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Zusammenfassung

Die Erforschung des Klimawandels erfordert sowohl zuverlässige Modelle, als auch
ein prinzipielles Verständnis der atmosphärischen Dynamik und ihrer Interaktion
mit anderen Komponenten des Klimasystems. Beide Aspekte hängen über Sensi-
tivitäten zusammen. Dieses Sensitivitäten bezüglich Rand-, Anfangs- und Para-
meterwerten lassen sich auf kurzen Zeitskalen mit adjungierten Modellen effizient
bestimmen. Für die Anpassung gekoppelter Klimamodelle an ein vorgegebenes
Klima, sei es zur Verifikation oder als Szenario, und für das erfassen klimare-
levanter dynamischer Zusammenhänge, müssen Sensitivitäten bestimmt werden,
die über einen bestimmte Wettersituation hinaus, d.h. auf längeren Zeitskalen,
Gültigkeit besitzen.

In dieser Arbeit wird das Potential der adjungierten Methode für Anwendun-
gen in der Klimamodellierung untersucht. Dies erfolgt zum einen im Hinblick
auf die Entwicklung eines gekoppelten Assimilationssystems, zum anderen mit
dem Ziel, Sensitivitäten in der Diagnostik zum Verständnis der dynamischen
Abhängigkeiten innerhalb und zwischen den Klimasubsystemen einzusetzen.

Es wird gezeigt, daß die adjungierten Gradienten in der atmosphärischen
Komponente eines solchen Systems, bei der gewählten relativ groben Modell-
auflösung von ca. 5◦, geeignet sind, für Zeiträume jenseits von 30 Tagen die
Sensitivitäten zu beschreiben. In einem Anwendungsbeispiel wird unter Einsatz
einer Gradienten-Mittelungsmethode ein komplexes Parameterfeld bestimmt, so
daß das Modell ein vorgegebenes Klima reproduziert.

Für das zweite Entwicklungsziel wird das adjungierte Atmosphärenmodell
zur Bestimmung des optimalen Antriebs für den beobachteten Trend auf der
nördlichen Halbkugel im Winter der NCEP1-Reanalysedaten in der zweiten Hälfte
des 20. Jahrhunderts verwendet. Dabei dient das adjungierte Modell allein zur
Diagnostik; die Dynamik des untersuchten Klimas wird vollständig von den Re-
analysedaten vorgegeben. Auf diese Weise wird bei der Diagnose dynamischer
Wirkungsketten die Daten um das dynamische Vorwissen aus den adjungierten
Modellgleichungen ergänzt. Das hierzu entwickelte Programmpaket deckt zahlrei-
che Bedürfnisse für die Berechnung von Sensitivitäten durch weitgehend flexible
Wahl der Zielfunktion durch Projektion auf verschiedene atmosphärischer Felder
ab. Die Bestimmung von Sensitivitäten bezüglich isentroper potentieller Vorticity
stellt dabei den aktuellen Entwicklungshöhepunkt dar.

Damit sind zum einen erste Schritte in Richtung eines anvisierten gekoppel-
ten Ozean-Atmosphäre Assimilationssystems für Klimastudien getan, mit dem
es möglich werden könnte z.B. Paläodaten zu assimilieren. Zum anderen ist die
Anwendbarkeit von adjungierten Modellen für die Aufklärung klimarelevanter
dynamischer Mechanismen gezeigt.

1National Center for Environmental Prediction
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Abstract

Studying climate change requires reliable models alongside with a principal un-
derstanding of atmospheric dynamics and its interaction with other components
of the climate system. Both aspects are linked by sensitivities. These sensitivities
with respect to boundary, initial, and parameter values can efficiently be calcu-
lated with adjoint models, on short time scales. Both, for the adaption of coupled
climate models to a prescribed climate, be it for verification or as a scenario, and
for the comprehension of climate related dynamical interactions, sensitivities are
required which are valid beyond an individual weather condition, i.e. for longer
time scales.

This study investigates the potential of adjoint methods for climate modelling.
This is done with the aim of a coupled assimilation system in mind, but also
with the idea to use sensitivities for diagnostic purposes to aid understanding of
dynamical dependencies within and between components of the climate system.

We show that adjoint gradients in the atmospheric component of such a sys-
tem at the chosen relatively coarse resolution of about 5◦ are able to describe the
model sensitivities for integration times beyond 30 days. In an example applica-
tion a complex parameter field is determined using an averaging method for the
gradients, such that the model reproduces a given climate.

