observational and a priori standard deviations, respectively. Mathematically, this solution
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corresponds to the minimum of a cost function J defined as

J (x) =< d(x)−dobs,C
−1
d (d(x)−dobs) > +

< x−xapr,C−1
x,apr(x−xapr) >, (5)

where <> denotes an inner product, the subscripts obs and apr denote observed and a priori

values, and Cd and Cx,apr are the covariance matrices for the corresponding vectors dobs and

xapr (x contains both f and s). It can be shown that at the minimum of J the fluxes satisfy

x = xapr +(AT C−1
d A+C−1

x,apr)
−1AT C−1

d (dobs −Axapr), (6)

where matrix A contains both T and S [Tarantola, 1987]. A second, equally important,

result of the inversion is the uncertainty of the inferred parameters, which is derived from

the uncertainties of the observations and the uncertainties of the a priori estimates. The a

posteriori covariance matrix of the uncertainty in the inferred parameters is [Tarantola, 1987]:

Cx = (AT C−1
d A+C−1

x,apr)
−1. (7)

Technically, (6) and (7) are solved by means of a singular vector decomposition.

3. Model Description

In this study we use the “off-line” global 3-D atmospheric Transport Model 2 (TM2)

developed by Heimann [1995]. The spatial resolution of the model is 10◦ in the longitudinal

direction and 7.8◦ in the latitudinal direction with nine vertical sigma levels from the surface

up to 10 hPa (∼30 km altitude). The horizontal and vertical transport of tracers is based on

12 hourly mean air mass fluxes and sub-grid scale transport data. For this purpose, analyzed

meteorological fields from the European Centre for Medium-Range Weather Forecast

(ECMWF) model have been preprocessed as described by Heimann and Keeling [1989] and

Heimann [1995]. In the present study, ECMWF-analyzed data for the year 1987 have been

used for each year of model simulation.
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The advective transport is calculated using the “slopes scheme” of Russell and Lerner

[1981]. The sub-grid scale convective mass fluxes are evaluated using the cloud scheme of

Tiedke [1989], which includes entrainment and detrainment in updrafts. Turbulent vertical

transport is based on stability-dependent vertical diffusion [Louis, 1979]. The tracer transport

has been validated by comparing 85Kr, SF6, 222Rn, and CFC-11 measurements to simulations.

The results indicate that the boundary layer mixing over the continents is reasonably well

represented. The cross-equatorial transport, however, is somewhat underestimated in the

model (see section 6).

To compute relationships between fluxes and concentrations efficiently, an adjoint version

of the model has been used. The adjoint model was developed by Kaminski et al. [1996]

using the tangent-linear and adjoint model compiler (TAMC) by Giering [1996]. This model

has previously been applied in a study of the global sources and sinks distribution of CO2

[Kaminski et al., 1999b].

To simulate the interactions between methane and tropospheric photochemistry, the

forward code has been extended with the photochemistry routine of Houweling et al. [1998].

Chemical equations are integrated using a Eulerian backward iterative (EBI) scheme as

formulated by Hertel et al. [1993]. Emissions of photochemical tracers other than CH4 are

based on Global Emission Inventory Activity (GEIA) and Emission Database for Global

Atmospheric Research (EDGARV2.0) inventories [Olivier et al., 1996; Guenther et al., 1995;

Yienger and Levy, 1995; Benkovitz et al., 1996]. The treatment of wet and dry deposition

of tracers is comparable to Houweling et al. [1998]. Photolysis rates are derived from the

radiation code of Brühl and Crutzen [1988], and daytime average values are updated twice

a month. As a first-order approximation of the diurnal variation of photolysis rates, a single

period of a normalized (sin)2 function is used during daytime.
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4. Measurements

Observational data have been derived from measurements at 34 monitoring stations and

11 positions along two cruise tracks of the National Oceanic and Atmospheric Administration

(NOAA)/ Climate Monitoring and Diagnostics Laboratory (CMDL) cooperative air sampling

network [Dlugokencky et al., 1994b] (see Table 1). In general, a duplicate sample at each Table 1.

station is taken about once a week. The precision of the gas chromatographic analysis is

estimated at 0.2% [Dlugokencky et al., 1994b]. Measurements “flagged” by NOAA, indicating

that the sampled air may have been influenced by local sources, have not been used.

The NOAA methane concentration records show significant interannual variability

caused by year to year differences in methane fluxes and atmospheric circulations. These

variabilities cannot be reproduced by the model since the same fluxes and winds are used for

each year of model simulation. The assumption of constant fluxes implies that a constant

methane trend is also computed. To satisfy this assumption as much as possible for recent

years, we have chosen January 1993 until December 1995 as a target period. Stations with a

regular data record over this period have been selected. At each station a multiyear averaged

seasonal cycle and a spline fit to the trend have been computed, on the basis of data sampled

over this target period.

A global mean surface CH4 trend has been derived from a linear fit to the spline trends

at 21 selected background locations (see Table 1). For this purpose, stations were selected

from which a reliable trend over this relatively short target period could be derived, favoring

remote stations with little data gaps. In this way we computed a trend of 6.1 ppbv yr−1 with

a 1σ uncertainty interval of 1.2 ppbv yr−1 over the period 1993–1995. For the 5.06x1018 kg

atmospheric load in our model this corresponds to 17.1 ±3.5 Tg(CH4) yr−1. From the global

mean trend T , the multi-year averaged seasonal cycle S , and the intercept I per station at the

midpoint of the target period (tmid) the observations are derived as

dobs(i, t) = Ii +(t − tmid)T +Si,t . (8)
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The uncertainty in the derived monthly mean concentration is taken to be the root mean square

of the residual between the averaged duplicate samples and the fitted data as derived from

(8). The contribution of the analysis error to the uncertainty is small and has therefore been

neglected. This data-fitting procedure is described in detail by Hein et al. [1997].

The ship-based measurements over the pacific (P01–P05) and South China Sea

(SC1–SC7) have been sampled at 5◦ and 3◦ latitude intervals, respectively. Because of

variations in the cruise tracks, the longitudinal coordinates of the cruise measurements are not

constant. From the cruise-specific coordinates (E. J. Dlugokencky, personal communication,

1997) average longitudes have been computed. Data from cruises that followed alternative

tracks have been rejected. Variations in the longitudinal coordinates are generally within

10◦ over the Pacific and 2◦ over the South China Sea. These differences are considered to

be reasonably small given the horizontal resolution of our model and the relatively smooth

methane concentration gradients over the Pacific. The Pacific locations P01–P05 are only a

minor subset of all Pacific cruise locations at which samples are taken by NOAA. For the

remaining locations, however, too little data were available over the target period to derive

reliable seasonal cycles.

5. A Priori Assumptions

Recent estimates of the global distribution and annual total for each surface source and

sink process have been used as a priori inputs. Table 2 lists all the surface fluxes accounted for,

the associated annual totals, and the assumed uncertainties per process. It should be noted that

the applied inverse modeling formalism (as outlined in section 2) requires that the first-guess

information be independent of the measurements. The applied emission distributions to a

large degree satisfy this requirement, being merely based on bottom-up derived statistics of,

for example, population density, industrially produced quantities, etc. The global budget may

well have been taken into consideration, however, in establishing the first-guess annual total

and corresponding uncertainties. Although, formally, it is incorrect to use these numbers, they
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are being used in this study for lack of alternative estimates. In this section, only those sources

and sinks are discussed that are not fully explained by the references listed in Table 2. Section Table 2.

