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ABSTRACT
We present a variational assimilation system around a coarse resolution Earth Sys-
tem Model (ESM) and apply it for estimating initial conditions and parameters of
the model. The system is based on derivative information that is efficiently provided
by the ESM’s adjoint, which has been generated through automatic differentiation of
the model’s source code. In our variational approach, the length of the feasible as-
similation window is limited by the size of the domain in control space over which
the approximation by the derivative is valid. This validity domain is reduced by non-
smooth process representations. We show that in this respect the ocean component is
less critical than the atmospheric component. We demonstrate how the feasible assim-
ilation window can be extended to several weeks by modifying the implementation of
specific process representations and by switching off processes such as precipitation.

keywords: Data assimilation; climate modelling; coupled ocean–atmosphere model;
earth system model; automatic differentiation; adjoint model

1 Introduction

State-of-the-art climate predictions rely on numerical
models of the earth system. One of the major sources of
uncertainty in these predictions is the correct representation
and parametrisation of the processes underlying the climate
system (see e.g. Cubasch et al., 2001). A further source is the
uncertainty in the initial state, i.e. the state of the climate
system at the beginning of the integration. Systematic use of
observational information has the potential to reduce both
types of uncertainty. Due to their high complexity, state-
of-the-art earth system models are extremely demanding in
terms of computer time. This complicates the systematic
estimation of process parameters (calibration) and of the
initial state (initialisation) from observations.

These systematic approaches can, thus, typically only
be pursued for models with reduced spatio-temporal resolu-
tion, simplified process representations, and/or reduced sets
of uncertain (tunable) parameters. For example, Jones et al.
(2005) employ FAMOUS, a reduced resolution version of its
parent general circulation model HadCM3 to demonstrate
the systematic tuning of eight process parameters. This sub-
set of the full parameter space, which for the atmosphere
component alone has about 100 dimensions (Murphy et al.,
2004), had to be kept small for computational reasons. This
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is because even a parameter space of as few as eight dimen-
sions can only be efficiently searched for an optimal param-
eter set by a gradient algorithm. Such gradient algorithms
minimise the model–data misfit quantified by a cost function
through the use of the cost function’s gradient. Jones et al.
(2005) had to restrict the dimension of the control space
because they approximated the gradient (i.e. sensitivity) in-
formation in the optimisation procedure by inaccurate finite
difference calculations of multiple model runs (depending on
the chosen perturbation size), at a computational cost pro-
portional to the number of tunable process parameters.

Computing parameter sensitivities with the adjoint
avoids any restriction on the dimension of the parameter
and initial state space. This is because the associated com-
putational cost is independent of this dimension, as will
be explained in Sect. 2.2 below. This concept has been
demonstrated for several components of the earth system.
To the atmospheric component, the adjoint approach is be-
ing routinely applied at operational centres for numerical
weather prediction (NWP) for forecast initialisation (see
e.g. Rabier et al., 2000). Adjoint-based calibration has been
demonstrated (e.g. Blessing et al., 2004; Kaminski et al.,
2007) for the Portable University Model of the Atmosphere
(PUMA, Fraedrich, Kirk, Luksch and Lunkeit, 2005).

For the ocean component of the earth system, an
adjoint-based assimilation system has been operated for
more than a decade (Stammer et al., 2002; 2003). It is built
around the MITgcm (Marshall, Hill, Perelman and Adcroft,
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1997; Marshall, Adcroft, Hill, Perelman and Heisey, 1997)
and infers a combination of initial and boundary condi-
tions of the ocean circulation. Meanwhile, multiple versions
of the system are being applied by several research groups
around the world in different setups (e.g. Hoteit et al., 2005;
Köhl and Stammer, 2008). As another example, the adjoint
(Kauker et al., 2009) of the Arctic coupled sea-ice ocean
model NAOSIM is employed to initialise seasonal predic-
tions of the Arctic ice conditions (Kauker et al., 2010).

For the terrestrial biosphere component, this ap-
proach is demonstrated by the Carbon Cycle Data As-
similation System (CCDAS, http://ccdas.org, Rayner et al.,
2005; Scholze et al., 2007; Kaminski et al., 2012; 2013),
which performs a combined parameter and initial state
estimation in the terrestrial biosphere model BETHY
(Knorr and Heimann, 2001). CCDAS also features uncer-
tainty propagation, based on second derivative informa-
tion. The CCDAS concept is being transferred (see e.g.
Schürmann et al., 2013; Kaminski et al., 2013; Luke, 2011;
Kuppel et al., 2012) to several further terrestrial biosphere
models (JSBACH, JULES, ORCHIDEE), all of which are
component models in Earth System Models (ESMs) that
contribute climate projections to the IPCC’s 5th assessment
report.

The construction of an analogous assimilation system
around an entire ESM is clearly desirable. Such a system
could allow, for example, the initialisation of climate model
predictions in a way consistent with model dynamics. An-
other application could be the use of paleo records as con-
straints on the process parameters of the underlying ESM.
Furthermore, the impact of all process parameters and the
initial state on the model’s climate sensitivity could be rig-
orously assessed in a single adjoint run. First steps into this
direction were taken by Lee et al. (2000) and Galanti et al.
(2003) who used ocean models (in the first case a beta
plane model, and in the latter the MOM3 general circulation
model) coupled to a simple statistical atmospheric compo-
nent, derived through a singular value decomposition.

One of the challenges associated with the set-up
of an assimilation system around an entire ESM is of
technical nature, imposed by the model’s code size and
complexity. For many of the above-listed component models
(PUMA, MITgcm, NAOSIM, BETHY, JSBACH, JULES,
ORCHIDEE) the derivative code has been generated by an
automatic differentiation tool (TAF, Giering and Kaminski,
1998). Sugiura et al. (2008) pioneered assimilation into an
ESM by coupling the adjoints of their component models.
This approach is tedious, error prone, and inflexible as it
requires to hand-code the coupling on the derivative code
level. The alternative approach, which consists in automatic
differentiation of the entire ESM, has not been pursued
yet. The present study demonstrates, for the first time,
the feasibility of this coupled model differentiation, using
an ESM consisting of the Planet Simulator (PlaSim,
Fraedrich, Jansen, Kirk, Luksch and Lunkeit, 2005;
Fraedrich, Jansen, Kirk and Lunkeit, 2005; Fraedrich, 2012)
coupled to MITgcm (Marshall, Hill, Perelman and Adcroft,
1997; Marshall, Adcroft, Hill, Perelman and Heisey, 1997).