For the second goal of development the adjoint atmospheric model is used
to determine the optimal forcing for the observed northern hemisphere trend in
NCEP2 winter data of the second half of the 20th century. Here, the adjoint
model serves solely diagnostic purposes; the dynamics of the climate under in-
vestigation is completely determined by the re-analysis data. Thus the data is
enhanced by the dynamical knowledge from the adjoint model equations in the
investigation of dynamical causalities. The program package developed for this
purpose covers numerous eventual requirements for sensitivity calculations by its
high flexibility in the choice of the target function through projection of various
atmospheric fields. The computation of sensitivities with respect to isentropic
potential vorticity is the current highlight of this development.

With this, first steps towards a planned coupled ocean-atmosphere assimi-
lation system for climate studies are done, which could, for instance, make it
possible to assimilate paleo-data, and, as a second line of development, the appli-
cability of adjoint models is demonstrated for the investigation of climate-related
dynamical mechanisms.

2National Center for Environmental Prediction
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Introduction

Adjoint meteorological models are well established for applications on short time-
scales, for instance in the context of numerical weather prediction (assimilation,
ensemble generation). Mathematically they are an efficient tool to compute gradi-
ents across a model, basically being the transpose of the Jacobian matrix. Adjoint
methods have been used in meteorology as early as 1965 for the estimation of
forecast error growth in a highly truncated spectral two layer model by Lorenz
(1965). His error matrix and its transpose are the tangent-linear and adjoint
model. Marchuk (1974) makes explicit use of adjoint techniques in the theo-
retical treatment of weather forecasting problems. These applications are still
restricted to analytical models and small numerical applications. Penenko and
Obraztsov (1976) apply them to data assimilation, while Cacuci (1981a,b) intro-
duces a general sensitivity theory for nonlinear systems and such, according to
Zupanski (1995), initiates adjoint sensitivity studies in meteorology and climatol-
ogy. The methodology presumably has its origin in optimal control problems (e.g.
Lions, 1971) like rocket trajectories and nuclear chain reactions. Adjoint mod-
els are furthermore indispensable in one of the two main competing algorithms
for the creation of ensembles for weather forecasts, namely the SVD-technique
applied at ECMWF (e.g. Buizza et al., 1993). Further meteorological applica-
tions include optimal excitation problems, model tuning and source detection in
Euclidian tracer models. For an overview of adjoint applications in earth system
modelling see Giering et al. (2003).

When moving to longer timescales principal restrictions complicate the appli-
cation. The non-linear nature of the modelled processes inflicts a timescale onto
the adjoint applications after which the obtained gradients become degenerate
(Lea et al., 2000). This study explores methods to mitigate the effect and inves-
tigates the applicability of an adjoint atmospheric model (Portable University
Model of the Atmopshere, PUMA, Fraedrich et al., 1998, 2005c) to climate related
problems. The theoretical background for the adjoint is given in chapter 1, and
the problem of adjoint gradients for long lead-times is introduced in section 1.4
along with possible solutions. PUMA and its adjoint are introduced in chapter 2.
Chapter 3 explores the theory in the context of PUMA. While section 3.2 focuses
on the gradient of a model climate with respect to three different central model
parameters (published as Kaminski et al., 2007), section 3.3 presents a successful
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climate assimilation in an idealised setting (published in Blessing et al., 2004).
Both parts are encouraging feasibility studies for a Climate Prediction Data As-
similation System (CPDAS).

The linearisation involved in the creation of the tangent-linear and adjoint
model creates another potential for the adjoint method. By using realisations
from far more complex models as reference trajectory, their climate can be stud-
ied within the framework of the adjoint PUMA dynamical core. This perspective
for diagnosis of dynamical processes and dependencies is explored in chapter 4
at the example of the northern hemisphere atmospheric trend over the winters
1948/49 to 1998/1999 in NCEP reanalysis data (published as Blessing et al.,
2008). Several theories (introduced in section 4.1) are trying to identify sources
of persistent changes in the atmospheric circulation of the northern hemisphere.
With the adjoint technique we present a tool for the exploration of such prob-
lems, which has as its only paradigms, apart from the above considerations, the
dynamic knowledge from the model equations and the data.

The appendices mostly document the extensive technical developments which
were prerequisite for the investigations. Looking at a full set of sensitivities with
respect to diagnostic variables, or, as in chapter 4, their forcings, one may wonder
how to combine all this information into maps of one measure. Appendix A shows
how isentropic potential vorticity can be used for the latter purpose, yielding one
sensitivity measure to look at instead of many. The straightforward way would be
to construct the adjoint of a potential vorticity inversion. Here, a more implicit
way, based on an algorithm proposed by Arbogast (1998) is presented. Finally,
appendix B offers a manual to the software which was developed along with the
adjoint PUMA, and which was used to produce the results of section 4.