6 discusses the a priori treatment of the tropospheric sink.

On the basis of a compilation of methane measurements in seawater [Lambert and

Schmidt, 1993], methane fluxes from open oceans and coastal zones have been estimated as

3.6 and 6.1 Tg(CH4) yr−1 respectively. In addition, about 5 Tg(CH4) yr−1 of methane is

assumed to be emitted from seepages through the sediments of continental shelfs. Open ocean

and continental shelf emissions are assumed to be uniformly distributed, where the continental

shelfs have been defined as the coastal zone with sea depths <200 m.

The global distribution of methane emissions from wild ruminants have been

approximated using the method described by Bouwman et al. [1997]. As proposed by Warneck

[1988] 3–6% of the net primary produced (NPP) vegetation is consumed by wild animals

of which a constant fraction is assumed to be emitted as methane. We used an annual NPP

distribution as derived from the Integrated Model to Assess the Greenhouse Effect (IMAGE)

[van Minnen et al., 1996; Kreileman, 1996] discarding cultivated regions on the basis of

land use database by Matthews [1983]. Similar to Bouwman et al. [1997], we assume that

in forested ecosystems only 20% of NPP consists of consumable grass or leaves. Vegetation

types have been assigned on the basis of the landcover database by Olson et al. [1983].

Sulphur emissions are used as a proxy for methane emissions from volcanic degassing

using the time-averaged distribution of volcanic sulphur emissions from continuously emitting

volcanoes on the basis of Andres and Kasgnoc [1998] scaled to 3.5 Tg(CH4) yr−1 [Lacroix,

1993]. Biomass burning emission estimates by Hao et al. [1991] and Olivier et al. [1996] do

not account for the contribution by the Australian continent. In this study these emissions have

been derived from estimated forest and savanna burning over Australia (L. Bouwman, personal

communication, 1998). We compute that the Australian biomass burning source contributes

6% to the global total, assuming the same methane release per unit biomass for each continent.

The seasonal cycles of Australian biomass burning emissions have been estimated using
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monthly averaged precipitation based on 5 years of ECMWF output (1992–1996). The length

and the distribution of the emissions over the burning season are taken from Hao et al. [1991],

with the start of burning season in the second month of the dry period.

Uncertainty estimates of methane sources and sinks are mainly available for the globally

and annually integrated fluxes. Since the a priori uncertainties per grid cell are needed we

scale these integrated values down to “local” uncertainties σi, j for the flux by process i in each

surface grid cell and month (index j for both) in which the process is active. Subsequently,

for each surface grid cell we compute the combined uncertainty of the flux due to all active

processes. It has been assumed for each process i that (1) the relative uncertainties ki of

emissions fi, j from each active grid cell in each month are constant (σi, j = ki fi, j) and that (2)

the local uncertainties σi, j are uncorrelated (σ2
i = ∑ j σ2

i, j). Assuming that in a particular grid

cell and month the local uncertainty of the fluxes due to all active processes are independent,

the local uncertainties for the sum of these fluxes σ j are given by:

σ j =
√

∑
i
(ki fi, j)2. (9)

As a consequence, the local relative uncertainties are much larger than uncertainties in the

globally integrated emissions (see also section 7). This procedure for our standard inversion is

modified in testing the effect of spatial and temporal correlations in section 8.

6. Chemical Methane Loss

About 90% of the methane removal from the atmosphere is due to reaction with

the hydroxyl radical in the troposphere. This means that to simulate the methane cycle

accurately, a realistic representation of OH is of critical importance. Methyl Chloroform

(1,1,1 trichloroethane, called CH3CCl3 hereafter) can be used to constrain OH, because its

sources are relatively accurately known, and the hydroxyl radical reaction constitutes the

most important sink. To test and optimize the model-simulated hydroxyl radical fields, a

simulation of CH3CCl3 has been carried out. Simulated CH3CCl3 concentrations have been
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compared to measurements from five stations of the Atmospheric Lifetime Experiment (ALE)/

Global Atmospheric Gases Experiment (GAGE) network from 1978 to 1994 [Prinn et al.,

1992, 1994].

To simulate CH3CCl3, surface emissions are applied on the basis of Midgley [1989]

and Midgley and McCulloch [1995]. Ocean uptake and stratospheric and tropospheric loss

have been represented according to Kanakidou et al. [1995]. The calculated turnover time of

CH3CCl3 due to ocean uptake amounts to 92 years, well within the range of 59–128 years

estimated by Butler et al. [1991]. The stratospheric turnover time has been scaled to ∼50

years, in agreement with Kanakidou et al. [1995]. A scaling factor αOH for the global OH

field has been computed minimizing the r m s differences between measured and simulated

CH3CCl3, weighted by the reciprocal standard deviations of the monthly mean measurements,

similar to Hein et al. [1997]. These weighting factors also take into account a 5% systematic

uncertainty in the absolute calibration of the CH3CCl3 measurements [Prinn et al., 1995].

The minimum is evaluated using the method of Brent [1973], applying inverse parabolic

interpolation. This procedure yields an optimized scaling factor αOH = 0.95, which has

subsequently been used to scale the OH fields. The corresponding atmospheric lifetime of

CH3CCl3 amounts to 5.0 years, which is on the high end of the range of 4.8 ±0.3 years

calculated by Prinn et al. [1995]. Krol et al. [1998] derived an even lower lifetime of 4.5–4.7

years over the period 1978–1993, taking into account a possible trend in the hydroxyl radical

concentration. The optimized hydroxyl radical level leads to a troposphere-integrated methane

turnover time of 9.0 years. This corresponds to the oxidation of 485 Tg of methane per year

for a concentration level representative of 1994. The uncertainty in the tropospheric OH

content is estimated at ∼10% by Krol et al. [1998]. We apply a 2σ uncertainty, which is a

factor of 2 smaller than this estimate (25 Tg(CH4); ∼5%), to keep the a posteriori derived sink

within a reasonable range (see section 10).

Figure 1 shows a comparison between simulated and measured CH3CCl3 concentrations

at the 5 sites of the ALE/GAGE network. From Figure 1 it appears that the latitudinal gradient Figure 1.
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of CH3CCl3 is overestimated by the model. This indicates that tracer transport in the model

is too slow and/or that the simulated ratio between the Northern and Southern Hemispheric

(NH/SH) OH content is too low. Indeed, on the basis of 85Kr, SF6, and CFC-11 simulations

we conclude that the interhemispheric exchange time is underestimated by ∼20%, in line with

earlier findings [Hein, 1994; Heimann and Keeling, 1989]. From simulations carried out with

the horizontal and vertical diffusion coefficients tuned to reproduce these tracers optimally, we

conclude that transport explains about half of the underestimation of the CH3CCl3 gradient.

We aim to improve this as part of future model developments.

7. Methane Inversion Results

Figures 2 and 3 show comparisons of first-guess and optimized surface fluxes of methane.

The per grid differences appear to be significant, with values of the same order as the Figure 2.