A more fundamental challenge results from the non-
linearity of the climate system: The usefulness of derivative
code depends on the capability of the linearisation around a
point to represent the model in the point’s neighbourhood.

This capability is closely connected with the concept of pre-
dictability, which Lorenz (1963) analysed for a non-linear
three-dimensional system that possesses a strange attrac-
tor. Lea et al. (2000) use this system to demonstrate that
the usefulness of the linearisation of the long-term mean of
the state variables around the system’s parameters decreases
with increasing integration period. Köhl and Willebrand
(2002) analyse how this affects the parameter estimation
from the long-term mean state via a gradient method for the
same model as well as for a high-resolution quasi-geostrophic
model of the oceanic circulation. In this estimation context,
the poor linearisability of the long-term mean shows up in
the form of multiple local minima in the model–data misfit.
Köhl and Willebrand (2002) as well as Thuburn (2005) ex-
tend the adjoint approach by a statistical concept to enhance
the usefulness of the gradient information. Pires et al. (1996)
using the Lorenz model and Tanguay et al. (1995) using a β-
plane model address the linearisation problem in the context
of four-dimensional variational data assimilation, estimat-
ing initial conditions that minimise the model–data misfit.
Pires et al. (1996) and Swanson et al. (1998) present a quasi

static variational assimilation approach that tracks the ab-
solute cost function minimum through successive increments
of the assimilation window. In the adjoint-based assimilation
system around their ESM, Sugiura et al. (2008) are improv-
ing linearisability through the simulation of time-averaged
fields and an approximate adjoint with an artificial damp-
ing term following an initial calibration of seven parame-
ters through a Green’s functions approach. Abarbanel et al.
(2010) also suggest a variable damping term, and present
an analysis of its effect on their cost function. A summary
of the linearisation topic is provided by Lorenc and Payne
(2007), together with a sketch of a seamless four-dimensional
variational assimilation approach, which models probability
density functions for the uncertain, small-scale processes.

In NWP it is common to run the assimilation with
“simplified physics”, i.e. to remove a set of particularly
non-linear processes or replace them by less complex and
smoother formulations (Rabier et al., 2000). What is feasi-
ble for the short assimilation windows typical for NWP, can
be problematic on longer time scales, where it may result
in considerable biases in the simulated state of the system.
For the terrestrial biosphere component it has been shown
(Knorr et al., 2010; Kaminski et al., 2012) that the perfor-
mance in the above-mentioned CCDAS is considerably im-
proved by reformulation of some crucial process formula-
tions (e.g. of leaf phenology). Formulations that rely on step
functions or non-differentiabilities were replaced by formula-
tions that resulted in smooth dependency of the simulation
on initial conditions and process parameters. For the phe-
nology this was achieved by adopting a statistical concept
(Knorr et al., 2010) as opposed to a concept that, simply
speaking, removes simultaneously all leafs within a given
grid cell. The current study transfers this reformulation con-
cept to our ESM.

A useful diagnostic for the performance of an adjoint-
based assimilation system is the length of the feasible as-
similation window, i.e. the assimilation window over which
the system can successfully operate. For a coarse resolu-
tion version of PUMA, the atmospheric component of our
ESM, Kaminski et al. (2007) demonstrated feasible assimi-
lation windows of up to 100 days for parameter estimation.
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Here we use the same diagnostic to study the performance
of the assimilation system around our ESM.

The layout of the remainder of this paper is as follows.
Section 2 will present the components of the assimilation
system, Sect. 3 will describe the experimental setup, and
Sect. 4 will present the results. Section 5 will provide a dis-
cussion and Sect. 6 a summary and conclusions.

2 The data assimilation system

2.1 The model

The ESM introduced here is the CESAM1 (CEN
Earth System Assimilation Model). It consists of the
PlaSim (Fraedrich, Jansen, Kirk, Luksch and Lunkeit,
2005; Fraedrich, Jansen, Kirk and Lunkeit, 2005;
Fraedrich, 2012) coupled to the MITgcm
(Marshall, Hill, Perelman and Adcroft, 1997;
Marshall, Adcroft, Hill, Perelman and Heisey, 1997).
The relevant components of the PlaSim include the spec-
tral PUMA (Fraedrich, Kirk, Luksch and Lunkeit, 2005),
including schemes for radiation, cloud cover, precipitation,
runoff, soil temperature and wetness, surface fluxes, a
thermodynamic sea ice model, and a terrestrial biosphere
component (SIMBA). The MITgcm is a state-of-the-art
finite volume model of the general oceanic circulation,
including a model of sea-ice dynamics and rheology
(Zhang et al., 1998).

In the coupling, sea surface temperature and -salinity
are computed by the ocean model and used by the at-
mospheric model. In turn, the atmospheric model passes
back heat flux, precipitation minus evaporation, runoff, wind
stress, and, optionally, short wave radiative heat flux, atmo-
spheric surface pressure, and snow and ice mass. Of the op-
tional quantities, we use only short wave radiative heat flux
since the sea ice component of the MITgcm is deactivated in
the present study. Instead, the thermodynamic ice model of
PlaSim is used. In the current setup the models run in turns,
and the exchanged quantities are interpolated between the
grids.

For all experiments a resolution of 4° in the ocean and
5.6° (T21) in the atmosphere and land surface components
is used. A time-step of 8 hours is used in the ocean, and
48 minutes in the atmosphere. Configurations marked ‘slow’
use a 20-minute time-step in the atmosphere, in one case
(Exp. 4 of Table 3 described in Sect. 3) even a 10-minute
time-step.