Chapter 1

Adjoint theory

1.1 Definition of the adjoint

The adjoint operator L? for a given linear operator L with scalar product (·, ·) is
defined by

(L?x, y) = (x, Ly). (1.1)

Formally adjoint boundary conditions are part of the definition of the adjoint,
basically describing the space S? on which L? operates and fulfils the above
equation. For most adjoint operators used in this work the domains of L and L?

are identical with cyclic boundary conditions. For the sums used in the numerical
calculations of the scalar product this translates to summation over the same
gridpoints. In the remaining cases the domain of L? is obvious from the nature
of the physical problem. Moreover, the adjoint of the numerical implementation
of the tangent-linear was generally used, rather than implementing the numerical
approximation of the adjoint equations. Therefore the adjoint and tangent-linear
model fulfil the above relationship to machine precision (see section 2.3). Vertical
derivatives, for instance, do not require equal values of x at the endpoints of the
summation under this approach, as it would be necessary for the formal adjoint
−∂/∂σ of ∂/∂σ.

The creation of the linear and adjoint codes follows the principles described
in Giering and Kaminski (1998) or Appendix B of Kalnay (2003). This means
linearising every relevant line of model code according to the chain rule of dif-
ferentiation and providing the necessary reference values. The adjoint is then
the transpose of this, which means each line of differentiated code is converted
into the adjoint statement(s) individually and the order is reversed, since for the
transpose of a chain of operators the following holds: (A B C)T = CT BT AT .
The tangent-linear model describes the first order approximation of the growth of
errors in the full model. It is the Jacobian matrix combined out of the Jacobian
matrices of the chain of operators representing the full model. The errors or per-
turbations can theoretically extract infinite amounts of energy from the reference
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4 CHAPTER 1. ADJOINT THEORY

trajectory (or forecast) without feeding back on it and without saturating. The
model is linear despite the fact that the reference trajectory is time varying as
prescribed in the course of linearisation, ideally by an integration of the fully
nonlinear model.

1.2 Sensitivity

1.2.1 Example for sensitivity: heat exchange

In order to illustrate the concept of an adjoint model let us turn to the example of
a very simple physical model. It consists of two coupled reservoirs with equal heat
capacity which exchange heat by conduction with a constant transfer coefficient
[c] = 1/s. Their temperatures T1 and T2, forming the vector T , are consequently
determined by:

Ṫ = AT , with A =
1

2

(
−c c
c −c

)
. (1.2)

The propagator matrix Rt2
t1

results from integration:

Rt2
t1

= exp

(∫ t2

t1

Adt

)
(1.3)

=
1

2

(
1 + e−c(t2−t1) 1− e−c(t2−t1)

1− e−c(t2−t1) 1 + e−c(t2−t1)

)
. (1.4)

(1.5)

By definition the tangent-linear propagator is composed of the derivatives of the
model result with respect to the initial conditions:(

Rt2
t1

)
ij

=

(
∂Ti(t2)

∂Tj(t1)

)
. (1.6)

The model itself is linear, therefore it is indistinguishable from the tangent-linear
propagator. But note that the model describes the evolution of its state variables
while the tangent-linear model describes the first-order evolution of perturbations
of the state variables. Owing to the symmetry of the system matrix A, also
tangent-linear and adjoint propagator are identical:(

Rt2
t1

)T
= Rt2

t1
(1.7)

The inverse propagator
(
Rt2

t1

)−1
, in contrast, follows in this case from

(
Rt2

t1

)−1
=(

Rt1
t2

)
as:

(
Rt2

t1

)−1
=

1

2

(
1 + ec(t2−t1) 1− ec(t2−t1)

1− ec(t2−t1) 1 + ec(t2−t1)

)
=
∂Ti(t1)

∂Tj(t2)
(1.8)
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Furthermore a cost function J is introduced which depends on the observed error
at final time εt2 = δT (t2):

J =
1

2
〈εt2 ; εt2〉 =

1

2
(εt2)

T εt2 (1.9)

Using R as first order (in this case exact) approximation of the evolution of initial
state perturbations, εt2 = Rt2

t1
εt1 gives J = 1

2
(Rt2

t1
εt1)

TRt2
t1
εt1 . Differentiation of J

with respect to initial state perturbations yields:

∇εt1
J = (Rt2

t1
)TRt2

t1
εt1 = (Rt2

t1
)T εt2 (1.10)

Panel (a) of Fig. 1.1 shows the evolution of an initial state perturbation δT (t1) =
(5K, 0K) with the tangent-linear propagator, panel (b) the evolution of a final
state perturbation δT (t2) = (5K, 0K) with the inverse tangent-linear propagator,
and panel (c) the evolution of the derivative of J for a final state perturbation
T ?(t2) = εt2 = (5K, 0K) (since Rt2

t2
is the identity) with the adjoint propagator.