Figure 3.assumed first-guess fluxes. As a result, flux parameters that are a priori assigned to be net

sources of methane may represent a net sink a posteriori and vice versa. The changes are

mainly limited to the continents, which is explained by the relatively small a priori uncertainty

in the oceanic flux. Over the continents, regions with relatively strong emission increases

are typically adjacent to regions with strong decreases, for example, over southeast Asia

during summer. Clearly, the simulated concentrations are most sensitive to flux changes

in those grid boxes, in which measurement sites are located. Consequently, in these grid

boxes relatively small flux adjustments can compensate for misfits between simulated and

modeled concentrations. This is also illustrated by maps of this sensitivity for CO2 as given by

Kaminski et al. [1999b]. To satisfy large-scale budget constraints, these corrections are then

compensated for elsewhere.

Concentrations as computed using a priori and a posteriori flux fields have been compared

to observations (Figure 4). As expected, the optimized flux field improves the agreement Figure 4.

between modeled and measured concentrations. In general, the a priori flux field appears to

overestimate the global north–south methane concentration gradient significantly. Figure 5
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shows that this feature, particularly, has been corrected in the optimization. A decrease of the Figure 5.

latitudinal concentration gradient can be achieved in two different ways: first, by a decrease

in the ratio between the emissions in the Northern and Southern Hemispheres and, second, by

a decrease of the globally integrated sources and sinks. The latter will not affect the globally

integrated methane burden provided that the difference between the integrated sources and

sinks matches the trend in methane. In fact, many combinations of sources and sinks satisfy

this global budget constraint. It can be verified, however, that the latitudinal concentration

gradient is related to this combination such that larger sources and sinks lead to an increased

gradient. From the differences in the a priori and a posteriori integrated flux totals (Table 3) it

appears that both mechanisms contribute to the decreased a posteriori latitudinal gradient. Table 3.

Regional-scale flux changes can often be explained by examining the fits at the nearest

stations. For example, the decreased emissions over central China in Figure 3 are largely

imposed by the South China Sea cruise measurements. In autumn, when predominantly

continental air is sampled at these sites, measured concentrations are significantly lower than

predicted by a model simulation using a priori flux fields. Therefore a better fit at these

sites is obtained when fluxes over central China are reduced. Indeed, excluding the South

China Sea cruises from the inverse optimization almost completely eliminates the region of

decreased emissions over China in Figure 3. Also, measurements at the Mongolian station

Ulaan Uul and Qinghai Province in central China support a decrease in methane emissions

over central China relative to the a priori assumptions. The simulated concentrations at these

higher-altitude stations are, however, less sensitive to emission adjustments in this region and

therefore impose weaker constraints.

A decrease in the a posteriori estimated emissions over southeast Australia is a persistent

feature over all seasons. This is related to the measurements at Cape Grim and is most

probably caused by the fact that these measurements and the model simulated concentrations

at this station represent something different. At Cape Grim air is sampled only if the wind

direction is between west and southwest to avoid contamination by local sources. As a result
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of this baseline selection, monthly mean measurements are expected to be lower than those

calculated by the model since in the model such a sampling protocol is not used. As shown by

Ramonet and Monfray [1996] for CO2, the seasonal cycle at this station is also influenced by

the sampling procedure.

The emission decrease over Europe, extending over northwest Russia, appears not to

be imposed by the measurements of the European stations at the Baltic Sea, Mace Head,

Gozo, and Ocean Station M. Removing these stations from the inverse optimization only

slightly influences the a posteriori emission patterns over these regions. Since the a posteriori

tropospheric OH sink has decreased as compared with the first guess, decreased fluxes help

balance the concentration level. In other words, the a posteriori flux reductions in these regions

are more strongly imposed by the global budget than by the regional observations.

The South American continent is poorly sampled by the observational network.

Ascension Island, which is at a relatively small distance from South America, predominantly

samples air transported from the African continent [Kaminski et al., 1999b]. Other stations

are at large distances where plumes of continental air have largely been dispersed. As a result,

the flux changes relative to the a priori assumptions over South America are not caused by

particular misfits at a few stations but rather contribute to the average level and seasonal

cycles at a large number of stations. Since most of these stations are surrounded by oceanic

grid boxes, which are all part of a larger flux region, local flux adjustments are suppressed.

Flux adjustments at the continents need to be larger to compensate for the lower sensitivities

at the oceanic stations. The standard deviations of the measurements at remote Southern

Hemispheric stations like the South Pole, Palmer Station, and Syowa are, however, relatively

small, and therefore these measurements receive a relatively large weight in the inversion.

Therefore, despite their relatively low sensitivity these measurements can still constrain the

estimated continental source strengths.

Figure 6 shows the reduction in the surface flux uncertainty as a result of flux constraints

imposed by observational data in the inversion. Evidently, the uncertainty reduction is most Figure 6.
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pronounced in the direct vicinity of continental measurement stations. From (7) it follows

that the uncertainty reduction is determined by two factors: (1) the a priori uncertainty

relative to the measurement uncertainty and (2) the sensitivity of the simulated concentration

at a station toward the fluxes. If both factors are relatively large, as is the case for these

continental fluxes, the uncertainty reduction is relatively strong as well. At some locations a

significant uncertainty reduction is computed at larger distance from the measurement sites.

For example, the spot with relatively strong uncertainty reduction in Angola (Figure 6) is

related to constraints from the measurements at Ascension Island. At oceanic stations, no

sharp sensitivity maxima are found because of to the aggregation of oceanic fluxes. Since, in

addition, the a priori uncertainties assigned to the oceanic emissions are relatively low, the

computed uncertainty reduction over the ocean is low.

The difference in the integrated uncertainties in Table 3 and the uncertainty reduction per

grid in Figure 6 indicates that the relative uncertainty reduction increases toward larger scales.

Such strong uncertainty reductions can only be explained if the a posteriori uncertainties in

the contributing grids are predominantly anticorrelated. Figure 7 shows the covariances of

the a posteriori uncertainties of all surface fluxes for July and two flux elements in central

China and in Brazil. Indeed, the uncertainties in the a posteriori fluxes are predominantly Figure 7.

anticorrelated with respect to the single elements. Such anticorrelations indicate that the grid

box fluxes are not resolved by the measurements. In other words, the sum of a cluster of

parameters is constrained by the measurements rather than by the contributions of individual

elements. The covariance plot for the Chinese flux element shows a dipole structure similar to

the flux differences in Figure 2. This confirms that such structures are imposed by regional

budget constraints.

The validation of the a posteriori flux fields is difficult since it would require a source

of information independent of those already used in the inversion. Alternatively, we can

perform a series of inversions in each of which we omit the information of one of the stations.

Such a test shows to what extent the inversion-derived emission fields improve the simulated
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methane concentrations. Figure 8 shows results of these tests at different sites. In particular, Figure 8.

at the remote stations over the oceans (GMI and ASC) the agreement between simulated

and measured concentrations has improved. At continental sites, such as Grifton, North

Carolina (ITN), concentrations are determined by the source and sink composition in the

direct surroundings of a station. Therefore the agreement is expected to be worse there. As

illustrated in previous studies [Kaminski et al., 1999b; Plumb and Zheng, 1996], the singular

vectors can be used to determine in which direction in the flux space the measurement

information is most efficiently mapped. Although these studies focus on different trace gases

(CO2 and CFCs, respectively), similar features are found for methane. Such an analysis

indicates that a few directions are relatively well resolved, i.e., the global mean mixing ratio,

the latitudinal gradient, and the seasonal cycle. From Figure 8 it can be seen that indeed, the

main improvements in the a posteriori flux derived concentrations are related to these features.