A number of modifications were made to PlaSim in
order to enhance its performance in a variational assim-
ilation system (see Appendix). Two configurations, called
‘standard’ and ‘minimal’ are used. ‘Standard’ uses most of
PlaSim’s components except for the terrestrial biosphere
model, while in ‘minimal’ also the hydrological cycle is ex-
cluded, i.e. evaporation, precipitation, and runoff. Moreover,
in the moisture-free ‘minimal’ atmosphere there is no cloud-
radiative feedback and the soil moisture is set to climatol-
ogy. Configurations marked ‘w/o ocean’ replace the ocean
with climatological sea surface temperature (SST). Table 1
gives an overview for quick reference. We further use the tags

1 available via http://www.cen.uni-hamburg.de/en/research/cen-models/cesam.html

soft to mark experiments which do use smooth replacements
for some occurrences of the if, where, min, max, abs etc.
statements, which proved problematic in initial tests, and
hard for those which do not (see Appendix for details).

2.2 Assimilation

We use the observational information to constrain a
vector of control variables, which can be a combination of
initial- and boundary conditions as well as parameters in
the process formulations of the model. Our experiments will
investigate several choices of control vectors summarised in
Table 2. P10 is a control vector of process parameters from
PlaSim, controlling the time scale for Rayleigh friction in the
uppermost two atmospheric layers, the diffusion time scales
for divergence, vorticity, and temperature, the point of mean
long wave radiation transmissivity in a layer, and four de-
grees of freedom of diffusion and surface fluxes. I2 controls a
globally uniform perturbation of initial conditions of atmo-
spheric surface pressure and temperature at all levels. I4 is
as I2, but additionally including global-scale perturbations
of salinity and temperature of the ocean. Finally, I3D con-
trols a gridpoint-wise perturbation of atmospheric vorticity,
divergence, surface pressure, and temperature, as well as of
oceanic salinity and temperature.

Our assimilation system implements a probabilistic in-
version concept (see Tarantola, 2005) that describes the
state of information on a specific physical quantity by a
probability density function (PDF). The prior information
on the control variables is quantified by a PDF in control
space and the observational information by a PDF in the
space of observations, at all sampling times and locations.
Their respective means are denoted by xprior and d and their
respective covariance matrices by Cprior and Cobs., where
Cobs. accounts for uncertainties in the observations as well
as uncertainties from errors in simulating their counterpart
(model error). If the prior and observational PDFs were
Gaussian and the model linear, the posterior PDF would
be Gaussian, too, and completely characterised by its mean
xpost and its covariance matrix Cpost. Further, xpost would
minimise the following cost function:

J(x) =
1

2
[(M(x)− d)TC−1

obs.(M(x)− d)

+(x− xprior)
T
C

−1
prior(x− xprior)], (1)

where M(x) denotes the model operated as a mapping of the
parameters onto simulated counterparts of the observations.
In the non-linear case we approximate the posterior PDF
by a Gaussian with mean value xpost, which is also termed
maximum a posteriori probability (MAP) estimate. Without
the prior term it is termed maximum likelihood estimate
(MLE). The first term of Eq. (1) quantifies the model–data
misfit (observational term) and the second term the prior
information. In NWP the latter term is called background
term.

Fig. 1 shows a schematic illustration of a cost function
that includes a step function. The red curve displays the
observational term (for perfect model and observations) with
the step function while the green curve displays the effect
of smoothing the step. In this case the smoothing is not
strong enough to avoid a secondary minimum. Adding a
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strong enough prior term (dark blue) removes the secondary
minimum (magenta).

All our experiments (see Sect. 3) except one use pseudo
observations produced from known true values of the control
variables without added noise. In this context there are three
options for the prior term:

(i) discard the prior term
(ii) use true values as prior xprior as is illustrated in Fig. 1.
(iii) use different values than the true values as prior xprior

Options (i) and (ii) allow us to assess the progress of the it-
erative minimisation of J(x) through the difference between
the current and the true values of the control variables. For
a successful minimisation, this difference, e.g. expressed as
a Euclidean norm, should converge to zero. By contrast, for
Option (iii) we would expect the prior term to shift the
minimum from the true value towards the prior. This is why
we discard this option. We note, however, that Option (iii)
is the usual choice for assimilation of real data, and is par-
ticularly important in underdetermined setups. The effect of
Options (ii) and (iii) is to smooth the cost function, and thus
mask potential problems in the observational term. Fig. 1
schematically illustrates the smoothing effect for Option (ii).
For Option (iii), the effect of the prior term will depend on
its location relative to the two minima in the observational
term. For our experiments we choose Option (i) in order to
make a clear assessment of the properties of the observa-
tional term. We demonstrate, however, the effect of includ-
ing a prior term (Option (ii)) for two of our experiments,
which use the P10 control vector (described in Sect. 3 and
Table 2) with standard deviations set to 100 % of the re-
spective parameter values and zero off-diagonal elements in
the uncertainty covariance matrix Cprior. We also use the
prior uncertainty to scale the control vector in all our ex-
periments, i.e. the control vector is quantified in multiples
of the prior uncertainty.

The assimilation consists in an iterative minimisation
of J through variation of x by a quasi-Newton algorithm
(Fletcher and Powell, 1963). This procedure determines the
search direction through the gradient of J with respect
to x. This gradient of the cost function with respect to
the control variables is provided by automatic differenti-
ation (Griewank, 1989) of the source code through TAF
(Giering and Kaminski, 1998).

The automatic differentiation procedure decomposes
the code that evaluates the entire function J into simple
elementary functions such as “+” or “sin” for which the
derivative (local Jacobian matrix) is known. By applying
the chain rule of calculus to the sequence of local Jacobians,
the derivative of the composite function can then be evalu-
ated accurately up to rounding error. This multiple matrix
product can be evaluated in arbitrary order. The tangent
linear model (TLM) uses the same order as the evaluation
of the function, while the adjoint model (ADM) uses the
reverse order. Both yield (up to rounding error) identical
results for the gradient of J(x) of Eq. (1), but the memory
and CPU time requirements differ. While the requirements
for the gradient calculations using one TLM run per control
variable are proportional to the number of control variables,
the requirements using the ADM are proportional to the
number of dependent variables but virtually independent of
the number of control variables. An efficient TLM and ADM

pair (comprising 174,000 and 387,000 lines of Fortran code
excluding comments, respectively) was generated through
TAF. The TLM requires the CPU time of about 2.3 model
runs to provide a single gradient component and the func-
tion value, while the ADM requires the CPU time of about
4 model runs to provide the entire gradient and the function
value. This includes an efficient 2-level-checkpointing scheme
(Griewank, 1992) to allow long integrations. The model’s
MPI parallelisation capabilities were preserved in the deriva-
tive code without degradation of the above performance ra-
tios. We note that repeated invocation of TAF can be used
to generate code for evaluation of higher-order derivatives.
For example, Kaminski et al. (2003) describe the generation
of code for evaluation of the Hessian.