The forward model tends to equilibrate any existing temperature difference while
conserving total energy. A positive perturbation at initial time in one of the
boxes as in Fig. 1.1a leads to a higher temperature of both boxes at final time.
The inverse model (Fig. 1.1b) shows that for a higher end temperature in only
one box, the temperature of both boxes has to be changed at initial time. The
magnitude of the necessary changes increases the further they lie back in time.
The derivative of J , T ?(t), shows decreasing sensitivity the further back it goes
(Fig. 1.1c). It asymptotically stabilises to the same constant value for both boxes,
reflecting the fact that due to energy conservation and the coupling of the boxes,
both boxes have in the far limit the same ability to change the final temperature
of box one (reflected by the value of J) with a fixed sensitivity.

1.2.2 Sensitivities and nonlinearity: the Lorenz-’63 -model

In the previous section the tangent-linear and adjoint was introduced for a linear
model. Now we turn to a nonlinear model. One of the technical implications is,
that the linearisation now is carried out with respect to a time-varying reference
state for which a state trajectory of the nonlinear model is used. This kind of
linear model is called tangent-linear.

The Lorenz (1963) model is the result of a low order spectral truncation of a
convection model introduced by Rayleigh, Lord (1916). A fluid is heated from the
bottom by a prescribed temperature difference between bottom and top. Here,
the problem is cyclic in one horizontal direction and uniform in the other. The
Lorenz’63 equations describe one mode of the vertical stream-function (X) and
two modes of the vertical temperature distribution (Y, Z).

Ẋ = −σX + σY (1.11)
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Figure 1.1: Propagation of a perturbation ε = (5 K, 0 K)T (dotted) of the two-box
heat conduction model in the (a) tangent-linear model (δT (0) := ε), (b) inverse
model (δT (1) := ε), and (c) the adjoint model (T ?(1) = ∇T (1)J := ε).

Ẏ = rX − Y −XZ (1.12)

Ż = −bZ +XY. (1.13)

The parameter σ is the Prandtl-number, r the Rayleigh-number, normalised with
its critical value, and b a measure for the geometry of the simulated convection
cell. The dot denotes the derivative with respect to dimensionless time. The
equations can be numerically integrated with e.g. a fourth order Runge-Kutta
scheme and lead to the well known picture of the Lorenz-attractor for the param-
eter choices σ = 10, r = 28, and b = 8

3
. These choices describe a fluid not much

unlike water (σ about 7), in convective mode (r > 1).
The equations of the tangent linear model relative to a reference trajectory

XR(t) = (XR(t), YR(t), ZR(t))T are:

δẊ =

 −σ σ 0
r − ZR(t) −1 −XR(t)

−b XR(t) YR(t)

 δX, (1.14)

formally yielding the system matrix of the adjoint:

A?|t =

 −σ r − ZR(t) −b
σ −1 XR(t)
0 −XR(t) YR(t)

 (1.15)

Note that the system matrix is time dependent through its dependency on the
reference trajectory XR(t), but nonetheless linear since XR(t) does not depend
on δX in the tangent-linear model. This is the essence of tangent-linearity. The
numerical implementation of the adjoint model was derived from the numerical
version of the tangent-linear model which in turn was derived from a Runge-
Kutta integration scheme of the original equations (Eqs. 1.11-1.13). For the



1.3. STABILITY 7

tangent-linear model this path of computation corresponds to a large degree to
the alternative approach of integrating Eq. (1.14) using a Runge-Kutta scheme.
But for the adjoint model one important difference must be noted: the outlined
way of computation leads to an algorithm which is adjoint to the numerical
tangent-linear model, i.e. it also simulates the effects of the discretisation error
of the forward model. Thus it ensures that a numerical catenation of tangent-
linear and adjoint operator corresponds closely to the operation of a symmetric
matrix, but it also leads to the computation of sensitivities which arise partly
from discretisation errors of the applied numerical scheme. Sirkes and Tziperman
(1997) show for a special case that this can lead to a useless albeit precise adjoint
model.