To quantify the amount of information in the observations of particular stations,

inversions have been carried out in which only a single station is used. Table 4 shows a

ranking of stations according to their globally and locally integrated uncertainty reduction.

Here local has been defined as the grid box in which a station is located plus all grid boxes

adjacent to this grid box (nine in total), which means all emissions within a range of ∼1500

km. The uncertainty reduction has been divided by the uncertainty reduction in a full (45

station) inversion. In other words, this uncertainty reduction represents the percentage of

uncertainty reduction in a full inversion, which can already be achieved by introducing only a

single station.

From the size of the globally integrated uncertainty reductions in Table 4 it is clear

that in a multistation inversion the uncertainty reduction per station is less than in the single

station inversion. The reason for this follows directly from (7). On the global scale, remote Table 4.

stations as, such as SPO and SYO, have the largest impact on the uncertainties. This can partly

be explained by the relatively small uncertainties of these measurement data owing to the

relatively small variability at these stations. Furthermore, the uncertainty in the local fluxes
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is relatively small so that fluxes at a greater distance receive relatively more weight. Lowest

in rank on the global scale are stations for which the opposite argument holds. Generally,

stations with a high score in reducing global-scale uncertainties have a low score on the local

scale and vice versa. This analysis is dependent on the a priori assigned uncertainties and the

Jacobian matrix A. Therefore the exact order may be quite different when using other a priori

uncertainties or when studying a different trace gas.

8. Sensitivity Tests

In the previous section it was assumed that all errors in the measurements and fluxes are

uncorrelated. One can think, however, of realistic conditions that violate this assumption. In

fact, correlations may even serve as additional constraints on the fluxes. Consider, for example,

the European continent, with the most prominent methane sources being intensive farming

and industrial processes. None of these sources are expected to change substantially over

the seasons. Hence it is likely that these sources and related errors are positively correlated

in time. Another example is the use of emission factors that are, for instance, derived from

statistics of fossil fuel use or food production. A bias in such emission factors may lead to

correlated errors both in space and time. Emission factors are often relatively uncertain since

they are generally based on only a few case studies, which have been extrapolated to large

regions. Provided that it is reasonable to assume that emission factors are constant, such biases

may indeed occur. It can be argued, however, that the largest uncertainty introduced by using

emission factors is in the assumption that they are constant. At smaller distances between

sources, however, the assumption of constant emission factors is probably less violated since

source processes are expected to be more similar. In this case the correlation is expected to

increase with decreasing distance.

Regarding the measurements, for instance, systematic errors in the sampling analysis

lead to positively correlated errors. For the NOAA glass flask analyses, however, such errors

are expected to be small since the same calibration standard is used for all stations. Probably,
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the representativity of point samples for the time- and spaceaveraged concentrations computed

by the model is a much larger source of errors. Although the measurements are screened for

“pollution events,” the remaining samples may still be influenced by conditions that the model

is not able to reproduce. Only in some special cases may such representation errors may also

be correlated. For example, systematic differences in the origin of air masses sampled in the

model and measurements, as is the case, for example, at Cape Grim, introduce positively

correlated errors. In general, however, representation errors are expected to be dominated by

random influences of “coincidental” events. Therefore it seems reasonable to assume that

measurement errors are uncorrelated.

The information needed to quantify spatial and temporal correlations in the fluxes is

practically absent. In general, uncertainty analyses of emission inventories are scarce, and

if present, they come in a wide range of different forms that cannot readily be combined

for purposes such as the present study. To investigate the importance of a priori assumed

correlations, two sensitivity tests have been carried out, one for temporal and one for spatial

correlations.

Figure 9 shows estimated seasonal cycles of the fluxes in some selected grid boxes. In Figure 9.

the time-correlated inversions a correlation coefficient of 0.9 has been applied to monthly

averaged surface fluxes at the same location representing different months. In addition, for

sources that are known to be strongly dependent on the season, for example, biomass burning,

rice cultivation, and natural wetlands, a temporal correlation length of 2 months has been

taken into account. In these cases the correlation is assumed to decrease exponentially in time.

The correlation length is defined as the time in which the correlation decreases by a factor 1/e.

Such time dependent correlations lead to a smoothing of the estimated seasonal cycles. The

timing and length of the season, which are generally quite uncertain for these sources, can still

be adjusted by the measurements.

Both for the Pacific Ocean and central Europe (see Figure 9) the a posteriori seasonal

cycles are influenced substantially by the assumed time correlation. Assuming uncorrelated
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sources, the computed seasonal variations cannot be explained by the most probable processes

involved. The time-correlated seasonal cycles are considerably closer to their first guesses.

Also, at the Chinese and African sites the time-correlated cycles are substantially closer to

the first guess, despite the larger freedom for flux adjustments, because of to the 2 month

correlation length assigned to biomass burning and rice paddy emissions. In Zambia the

biomass burning peak during the dry season is suppressed in the time-correlated inversion.

Since biomass burning emissions may well peak in one particular month, the smoothing of

the emissions in the time correlated inversion probably does not improve the results for this

location.

In Figure 10, differences between first-guess and optimized fluxes are presented using

spatial correlations. A spatial correlation coefficient of 1.0 with a correlation length of 2000 Figure 10.

km (∼3 grid cells) has been applied to all sources. Probably, for some sources the spatial

distribution is better known than for others, which is, for example, the case for ruminants

compared with biomass burning. This would justify the use of source-specific correlations.

Since we lack the information to quantify these differences, all processes are treated the

same. Note that inversions that differ in the assumed correlations also have different local a

priori flux uncertainties since additional correlation terms appear in equation (9). Since no

anticorrelations are used and the same global uncertainties are assumed, the local uncertainties

will, as a result, become smaller. As a consequence, the a priori information on the fluxes

receive more weight. A comparison of Figures 10 and 2 indicates that spatial correlations

significantly change the estimated fluxes. As expected, emission changes extend over larger

regions. Compared with the time-correlated inversion, it is difficult to determine whether or

not the use of space correlations improves the results. Little is learned from a comparison

as presented in Figure 8 since the differences between the concentrations derived from the

correlated and uncorrelated inversions appear to be small.

Two additional sensitivity tests have been carried out to test the influence of the assigned

a priori uncertainties (also listed in Table 5) that determine the weights of misfits in the
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cost function. One may question how fair this weighting is since these uncertainties are, in

general, poorly quantified. The method to derive grid-scale uncertainties from global-scale

estimates has been selected for its mathematical consistency but, in fact, does not give very

realistic values. The assumed global uncertainty estimates, as listed in Table 2, lead to

relative uncertainties per source per grid per month of ∼600%. Since Gaussian probability

distributions are assumed that do not conserve sign, grids a priori dominated by sources

could a posteriori easily be changed into sinks. In regions where a change in sign of the a

priori assumed flux is unrealistic it is not appropriate to assume a Gaussian distribution. To

investigate the sensitivity of estimated emissions to a priori prescribed flux uncertainties, two

sensitivity simulations have been carried out. In the first simulation it is assumed that we do

not know whether one source is more uncertain than another. Therefore each surface flux is

assigned the same relative uncertainty, taken to be 600%, except for the oceans. In the second

inversion, similar to the first, every surface flux is considered to be equally well (or poorly)

known; an uncertainty level of 100% is chosen so that changes in signs are always outside the

1σ interval.