We note that TAF relies on a number of global analy-
ses, i.e. analyses of the entire function code. For example, an
activity analysis traces all variables on the path from control
variables to the cost function value. This analysis also cov-
ers the interfaces of the component models with the coupler.
Treating the differentiation of the model components and
the coupler separately, as demonstrated by Sugiura et al.
(2008) for their ESM, would have required the user to per-
form this activity analysis and assure the correct coupling
on the level of the generated component derivative codes.
Even though there was pre-existing derivative code for some
of the model components (Blessing, 2000; Blessing et al.,
2008; Rivière et al., 2009; Marotzke et al., 1999), we apply
our coupled model differentiation approach. This means we
apply TAF to generate the derivative of J with respect to
the parameters x to the entire coupled model at once. Thus
TAF automatically generates a single derivative code for all
coupled model components, including the coupler. No fur-
ther hand-coding is required. This is, for the given reasons,
safer, more flexible and sustainable. In the context of this
study, it allowed us to generate derivative code versions for
a variety of combinations of model configurations, control
vectors, and observational data sets.

2.3 Data sets for assimilation

“Identical twin” experiments use pseudo-data in the as-
similation, which were generated with the model itself from
a prescribed control vector, thus guaranteeing full consis-
tency of data and model, and allowing to know the “true”
control vector. For one other experiment, data interpolated
from ERA-40 simulations (Uppala et al., 2005) are used in
the atmosphere. In either case, data are provided at all grid
points and levels of the respective subsystem, with the ex-
ception of atmospheric temperature at the uppermost level.
For the atmosphere we are using vorticity, temperature, and
surface pressure, while in the ocean these are temperature
and salinity. As in Köhl and Willebrand (2002), all data are
time-averaged over the assimilation window and no noise is
added. Consequently, the cost function is evaluated at the
end of the assimilation window. Given the spatial resolution
of T21 and 10 levels in the atmosphere and 4° and 15 levels
in the ocean, this amounts to 40960 time-averaged observa-
tions from the atmosphere and (restricting to wet points)
61942 from the ocean, totalling 102902.

For Cobs. of Eq. (1), off-diagonal elements where set
to zero, i.e. we assume uncorrelated uncertainty. The di-
agonal elements are the squares of the following standard
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deviations: In the atmosphere we use 3 K for temperature,
5 hPa for surface pressure, and 2×105 1/s for vorticity. Our
ocean uncertainties vary in space with standard deviations
between 0.4 – 3.1 K for temperature and 0.15 – 0.8 PSU for
salinity with the higher values towards the surface. These
numbers are a rough guess of the actual uncertainties and
effectively determine the relative weight given to the indi-
vidual observation.

3 Experimental setup

Our experiments are designed to verify the correctness
of the derivatives and to identify potential problems under
a variety of situations. They present the first steps towards
an assimilation system in a coupled model environment. We
will examine several combinations of model configurations
and control vectors.

For each of the model configurations we generate a con-
sistent snapshot of the model state (restart file) recorded
at the end of a ten-year integration. The restart file for the
experiment with the ERA-40 data is derived by optimising
the atmospheric initial conditions in a pre-assimilation over
200 iterations. This procedure uses as additional term in
Eq. (1) a surface pressure tendency penalty to suppress grav-
ity waves as given in Eq. 2.4 of Zou et al. (1993), summed
over all time steps during the first six hours of a 1-day as-
similation window, while the observational constraint was
constructed as the time-averaged data over the full assimi-
lation window. All but the aforementioned experiment will
be conducted as identical twin experiments that assimilate
pseudo data. This means we use default values of the control
vector to generate pseudo data. Next we start the iterative
assimilation procedure from a perturbed control vector. For
the identical twin experiments with short control vectors,
i.e. P10, I2, I4 as defined in Table 2, we call an experiment
successful if we can accurately (Euclidean distance to de-
fault reduced by at least 5 orders of magnitude) recover the
default parameter values through assimilation of the data,
with a strongly (by more than five orders of magnitude)
reduced gradient of the cost function.

Now, in the most favourable case of a linear model, we
can expect a solution of this type of inverse problem to take
as many iterations as there are components in the control
vector (Powell, 1964). Since for an ESM one can usually only
afford an iteration number of a few tens or hundreds, we
can only expect setups with low dimensional control vectors
to converge. For the setups with high-dimensional control
vector, i.e. I3D, we will only perform 20 iterations. In this
context, we call an experiment successful, if reductions of
the cost function and of the Euclidean distance of the con-
trol vector to the default values are achieved at the same
time. In an apparently underdetermined setup such as I3D
(with 125430 control variables constrained by 102902 obser-
vations) the improvement of the control vector is of partic-
ular importance.

Within the iterative minimisation, the trajectory of the
control vector through the control space is highly dependent
on the initial parameter vector. This means that two minimi-
sations starting from neighbouring control vectors typically
explore quite different regions in control space even if they
converge to the same minimum. For an example see Fig. 4

in Clerici et al. (2010). To assess the robustness of our ex-
perimental results, we carry out each experiment as a small
ensemble with four members, each of which starts from a
different point in control space. For the identical twin ex-
periments with the I4 control vector the first member starts
with the following perturbations of the control vector: in
atmosphere and ocean 0.1 K for temperature, 1 per mil of
the atmospheric surface pressure, 0.1 PSU for salinity. For
the other members, the same magnitudes are used, but with
varied signs. For example in the ‘min w ocean’ configuration
this uniform initial state perturbation yields, after a 26 day
integration, a perturbation of about 1.5 K in the lowest at-
mospheric layer (standard deviation), with maximum values
of 18 K and 10 hPa. For the P10 control vector, a 10 % per-
turbation of each component is used. The I3D control vector
uses a globally uniform perturbation of the same magnitude
as in the I4 case, but sign and magnitude are varied to gen-
erate the other ensemble members. An ensemble size of four
is low, but appears to be sufficient for a first assessment.