Finally, an inversion is performed in which the ratio in the OH radical abundance of the

Northern and Southern Hemispheres has been changed. A ratio of 2 (NH/SH) has been chosen,

which, using a priori fluxes only, leads to a simulated latitudinal methane concentration that

is almost correct. The OH field, as derived from the tropospheric chemistry version of our

model, has a NH/SH ratio of 1.06. Thus, in this sensitivity test the overestimated methane

gradient is compensated by adjusting the OH distribution.

To quantify and illustrate the results of sensitivity tests, fluxes have been integrated

over hemispheres and regions. Obviously, the sensitivity of the optimized fluxes to a certain

assumption is dependent on the weight the tested assumptions receive in the inversion.

Since only a priori assumptions are tested, these weights are approximately determined by

the relative weights of a priori and measurement constraints. Therefore two regions have

been defined: region 1 over southeast Asia (75◦–135◦E, 10◦–40◦N), which is relatively well
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resolved by the measurements and Region 2 over central Africa (5◦W–35◦E, 15◦S–25◦N),

which is relatively poorly resolved by the measurements. Table 5 summarizes these integrated

emissions and the associated uncertainties for all sensitivity tests performed. Table 5.

Overall, the a posteriori estimates are rather similar compared with the differences

between a priori and a posteriori estimates. Even for the African region, which is relatively

poorly sampled, the estimated totals are quite robust. The a priori and a posteriori uncertainties

are so high, however, that none of the differences in Table 3 are significant. Looking at the

global totals, surprisingly, the spatially correlated and 100% relative uncertainty inversions,

which both have relatively low a priori uncertainties compared to the standard simulation,

have the highest adjustments in the globally integrated fluxes. The Northern versus Southern

hemispheric emission ratio, however, is closer to the a priori value. A different compromise

between globally integrated flux adjustment and north–south emission adjustment to correct

for the simulated latitudinal concentration gradient is favored in these inversions. The

inversion in which the OH ratio has been adjusted shows that both the north–south emission

ratio and the globally integrated source and sink are close to their a priori values, which is

again explained by the corresponding effects on the latitudinal gradient in methane.

9. Case Study: Emissions From Southeast Asia

Rice agriculture constitutes an important methane source in southeast Asia. Its relatively

high uncertainty results from the high temporal and spatial variability in the source strength

of rice paddies and the relatively poor statistics on rice management in developing countries.

Recent studies [Huang et al., 1997; Denier van der Gon, 1998] point to a global source

strength in the lower part of the range of the IPCC estimate of 60 ±40 Tg(CH4) yr−1 IPCC

[1994] and of the 80 ±50 Tg(CH4) yr−1 [Lelieveld et al., 1998] used in this study. On the

basis of these recent studies and several estimates of the rice agriculture-related methane

emissions in China [Kern et al., 1995; Cao et al., 1995; Dong et al., 1996; Yao et al., 1996;

Kern et al., 1997], H. A. C. Denier van der Gon (personal communication, 1998) derived a
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best guess estimate of 30 ±15 Tg(CH4) yr−1.

To test whether the inversion results are sensitive to the a priori emission scenario

assumed, two inversions called ”standard” and ”low rice” have been compared in which each

estimate has been used as a priori input. The low rice scenario equals the standard scenario

except for a reduction in rice paddy emissions, for which tropical wetland emissions have been

substituted. The global source estimates of these two processes are expected to be particularly

influenced by global budget information; that is, neither are independent of the measurements.

It is questionable, however, how well the measurements constrain the relative magnitudes

of these sources. Table 6 lists the emissions derived from both inversions integrated over

hemispheres, a zonal band (10◦–40◦N), and a region (75◦–135◦W part of the zone). The Table 6.

Matthews et al. [1991] rice emission map indicates that ∼80% of the rice paddies are located

in the selected zonal band, and ∼75% are confined to the region.

The a posteriori integrated emissions appear to be quite insensitive to the a priori scenario

applied. Globally, both scenarios show decreased a posteriori totals compared with the first

guesses. In the standard scenario the decrease over the region of intensive rice cultivation

(31%) is relatively large compared with the Northern Hemispheric emission change (16%),

which can be interpreted as a regional decrease superimposed on the global decrease. For the

low rice scenario the opposite is found, with a regional decrease (8%) slightly smaller than the

Northern Hemispheric emission decrease (11%). In summary, on the basis of the standard and

low rice simulations, relatively low emissions over southeast Asia are defensible, however, not

as low as those indicated above. On the basis of these results neither scenario can be ruled out.

It should be emphasized that the methane optimization is dominated by global-scale changes

in the emissions, which largely obscure regional-scale changes.

10. Discussion

Inverse modeling is a useful tool to complement bottom up estimates of global methane

sources and sinks. An important question is to what extent inverse modeling can contribute.
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Since many different procedures can be used to perform such an inversion, the answer may

be different depending on the technique, the model, and the assumptions used. Since the

measurement data set is limited, the use of a priori knowledge is necessary to constrain

the inverse problem, i.e. to find the most likely emission scenario consistent with the

measurements. Compared to previous methane studies [Hein et al., 1997; Brown, 1993]

that for computational reasons have to prescribe a few fixed flux patterns and optimize the

corresponding scaling coefficients, we greatly release this rigid a priori constraint. In our case

the system has a much higher degree of freedom to adjust fluxes. Because a priori knowledge

is used as input, our inversion does not provide a fully independent emission estimate. Instead,

a different type of result is obtained addressing three important topics. First, this technique

helps to establish the consistency between estimated emissions and measured concentrations.

Second, the most likely emission changes can be derived to reduce inconsistencies. Third, by

combining constraints imposed by measurements and a priori knowledge, uncertainties are

reduced.

Uncertainty reductions appear to be a function of scale, with larger reductions going to

larger scales. This reflects a trade-off between resolution and uncertainty reduction, which

is common in inverse problems. This means that at small scales the individual sources and

sinks are not resolved by the measurements, except those close to measurement stations.

Closer to the stations, however, the uncertainty reduction becomes increasingly affected by

the resolution of the model. Generally, in inverse modeling, uncertainties are a measure of the

range over which parameters may change given the constraints. This range is dependent on

the dimension of the flux space. The higher the number of possible solutions, the more options

there are to compensate for ”outlying” fluxes while still keeping the constraints satisfied.

Therefore, in general, modeled a posteriori uncertainties are expected to be underestimates

of the real uncertainty since the real world is always more complex than the model. Indeed,

compared to big region approaches, we find relatively high a posteriori uncertainties. Since in

our inversion the resolution is less limiting, our uncertainty reductions are expected to be more
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realistic.