4 Results

First we address model parameter estimation, i.e. the
control vector P10, in a set of identical twin experiments. Ta-
ble 3 summarises our experimental results. Exp. 1 shows that
in the most complex configuration ‘std w ocean’, we cannot
even reliably recover our parameter vector over a 1-day as-
similation window. Three out of four ensemble members fail
to find a minimum. The minimisations get stuck at edges in
the cost function, This is because, with a given minimal step
size along a local downhill direction that is pointing towards
an upward jump, the optimisation algorithm cannot achieve
any further decrease of the cost function. Fig. 2 illustrates
this situation, where the stopping point is on the right hand
side of the jump, and except for the jump point the cost func-
tion has ascending slope, i.e. the downhill direction points
towards the left. In our model such jumps can typically be
traced back to if-statements in the convective precipitation.
Removing the ocean does not help (Exp. 2). What helps is
the simplification of the atmosphere (configuration ‘min w
ocean’, Exp. 3). The simplification of the atmosphere can be
regarded as a step towards the setup of the Kaminski et al.
(2007) study, where the atmosphere is even reduced to its
dynamical core. To approach the 100-day assimilation win-
dow of the Kaminski et al. study we test a configuration
‘slow w/o ocean’ which removes the ocean, simplifies the at-
mosphere, and reduces its time step. The reduced time step
is motivated by the study of Zhu and Kamachi (2000), who
report stability problems for the linearisation of certain nu-
merical time integration schemes. The reduced time step can
thus be regarded as a way to render the cost function more
regular. The configuration ‘slow w/o ocean’ works robustly
for an assimilation window of 56 days (Exp. 4, Fig. 3).

We note that repeating, as a test, Exp. 1 with a prior
contribution still yields one successful member while repeat-
ing Exp. 3 with a prior term does increase the number of suc-
cessful members from two to four. This behaviour confirms
our expectation from Fig. 1: While a prior term cannot avoid
step functions (probably induced by atmospheric processes
in the ‘std’ configuration) it can help to avoid secondary
minima in the smoother atmospheric ‘min’ configuration.
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Exp. 5 tests the Exp. 4 setup with ERA data instead of
pseudo data. Over an assimilation window of 1 day all four
members converge to very proximate minima. Fig. 4 shows
the convergence for one of the members, which reduces the
gradient norm by more than five orders of magnitude. The
value of the cost function is reduced by 1%, and the param-
eter vector is considerably changed. The procedure has ap-
parently found a minimum which is not necessarily a global
one, but it is also possible that the model in the minimal con-
figuration just cannot match the ERA-data any better. We
note that the value of χ2, i.e. twice that of the cost function
at the minimum (Tarantola, 2005) of about 7414 is about a
factor of 5.5 smaller than expected when assimilating 40960
(≈ 5.5 · 7417) observations (see Sect. 2.3) to estimate 10
unknown parameters (see Table 2) without the use of prior
information. One could fix this by scaling down our data un-
certainties by a factor of

√
5.5 (see, e.g. Ménard and Chang,

2000). We do not do this here because in the absence of a
prior term a uniform scalar has no impact on the minimi-
sation. Fig. 5 shows that the estimated parameter vector
achieves a slight improvement of the predictive skill beyond
the assimilation window.

Next, we present experiments where we estimate ini-
tial conditions (control vectors I2, I4, and I3D). We start
with the most complex configuration, ‘std w ocean’, and
the I4 control vector, which works for assimilation windows
of 1 day with (Exp. 6) and mostly without (Exp. 7) soft
switches. For a three day assimilation window the assimila-
tion does not work anymore (Exp. 8). Removing the ocean
(Exp. 9) does not help. We can, however, achieve consid-
erable extensions of the assimilation window if we simplify
the atmospheric component. Configuration ‘min w ocean’
is mostly successful for an assimilation window of 26 days
with (Exp. 10) and without (Exp. 11, Fig. 6) soft switches.
Interestingly, reducing the time step deteriorates the estima-
tion of initial conditions (Exp. 12), even though it improved
the estimation of parameters. Fig. 7 shows the cost function
over a section of the control space from the true value to the
first guess of the first member of Exp. 12. At this large scale
the cost function looks smooth. Note also the high curvature
(expressed as the second derivative) of the cost function at
the minimum of about 100,000, compared to a curvature
of the prior term (not used in the experiment) of 1. This
indicates a strong constraint by the observations. The dis-
continuities which hamper the minimisation are of the type
shown in Fig. 2 and only visible at much finer scales.

As mentioned, we use the low dimensional control vec-
tors because they have the potential to converge within an
affordable number of iterations. For initialisation of climate
predictions, however, we want to correct the three dimen-
sional structure of the initial field. Our final set of experi-
ments tests this type of control vector (I3D) and limits the
number of iterations of our gradient algorithm to 20. Recall
that in this context we call an experiment successful, if re-
ductions of the cost function and of the Euclidean distance
of the control vector to the default values are achieved at the
same time. Over one day, our most complex configuration
‘std w ocean’ (Exp. 13) has 3 successful ensemble members
(9, 13, and 14 % reduction of norm of parameter difference
to truth and cost function reductions of 32, 20, and 19 %),
while one member got stuck without reduction in the norm
of the parameter difference to truth nor in the cost function.