The case study presented in section 9 illustrates the consequences this may have. The

results of Hein et al. [1997] suggest that inverse modeling puts a strong enough constraint on

rice paddy emissions to rule out one of the scenarios since the standard scenario is on the high

side and the low rice scenario is significantly lower than their inverse modeling-derived 95%

confidence interval for rice paddy emissions. In this study, however, both scenarios are still

within this uncertainty range.

In addition to uncertainty estimates, a posteriori derived methane concentration

distributions indicate how much we learn in the inversion. Such a comparison should be

interpreted with care, however, since it is an indirect test of fluxes. It is a direct test of

the methane concentration field, however, and as such, it leads to the conclusion that the

a posteriori derived methane concentration distribution has improved. Obviously, this is

useful for applications where methane concentration fields are needed rather than flux fields.

Although the concentration field has improved, the flux field may give improved results for the

wrong reason. As mentioned in section 7, this is the case when flux adjustments compensate

for model errors.

In fact, all inconsistencies between measurements and modeled concentrations are

attributed to the fluxes and the measurements since the model is assumed to be perfect.

A useful diagnostic of model error is the interhemispheric exchange time. As discussed

in section 6, simulation of 85Kr, SF6, and CFC-11 indicates that the exchange time is

underestimated by ∼20%. As a test, the exchange rate was increased by horizontal diffusion

[Prather et al., 1987; Keeling et al., 1989], which showed that transport explains at most

half of the difference between the measured and the simulated methane gradient if the a

priori values for the methane fluxes are used. As a consequence, the adjustments in the ratio

between Southern and Northern Hemispheric emissions and globally integrated sources and

sinks by the inversion, as shown in section 7, can partly be attributed to this model error. In

addition, an error in the relative OH abundances of both hemispheres may also contribute.
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Within the uncertainty ranges of the CH3CCl3 test the OH ratio between both hemispheres

may vary between about 0.5 and 2 (C. M. Spivakovsky, Three-dimensional climatological

distribution of tropospheric OH: Update and evaluation, submitted to Journal of Geophysical

Research, 1999). This indicates that the CH3CCl3 test is not ideally suited for validating this

ratio, at least for the period of CH3CCl3 measurements that we used to test our OH fields. A

north–south ratio of 2, in addition to a corrected interhemispheric exchange time in the model,

can overcompensate the underestimated CH4 gradient. From an atmospheric chemistry point

of view such a high interhemispheric OH ratio is highly unlikely and cannot be explained by

the models. Quantification of such chemical constraints is, however, very difficult. Our results

indicate that to estimate sources and sinks of methane on a global scale accurately a more

accurate validation tool for the global OH radical distribution is needed.

The number of available measurements as compared with the number of unknowns

continues to be an important limitation on inversion studies. Unless considerable progress

in measuring methane from satellites is made, this is not expected to change much in the

next decade. Alternatively, measurements of isotope ratios, which provide process-specific

information, may be used. Studies by Brown [1995] and Hein et al. [1997], however, indicate

that the isotopic data set available at present does not provide an important constraint. Here

some progress may be expected in the future since more data will become available.

Alternatively, the source information contained in the measurements may be used more

efficiently. For example, it is likely that by using multiyear averaged seasonal cycles, much

information is lost. When, instead of using averaged data, the actual measured data are

used, the methane inversion should be improved in a number of ways. Meteorological input

representative of each year of the target period should then be used, as opposed to repeatedly

using one year, as is done in this study. Furthermore, quantitative information about sources

that have a high interannual variability, such as dependencies on precipitation and temperature,

should be provided. Representation errors between measured and modeled concentration

then become increasingly critical since coincidental disturbances are averaged out to a lesser
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degree. These topics will be the focus of future work.

11. Conclusions

We presented an inverse modeling method to study the global-scale sources and sinks of

methane. The measurements have been treated in accordance with the quasi-stationary state

assumption, as by Hein et al. [1997], assuming a constant trend and a multiyear averaged

seasonal cycle. The inversion has been performed at a relatively high spatial and temporal

resolution (per grid and per month) over the continents using an adjoint version of the global

transport model by Kaminski et al. [1999b]. Recent estimates of the sources and sinks

of methane have been used as first-guess input, including minor sources such as oceans,

volcanoes, termites, and wild animals.

The inversion-derived net global surface source of methane amounts to 505 Tg(CH4)

yr−1, using a first guess of 528 Tg(CH4) yr−1 for the target period 1993–1995. The relative

contribution of the Northern Hemispheric sources decreases from 77 to 67%. The chemical

sinks in the troposphere and stratosphere decrease from 485 to 451 Tg(CH4) yr−1 and 40

to 37 Tg(CH4) yr−1, respectively. The computed a posteriori methane trend of 18 Tg(CH4)

yr−1 is well within the 17.1 ±3.5 Tg(CH4) yr−1 as derived from the measurements over the

target period 1993–1995. Simulations of 85Kr, CFC-11, and SF6 indicate that our model

underestimates the interhemispheric exchange rate by ∼20%, which explains up to 50% of the

differences between the a priori and a posteriori emission estimates. In addition, errors in the

simulated north–south distribution of the hydroxyl radical may contribute to these differences.

Within the ranges of uncertainty the combined effect of model errors could potentially explain

the differences in the observed and simulated methane gradient, which underscores the

importance of reliable tools to validate the interhemispheric transport rate and the hydroxyl

radical distribution.

In addition to providing new ”measurement”-consistent emission estimates, inverse

modeling helps to reduce the uncertainties. These uncertainty reductions are strongly related
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to scale. Small (<1%) reductions are computed at the grid scale, with some exceptions close to

measurement stations. At the scale of hemispheres, uncertainty reductions as large as 75% are

obtained, for example, from ±80 a priori to ±20 Tg(CH4) yr−1 a posteriori for the Northern

Hemisphere. The sharp uncertainty decrease with scale is reflected by the predominantly

negative correlation of the a posteriori flux uncertainties, indicating that at the grid scale,

fluxes are not resolved by the measurements.

The sensitivity of the inversion-derived emission estimates to a number of a priori

assumptions, such as the assumed a priori uncertainties, the OH radical distribution, and

uncertainty correlations, has been tested. The conditions used in each sensitivity test are

within the ranges of uncertainty. Estimated emissions integrated over larger regions appear

to be quite robust to these assumptions, except for the large-scale OH radical distribution,

which could compensate for the emission adjustments derived using the standard scenario.

Defining more accurately the a priori state in terms of spatial and temporal correlations among

uncertainties helps to reduce the a posteriori uncertainties. Since the observational information

for justifying the use of any strong positive or negative correlations in space is essentially

lacking, the improvement is limited in this work. It may, however, be a useful constraint if

more information were available. The use of temporal correlations leads to more significant

improvements and helps, in particular, constrain seasonal cycles in the fluxes. We emphasize

that source quantification by inverse modeling would benefit from bottom up estimates of

source correlations, which could, for example, be derived from source process modeling.