By contrast, over the same assimilation window in configu-
ration ‘min w ocean’ (Exp. 14) all 4 ensemble members are
successful, with 11, 12, 15, and 15 % reduction of norm of
parameter difference to truth and cost function reductions
of 34, 20, 30, and 20 %. In this latter configuration 3 ensem-
ble members were also successful for an assimilation window
of 26 days (Exp. 15, Fig. 8) with 2, 5, and 10 % reduction
of norm of parameter difference to truth and cost function
reductions of 10, 17, and 20 %, while the same assimilation
fails for the configuration ‘std w ocean’ (Exp. 16). Running
the configuration ‘min w ocean’ with soft switches (Exp. 17),
again yields 3 successful ensemble members with compara-
ble results (parameter vector: 5, 7, and 10 % reduction; cost
function: 25, 14, and 28 % reduction)

5 Discussion

Running the uncoupled atmospheric model does not
yield results superior to the coupled one, as we see in
Exp. 2/1 and Exp. 9/8. This reflects the fact that the pro-
cesses in the ocean model operate on longer time scales than
those in the atmospheric model. In particular switching off
fast atmospheric processes such as precipitation increases
the feasible assimilation window. The non-linear behaviour
of these processes is aggravated by their numerical imple-
mentation which often incorporates non-differentiable state-
ments. A step function, for example, produces discontinu-
ities in the cost function, which may provide an obstacle for
gradient-based minimisation. In this study the replacement
of some of these formulations by differentiable approxima-
tions in the soft experiments has been limited to just a few
parts in PlaSim. Hence we expect future studies to reveal the
full potential that lies in the reformulation of such processes
in a differentiable way, possibly using statistical concepts as
demonstrated by (Knorr et al., 2010) and (Kaminski et al.,
2012).

The size of the time-step in dynamical models is typi-
cally a trade-off between performance and simulation qual-
ity. A long time-step results in a fast model integration, while
a short time step typically reduces discretisation error and
thus enhances the quality of the simulation. Exceeding a cer-
tain threshold (imposed by the CFL criterion) even results
in an unstable integration. In our experiments, a reduction
of the atmospheric time step improves the performance for
parameter estimation (Exp. 4) but deteriorates it for the es-
timation of the initial state (Exp. 12). An obvious qualitative
difference between parameter and initial state estimation is
that model parameters directly influence the cost function at
each time-step throughout the integration, while the influ-
ence of the initial state is indirect, because it has to be prop-
agated from time step to time step through the integration
of the dynamical system. This propagation has the potential
to dampen or complicate the structure of the sensitivity of
the cost function to an initial state change. Our experiments
may show the balance of two mechanisms with opposite ef-
fect. On one hand a reduced time step enhances stability of
the linearised model (Zhu and Kamachi, 2000), but on the
other hand it increases the number of time steps required
to cover a given assimilation window. It may be that the
first mechanism is dominant for parameter estimation while
the second mechanism is dominant for the estimation of ini-
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tial conditions. To confirm these findings further research is
required, including theoretical studies with simple models.

Assimilation of ERA-data in Exp. 5 certainly is more
challenging than the identical twin experiments. Even
though we used an assimilation procedure to prepare the
initial state for the experiment, it is obvious from the RMS
error growth in Fig. 5 that the model trajectory quickly di-
verges from the data. Still it is possible to improve this sit-
uation slightly by the parameter estimation. The difficulty
lies in a combination of four factors: First, the atmospheric
configuration is simplified. Second, the model resolution is
coarse compared to the data source. Third, despite the pre-
assimilation procedure the initial state is still sub-optimal.
Fourth, the P10 control space is small. We can eliminate the
first two of these factors by repeating the same procedure
with the ERA data replaced by observations generated by
the model from initial conditions of a different year. In this
case the cost function reduction is stronger by a factor of
more than 10. This indicates the potential for a more real-
istic model and higher resolution.

6 Summary and conclusions

We demonstrated a coupled model differentiation ap-
proach that applies, for the first time, automatic differentia-
tion to an entire ESM at once. The generated derivative code
is efficient and easy to maintain and to adapt to changes in
the ESM code. No hand-coding is required at the deriva-
tive level. We further constructed a variational assimilation
system around the ESM and demonstrated the assimilation
of pseudo observations as well as of an atmospheric data
set based on ERA, and addressed estimation of process pa-
rameters and initial conditions. For both applications, using
pseudo and ERA data, we quantify the performance of the
assimilation system by the length of the feasible assimilation
window.

The focus of this study lies on the behaviour of the ad-
joint ESM in a standard assimilation environment, rather
than on the construction of a sophisticated assimilation sys-
tem, e.g., with split in inner and outer optimisation loops
(see e.g. Rabier et al., 2000). We also refrained from using a
prior (or background) term in the cost function (Eq. 1) in our
experiments (except for a demonstration) in order to make
a clearer assessment of the constraints on the coupled model
provided by the observational term. Through its parabolic
contribution to the cost function, a prior term would have
stabilised the inverse problem. This would have clearly fa-
cilitated the minimisation and possibly would have masked
convergence problems imposed by the observational term. In
that respect we can regard our assessment as conservative.

We find that the performance of the coupled model in
the assimilation system is highly dependent on the selection
of atmospheric processes and their implementation. A re-
duced atmospheric configuration with a number of processes
deactivated shows significantly better performance than the
standard configuration, while inclusion or exclusion of the
dynamical ocean component has only a minor effect. Re-
ducing the atmospheric time-step helps the estimation of
process parameters but complicates the estimation of initial
conditions. We note that the absolute performance of the
system is likely to change with the resolution of the model.

For example, we would expect a degraded performance for
enhanced resolution of the ocean or atmosphere component
or both. Nevertheless the above findings should hold over
a range of resolutions, because the responsible mechanisms
are resolution-independent.

The performance in the reduced configuration is much
better when estimating parameters by assimilating pseudo
data generated by the model itself instead of by assimilat-
ing ERA data, in spite of careful preparation of the initial
conditions. Part of this difference may be attributed to the
coarse resolution and a too large degree of simplification
in the reduced configuration with a limited number of con-
trol variables. More work is required to improve the balance
between realistic process representations and good perfor-
mance in the assimilation system. The efficient handling
of longer control vectors was demonstrated in the present
study.
Another perspective to further extend the feasible assim-
ilation window is the combined use of a reduced and full
configuration in a variational assimilation system, where the
reduced configuration is used to provide an approximate gra-
dient.
The study presented a first step towards a flexible varia-
tional assimilation system for initialisation of predictions
and calibration of the ESM against observations. The sys-
tem was demonstrated in an idealised set up. Obvious next
steps are an increase of spatio-temporal resolution, exten-
sion/improvement of the process representations in a differ-
entiable form, and the simultaneous use of observations of
the entire climate system. A further obvious application are
sensitivity studies based on the tangent and adjoint ESM.
The TAF compliance of the system assures fast updates af-
ter any modification of the ESM code.
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Appendix

Based on a set of initial tests with PlaSim, we identified
several spots in the process implementations that produced
a non-smooth shape in the cost function. For these spots we
modified the implementation. Even though these modifica-
tions are specific to the model at hand, it is instructive to
give a few examples.