As a case study, we have focused on emissions from rice fields in southeast Asia. The

continental NOAA stations Qinghai Province, Tae-ahn Peninsula, and Ulaan Uul and the

South China Sea cruises helped constrain the emission estimates for this region. The a

posteriori derived fluxes point to lower emissions as compared to the a priori assumptions. A

case study illustrates, however, that the uncertainty related to the a posteriori derived emissions

is still too large to reduce the uncertainty of rice paddy emissions significantly. In fact, the

present inversion method allows a larger range of fluxes from rice paddies than is reported by
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Hein et al. [1997]. Since the use of a high-resolution inversion is expected to improve the

uncertainty estimates, our larger uncertainty range is expected to be more realistic.
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Figure Captions

Figure 1. Comparison of modeled 1,1,1-trichloroethane (CH3CCl3) concentrations to mea-

surements at the Atmospheric Lifetime Experiment (ALE)/ Global Atmospheric Gases Exper-

iment (GAGE) stations. Solid lines are optimized OH fields; dashed lines are original OH

fields; and squares are monthly mean measurements. Error bars represent the 1σ interval of the

measurements.

Figure 2. Estimated surface fluxes of methane for (left) January and (right) July: (a) a priori,

(b) a posteriori, and (c) difference a posteriori minus a priori.

Figure 3. As Figure 2 for annual means.

Figure 4. Comparison of simulated concentrations to measurements. Dashed lines represent

simulations based on a priori fluxes; solid lines represent simulations based on a posteriori

fluxes; and squares represent monthly means of observations. Error bars represent the 1σ

interval of the measurements. The offset of the a priori data has been adjusted according to the

offset at the South Pole.

Figure 5. Observed and simulated latitudinal methane concentration gradients (representing

annual means). Squares represent simulations based a priori fluxes; triangles represent simula-

tions based on a posteriori fluxes; and solid circles represent measurements. The offset in the a

priori data has been adjusted according to the offset at the South Pole.

Figure 6. Reduction in surface flux uncertainty gained by the inversion (1 −

σaposteriori/σapriori): (a) January, (b) July, (c) annual mean.

Figure 7. (a) A posteriori uncertainty covariances between the July flux for a grid in Brazil and

all remaining fluxes for July and (b) the same as Figure 7a but for a grid in China. Covariances

are expressed in units of the corresponding (Brazilian or Chinese) variances. (Consequently,

these Chinese and Brazilian grids both have a value of 1.)
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Figure 8. Comparison between simulated and observed concentrations. Measurements at these

locations have been excluded from the inversion. Dashed lines represent a priori; solid lines

represent a posteriori; and squares represent measurements. Error bars represent 1σ interval of

the measurements.

Figure 9. Seasonal cycles in the estimated fluxes for four regions. Solid lines are uncorrelated

fluxes; dashed lines are time-orrelated fluxes (see text); and dotted lines are a priori fluxes.

Figure 10. Spatial correlation: difference between a posteriori and a priori (a posteriori minus

a priori) surface flux estimates for (a) January , (b) July, and (c) annual mean.
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Tables
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Table 1. Measurement Stations

Station Code Location Coordinates

Latitude Longitude Altitude, m

ALT∗ Alert 82◦27’N 62◦31’W 210

ASC∗ Ascension Island 7◦55’S 14◦25’W 54

BAL Baltic Sea 55◦30’N 16◦40’E 7

BME Bermuda East 32◦22’N 64◦39’W 30

BMW Bermuda West 32◦16’N 65◦53’W 30

BRW∗ Barrow 71◦19’N 156◦36’W 11

CBA Cold Bay 55◦12’N 162◦43’W 25

CGO∗ Cape Grim 40◦41’S 144◦41’E 94

CMO Cape Meares 45◦29’N 123◦58’W 30

GMI∗ Guam 13◦26’N 144◦47’E 2

GOZ Gozo 36◦03’N 14◦11’E 30

ICE Heimaey 63◦15’N 20◦09’W 100

ITN Grifton 35◦21’N 77◦23’W 505

IZO Tenerife 28◦18’N 16◦29’W 2300

KEY Key Biscayne 25◦40’N 80◦12’W 3

KUM∗ Cape Kumukahi 19◦31’N 154◦49’W 3

MBC∗ Mould Bay 76◦15’N 119◦21’W 58

MHT Mace Head 53◦20’N 9◦54’W 25

MID∗ Midway 28◦13’N 177◦22’W 4

MLO∗ Mauna Loa 19◦32’N 155◦35’W 3397
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Table 1. (continued)

Station Code Location Coordinates

Latitude Longitude Altitude, m

NWR Niwot Ridge 40◦03’N 105◦35’W 3475

P01∗ Pacific cruise 10◦00’S 168◦36’W 0

P02∗ Pacific cruise 15◦00’S 175◦42’W 0

P03∗ Pacific cruise 25◦00’S 178◦00’E 0

P04∗ Pacific cruise 30◦00’S 177◦06’E 0

PSA∗ Palmer Station 64◦55’S 64◦00’W 10

QPC Qinghai Province 36◦16’N 100◦55’E 3810

RPB∗ Barbados 13◦10’N 59◦26’W 3

SC1 South China Sea cruise 3◦00’N 105◦12’E 0

SC2 South China Sea cruise 6◦00’N 107◦18’E 0

SC3 South China Sea cruise 9◦00’N 109◦24’E 0

SC4 South China Sea cruise 12◦00’N 111◦00’E 0

SC5 South China Sea cruise 15◦00’N 112◦18’E 0

SC6 South China Sea cruise 18◦00’N 113◦18’E 0

SC7 South China Sea cruise 21◦00’N 114◦00’E 0

SEY∗ Seychelles 4◦40’S 55◦10’E 3

SHM∗ Shemya Island 52◦43’N 174◦06’E 40

SMO∗ American Samoa 14◦15’S 170◦34’W 42
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Table 1. (continued)

Station Code Location Coordinates

Latitude Longitude Altitude, m

SPO∗ South Pole 89◦59’S 24◦48’W 2810

STM∗ Ocean Station “M” 66◦00’N 2◦00’E 7

SYO∗ Syowa 69◦00’S 39◦35’E 11

TAP Tae-ahn Peninsula 36◦44’N 126◦08’E 20

UTA Utah 39◦54’N 113◦43’W 1320

UUM Ulaan Uul 44◦27’N 111◦06’E 914

ZEP Ny-Alesund 78◦54’N 11◦53’E 475

∗Station is used to derive the global mean trend.
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Table 2. A Priori CH4 Fluxes and Uncertainties

Process Annual Total Uncertainty a Seasonality Reference b,c

Anthropogenic Surface Fluxes

Oil/gas production 51 ± 30 . . . OL(1,3)

Coal mining 38 ± 15 . . . OL(1,3)

Landfills 48 ± 20 . . . OL(1,3)

Domestic ruminants 93 ± 35 . . . OL(1,3)

Biomass burning 40 ± 30 part of the dry season LE(1), OL(3), H91(4)

Rice agriculture 80 ± 50 dependent on the LE(1), M91(3,4)

growing season

Other sources d 20 ± 16 . . . OL(1,3)

Natural Surface Fluxes

Tropical wetlands 91 ± 26 . . . LE(1), M87(3)

Boreal/arctic wetlands 54 ± 15 temperature dependent LE(1), M87(3), RH(4)

Termites 20 ± 20 . . . LE(1), SA(3)

Oceans 15 ± 10 . . . LE(1), PS(3)

Volcanoes 3.5 ± 3 . . . LA(1), PS(3)

Wild animals 5 ± 5 . . . LE(1), PS(3)

Soil oxidation -30 ± 15 . . . LE(1), FU(3)

Total 528 ± 90

Fluxes and uncertainties in Tg(CH4) yr−1.

aA 95% uncertainty interval (± 2σ) is used.