(i) if- and where-statements which depend on the model
state implement piecewise-defined functions. Especially in

© 0000 Tellus, 000, 000–000



8 BLESSING ET AL.

the boundary-layer parameterisation of the PlaSim it was
possible to make these functions smooth and differentiable
at the switching point by readjusting some of their coeffi-
cients.

(ii) In some places of the PlaSim, the above procedure
was infeasible and one of the branches was selected and the
other removed. Alternatively, an approach was used which
gives a weighted combination of the results of both branches,
using a sigmoid function depending on the if-condition.

(iii) The PlaSim does its time stepping in spectral space
and has to deal with spurious negative moisture stemming
from the Fourier-transform. The original model uses a redis-
tribution algorithm which fills up negative moisture at af-
fected grid cells, taking it from a certain domain. Out of ver-
tical column containing the affected grid cell, latitude band,
and global domain, it chooses the smallest domain that con-
tains enough moisture. Switching this off had a positive ef-
fect on the smoothness of the cost function at the expense
of formal moisture conservation. Given the limited assimila-
tion window we do not expect a strong detrimental effect for
an assimilation. However, simulations including atmospheric
moisture require a closed hydrological cycle, e.g. rain, which
is currently implemented in a form far from smooth.

(iv) In the PlaSim some of the min, max, and abs- state-
ments were replaced by smooth approximations.

We note that the smoothing effect of the above modifica-
tions is limited, because, unlike Knorr et al. (2010), in this
initial study we refrained from redevelopment of entire pro-
cess representations (such as convection) in smooth form.
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Papale, D., Rödenbeck, C., Schnur, R., Reick, C. and Zaehle,
S.: 2013, Assimilation of NEE and CO2-concentrations into
the land-surface scheme of the MPI Earth System Model,
EGU General Assembly Conference Abstracts, Vol. 15 of
EGU General Assembly Conference Abstracts, p. 9052.
URL: http://adsabs.harvard.edu/abs/2013EGUGA..15.9052S

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P.,

Marotzke, J., Adcroft, A., Hill, C. N. and Marshall, J. 2002.
The global ocean circulation during 1992–1997, estimated
from ocean observations and a general circulation model. J.

Geophys. Res. 107(C9). doi: 10.1029/2001JC000888.
Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach,

P., Marotzke, J., Adcroft, A., Hill, C. N. and Marshall, J.
2003. Volume, heat and freshwater transports of the global
ocean circulation 1992–1997, estimated from a general circu-
lation model constrained by WOCE data. J. Geophys. Res.
108(C1), 23pp. doi: 10.1029/2001JC001115.

Sugiura, N., Awaji, T., Masuda, S., Mochizuki, T., Toyoda, T.,
Miyama, T., Igarashi, H. and Ishikawa, Y. 2008. Develop-
ment of a four-dimensional variational coupled data assimi-
lation system for enhanced analysis and prediction of sea-
sonal to interannual climate variations. J. Geophys. Res.
113(C10017). doi: 10.1029/2008JC004741.

Swanson, K., Vautard, R. and Pires, C. 1998. Four-

dimensional variational assimilation and predictability
in a quasi-geostrophic model.. Tellus A 50, 369–390.
doi: 10.1034/j.1600-0870.1998.t01-4-00001.x.

Tanguay, M., Bartello, P. and Gauthier, P. 1995.

Four-dimensional data assimilation with a
wide range of scales. Tellus 47A, 974–997.
doi: 10.1034/j.1600-0870.1995.00204.x.

Tarantola, A. 2005. Inverse problem theory and methods for

model parameter estimation Tarantola, A. SIAM, Philadel-
phia.

Thuburn, J. 2005. Climate sensitivities via a fokker-planck ad-

joint approach. Quart. J. Roy. Meteor. Soc. 131(605), 73–
92. doi: 10.1256/qj.04.46.

Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U.,
Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J.,

Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S.,

Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Beljaars,

A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires,

S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M.,

Fuentes, M., Hagemann, S., Holm, E., Hoskins, B. J., Isak-

© 0000 Tellus, 000, 000–000

http://dx.doi.org/10.1029/2008GL036323
http://dx.doi.org/10.1029/1998GB001059
http://dx.doi.org/10.1029/2009JG001119
http://dx.doi.org/10.1175/2008JPO3775.1
http://dx.doi.org/10.1034/j.1600-0870.2002.01294.x
http://dx.doi.org/10.5194/bgd-9-3317-2012
http://dx.doi.org/10.1034/j.1600-0870.2000.01137.x
http://dx.doi.org/10.1002/qj.36
http://dx.doi.org/10.1029/1999JC900236
http://dx.doi.org/10.1029/96JC02775
http://dx.doi.org/10.1029/96JC02776
http://dx.doi.org/10.1175/1520-0493(2000)128<2672:AOSCTO>2.0.CO;2
http://dx.doi.org/10.1034/j.1600-0870.1996.00006.x
http://dx.doi.org/10.1002/qj.49712656415
http://dx.doi.org/10.1029/2004GB002254
http://dx.doi.org/10.1002/qj.460
http://dx.doi.org/10.1029/2007JD008642
http://dx.doi.org/10.1029/2001JC000888
http://dx.doi.org/10.1029/2001JC001115
http://dx.doi.org/10.1029/2008JC004741
http://dx.doi.org/10.1034/j.1600-0870.1998.t01-4-00001.x
http://dx.doi.org/10.1034/j.1600-0870.1995.00204.x
http://dx.doi.org/10.1256/qj.04.46


10 BLESSING ET AL.

sen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P.,
Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders,
R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A.,
Vasiljevic, D., Viterbo, P. and Woollen, J. 2005. The ERA40
re-analysis. Quart. J. Roy. Meteor. Soc. 131, 2961–3012.

doi: 10.1256/qj.04.176.
Zhang, J., Hibler, W., Steele, M. and Rothrock, D. 1998.

Arctic ice-ocean modeling with and without cli-
mate restoring. J. Phys. Oceanogr. 28(2), 191–217.

doi: 10.1175/1520-0485(1998)028¡0191:AIOMWA¿2.0.CO;2.
Zhu, J. and Kamachi, M. 2000. The role of time

step size in numerical stability of tangent lin-

ear models. Mon. Wea. Rev. 128, 1562–1572.

doi: 10.1175/1520-0493(2000)128¡1562:TROTSS¿2.0.CO;2.

© 0000 Tellus, 000, 000–000

http://dx.doi.org/10.1256/qj.04.176
http://dx.doi.org/10.1175/1520-0485(1998)028<0191:AIOMWA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2000)128<1562:TROTSS>2.0.CO;2


TESTING VARIATIONAL ESTIMATION OF-PROCESS PARAMETERS AND INITIAL CONDITIONS OF AN ESM 11

Table 1. Model Configurations

Configuration atm. time-step [min.] hydr. cycle (atm.) coupled with MITgcm

std w ocean 48 yes yes

minimal w ocean 48 no yes

std w/o ocean 48 yes no

minimal w/o ocean 48 no no

slow w/o ocean 10 no no

slow w ocean 20 no yes

Table 2. Control vectors. Scalar pert. for atmospheric surface pressure (ps) is applied to the coefficient m = 0, n = 1 of the spherical
harmonic in spectral representation. ζ denotes vorticity, D divergence, S salinity, and T temperature.

Name Atmosphere dim. Ocean dim.

P10 10 process parameters 10 – –

I2 scalar pert. for ps, T 2 – 0

I4 scalar pert. for ps, T 2 scalar pert. for S, T 2

I3D spatially explicit: ζ, D, ps, T 63488 spatially explicit: S, T 61942

Table 3. Experiments. Column 1 indicate the experiment number, column 2 the configuration from the list in Table 1, column 3 the

control vector from the list in Table 2, column 4 the level of smoothing applied to the atmospheric component (see Sect. 2.1), column 5
the observational data set (see Sect. 2.3), column 6 the length of the assimilation window, column 7 the number of successful members
out of our 4 member ensemble.

Exp. # Configuration Ctrl. Smoothness Observations Ass. Wdw. [d] Succ. Mbr.

1 std w ocean P10 soft ID-twin 1 1

2 std w/o ocean P10 soft ID-twin 1 0

3 min w ocean P10 soft ID-twin 1 2

4 slow w/o ocean P10 soft ID-twin 56 4

5 slow w/o ocean P10 soft ERA-40 1 4

6 std w ocean I4 soft ID-twin 1 4

7 std w ocean I4 hard ID-twin 1 3

8 std w ocean I4 soft ID-twin 3 0

9 std w/o ocean I2 soft ID-twin 3 0

10 min w ocean I4 soft ID-twin 26 3

11 min w ocean I4 hard ID-twin 26 3

12 slow w ocean I4 soft ID-twin 26 0

13 std w ocean I3D hard ID-twin 1 3

14 min w ocean I3D hard ID-twin 1 4

15 min w ocean I3D hard ID-twin 26 3

16 std w ocean I3D hard ID-twin 26 0

17 min w ocean I3D soft ID-twin 26 3

© 0000 Tellus, 000, 000–000



12 BLESSING ET AL.

co
st

 fu
nc

tio
n

control parameter

observational term
obs. term with soft step

prior term
obs. plus prior term with soft step

obs. plus prior term

co
st

 fu
nc

tio
n

control parameter

observational term
obs. term with soft step

prior term
obs. plus prior term with soft step

obs. plus prior term

Figure 1. Schematic illustration of a cost function that includes a step function, including the effects of smoothing and prior (background)

term.
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Figure 2. Cost function over a section of control space at the stopping point of one of the unsuccessful members of Exp. 1. Except for

the x value of the jump, the curve has very small positive derivative (about 0.041 left, and 0.033 right of the jump), i.e. an ascending
slope. The units of the x-axis are relative to the stopping point.
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Figure 3. Convergence of the minimisation for control vector P10, configuration ‘slow w/o ocean’, assimilation of pseudo observations,

and a 56 day assimilation window (Exp. 4): Cost function (solid red, ’+’), norm of its gradient (green dashed, ’×’), and absolute difference
of components of control vector to true value over iteration number (par 1–10, see legend).
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Figure 4. Convergence of the minimisation for control vector P10, configuration ‘slow w/o ocean’, assimilation of ERA observations,
and a 1 day assimilation window (Exp. 5): Norm of its gradient (top), cost function (centre), and absolute difference of the components

of the control vector to the default value (labelled “true” value in id-twin experiments, bottom) over iteration number.
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Figure 5. RMS of temperature difference during and after assimilation window for Exp. 5.
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Figure 6. As Fig. 4 but for convergence of the minimisation for control vector I4, configuration ‘min w ocean’, assimilation of pseudo
observations, and a 26 day assimilation window (Exp. 11).
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Figure 7. Cost function over a section of control space from the true value (origin) to the first guess (marked with vertical line) of the
first of four (unsuccessful) members of Exp. 12 (control vector I4, ‘slow w ocean’; solid line, ‘+’) and a parabola fitted at the known
minimum (dashed line; second deriv. is about 100,000).

© 0000 Tellus, 000, 000–000



TESTING VARIATIONAL ESTIMATION OF-PROCESS PARAMETERS AND INITIAL CONDITIONS OF AN ESM 19

1e+01

1e+02

1e+03

1e+04
||gradient||

4.5e+02

5.0e+02

5.5e+02

6.0e+02
cost func.

38

39

40

41

42

43

 0  5  10  15  20

iteration #

||parameter||

Figure 8. As Fig. 4 but for convergence of the minimisation for control vector I3D, configuration ‘min w ocean’, assimilation of pseudo
observations, and a 26 day assimilation window (Exp. 15).
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