49

bReferences are 1 annual and global flux total; 2 uncertainty in 1 (Lelieveld et al. [1998] if not stated

explicitly); 3 spatial distribution; and 4 seasonality.

cReferences are OL, Olivier et al. [1996]; CR, Crutzen [1995]; LE, Lelieveld et al. [1998]; H91, Hao et al.

[1991]; M91, Matthews et al. [1991]; M87, Matthews and Fung [1987]; RH, Hein et al. [1997]; SA, Sanderson

[1996]; LA, Lacroix [1993]; FU, Fung et al. [1991]; and PS, present study (see text).

dOther sources are the sum of fossil fuel and domestic biofuel combustion, and industrial production of iron,

steel, and chemicals.
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Table 3. Standard Scenario Integrated CH4 Fluxes and Uncertainties

A priori A posteriori

Mean Uncertainty a Mean Uncertainty a

Surface flux

Globe 528 ± 90 505 ± 24

Northern Hemisphere (NH) 405 ± 81 340 ± 19

Southern Hemisphere (SH) 123 ± 40 165 ± 18

Tropospheric OH 485 ± 25 451 ± 22

Stratospheric loss 40 ± 10 37 ± 9.7

Trend 3 ± 94 18 ± 7

c0 1.696 . . . b 1.694 ± 0.009

Fluxes and uncertainties are in Tg(CH4) yr−1.

aA 95% uncertainty interval (± 2σ) is used.

bInitial methane concentration is in ppmv (see (3)). Uncertainty in c0 is set to a high value.
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Table 4. Uncertainty Reduction per Station

Global Local

Station Uncertainty Reduction,a% Station Uncertainty Reduction, %

1. SPO 83 QPC 45

2. SYO 81 TAP 39

3. P24 75 GMI 39

4. PSA 74 SC7 32

5. P25 71 SC5 20

6. P22 63 SC6 18

7. CGO 58 SEY 16

8. ASC 48 UUM 16

9. SMO 46 SC4 15

10. MLO 42 SC3 14

11. P20 37 GOZ 12

12. GMI 37 MHT 12

13. QPC 34 IZO 11

14. MID 34 STM 10

15. SHM 34 UTA 9
...

...

41. TAP 13 CMO 2

42. UTA 13 P25 1

43. GOZ 13 P24 1

44. ITN 5 ALT <0.5
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Table 4. (continued)

Global Local

Station Uncertainty Reduction,a% Station Uncertainty Reduction, %

45. BAL 4 SPO <0.5

aUncertainty reductions are relative to the uncertainty reductions in a standard inversion (see

text).
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Table 5. Sensitivity Tests, Integrated CH4 Fluxes and Uncertainties

Globe NH SH Region 1 a Region 2 b

A Priori
All inversions 528 (±90)c 405 (±81) 123 (±40) 111 (±56) 51 (±28)

A Posteriori
Standard 505 (±24) 340 (±19) 165 (±18) 77 (±23) 65 (±20)

Time correlation 500 (±23) 338 (±17) 162 (±16) 80 (±20) 65 (±18)

Space correlation 481 (±22) 333 (±15) 148 (±13) 78 (±15) 63 (±14)

Relative uncertainty (600%) 511 (±25) 343 (±21) 169 (±20) 76 (±27) 68 (±25)

Relative uncertainty (100%) 479 (±15) 338 (±9) 142 (±8) 75 (±8) 54 (±6)

OH ratio (NH/SH=2) 516 (±24) 395 (±20) 121 (±17) 103 (±23) 69 (±20)

Fluxes and uncertainties in Tg(CH4) yr−1.

aRegion 1 is 75◦–135◦E, 10◦–40◦N (southeast Asia).

bRegion 2 is 5◦W–35◦E, 15◦S–25◦N (central Africa).

cA 95% uncertainty interval (± 2σ) is used. The a priori uncertainties correspond to

the standard scenario only.
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Table 6. Standard and Low Rice Scenarios, Integrated CH4 Fluxes, and

Uncertainties

Scenario Globe NH SH Zone a Region b

A priori

Standard 528 (±90) 405 (±81) 123 (±40) 212 (±66) 111 (±56)

Low rice 528 (±77) 384 (±66) 143 (±38) 185 (±47) 74 (±31)

A posteriori

Standard 505 (±24) 340 (±19) 165 (±18) 169 (±25) 77 (±23)

Low rice 508 (±24) 342 (±18) 166 (±17) 164 (±23) 68 (±18)

Fluxes are in Tg(CH4) yr−1.

aThe zonal band is from 10◦–40◦N.

bThe region is 75◦–135◦W, 10◦–40◦N.

cA 95% uncertainty interval (± 2σ) is used.
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Figure 1. Comparison of modeled 1,1,1-trichloroethane (CH3CCl3) concentrations to mea-

surements at the Atmospheric Lifetime Experiment (ALE)/ Global Atmospheric Gases Exper-

iment (GAGE) stations. Solid lines are optimized OH fields; dashed lines are original OH

fields; and squares are monthly mean measurements. Error bars represent the 1σ interval of the

measurements.
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a

b

c

Figure 2. Estimated surface fluxes of methane for (left) January and (right) July: (a) a priori,

(b) a posteriori, and (c) difference a posteriori minus a priori.
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Figure 3. As Figure 2 for annual means.
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Figure 4. Comparison of simulated concentrations to measurements. Dashed lines represent

simulations based on a priori fluxes; solid lines represent simulations based on a posteriori

fluxes; and squares represent monthly means of observations. Error bars represent the 1σ

interval of the measurements. The offset of the a priori data has been adjusted according to the

offset at the South Pole.
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Figure 5. Observed and simulated latitudinal methane concentration gradients (representing

annual means). Squares represent simulations based a priori fluxes; triangles represent simula-

tions based on a posteriori fluxes; and solid circles represent measurements. The offset in the a

priori data has been adjusted according to the offset at the South Pole.
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a

b

c

Figure 6. Reduction in surface flux uncertainty gained by the inversion (1 −

σaposteriori/σapriori): (a) January, (b) July, (c) annual mean.
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a

b

Figure 7. (a) A posteriori uncertainty covariances between the July flux for a grid in Brazil and

all remaining fluxes for July and (b) the same as Figure 7a but for a grid in China. Covariances

are expressed in units of the corresponding (Brazilian or Chinese) variances. (Consequently,

these Chinese and Brazilian grids both have a value of 1.)
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Figure 8. Comparison between simulated and observed concentrations. Measurements at these

locations have been excluded from the inversion. Dashed lines represent a priori; solid lines

represent a posteriori; and squares represent measurements. Error bars represent 1σ interval of

the measurements.
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Figure 9. Seasonal cycles in the estimated fluxes for four regions. Solid lines are uncorrelated

fluxes; dashed lines are time-orrelated fluxes (see text); and dotted lines are a priori fluxes.
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a

b

c

Figure 10. Spatial correlation: difference between a posteriori and a priori (a posteriori minus

a priori) surface flux estimates for (a) January , (b) July, and (c) annual mean.