1.3 Stability

This section aims to give a perspective from stability theory on sensitivities.
Intuitively it is clear that a stable system will be insensitive to perturbations while
perturbations triggering an instability will find the system to be very sensitive.
As an excursion this viewpoint allows for a very compact comparison of adjoint
and inverse thinking in section 1.3.4.

The fastest growing perturbation is defined for a limited time and a corre-
sponding reference trajectory. Eigenmodes on the other hand are computed for
fixed reference states describe the tangent linear growth for the long time limit of
these states. They are most likely not related to the first global Lyapunov expo-
nent of the nonlinear system. A comparison of further modes from the different
applicable eigentechniques can be found in e.g. Frederiksen (2000).

For prediction purposes it is desirable to assess the preferred directions of
error growth. In this context there are several competing methods. All try to
provide initial perturbations for ensemble runs such that with a minimal number
of ensemble members a reliable estimate of the expected forecast error is obtained.
Especially singular value decomposition (SVD) and breeding have produced much
debate. While SVD identifies initial perturbations which have maximum growth
in a given norm and forecast time in the tangent linear model, the breeding
technique claims to be a nonlinear extension of the concept of Lyapunov vectors.

1.3.1 Normal modes

If the linearisation is around a constant reference trajectory, as e.g. a mean state,
R = eA(t−t0) is the propagator for the linearised system δẋ = Aδx. A and R share
the same eigenvectors, and the eigenvalues of R are λi = eα(t−t0) (αi being the
eigenvalues of A). These eigenvectors are known as normal modes, even though
in general A is not normal. For a time-varying trajectory, the eigenvectors of R
are known as finite time normal modes, and those of R? as finite time adjoint
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modes (Frederiksen, 2000).
In a non-linear system one has to bear in mind that linearisation with respect
to a constant reference state is only locally justified in phase space. Therefore
conclusions about the long time behaviour of the system based on normal modes
are only of limited validity.

1.3.2 Local growth properties

Various definitions for local Lyapunov exponents λ exist. One of them stems from
the relation exp(λt)ei = Rt2

t1
ei, where ei is the eigenvector of Rt1

t1
with largest eigen-

value. It gives the upper bound for the error growth on a piece of the attractor
(Trevisan and Legnani, 1995). In atmospheric GCMs, the fastest growing modes
over limited time gain much energy by geostrophic adjustment (Szunyogh et al.,
1997) in their initial growth state. On top of that these growth rates are only
valid for infinitesimal perturbations. The feedback of finite perturbations most
likely reduces growth due to saturation effects and the reduction of the available
energy of the reference state.

1.3.3 Singular Value Decomposition of the Propagator

The error or propagator matrix R of the model can be decomposed into two
unitary (U? = U−1, implying that the column vectors ui form an orthonormal
system) matrices U and V and a diagonal matrix Σ as R = VΣU?. The diagonal
elements σi of Σ are the singular values of R (Golub and van Loan, 1983). In
the presence of a metric matrix C in the scalar product, as in 〈·;C·〉, a preferable
choice is

R = C− 1
2VΣU?C

1
2 . (1.16)

Note that C is chosen to be real, symmetric (i.e. self-adjoint) and invertible.
Consequently the adjoint operator R? can be written as

R? = C
1
2UΣV?C− 1

2 . (1.17)

The growth of a perturbation δx in the C-norm is given by the ratio r

r =
〈Rδx;CRδx〉
〈δx;Cδx〉

(1.18)

(1.16)
=

〈U?C
1
2 δx;Σ2U?C

1
2 δx〉

〈C
1
2 δx;C

1
2 δx〉

(1.19)

Apparently, growth is described by the projection of C
1
2 δx onto the column vec-

tors ui of U (initial time singular vectors) and the singular values σi of Σ such that

for δx = C− 1
2ui equation (1.18) reduces to r = σ2

i . Therefore, in the linearised
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system, the maximum growth over a finite time in the C-norm is determined by

the largest singular value of C
1
2RC− 1

2 .

The initial time singular vectors ui of C
1
2RC− 1

2 are also the eigenvectors of

C− 1
2R?CRC− 1

2 , while the final time singular vectors vi of C
1
2RC− 1

2 , are also the

eigenvectors of C
1
2RC−1R?C

1
2 , both with the same eigenvalues σ2

i . The nomencla-
ture initial and final time singular vector becomes evident from the relationship

C
1
2RC− 1

2ui = σivi.

1.3.4 Inverse and adjoint propagator

In order to excite an anomaly which has large projection onto a particular final
time singular vector, vi, a perturbation is necessary, which has projection onto
the corresponding initial time singular vector, ui. If δΨtarget = Rδx, then

δx = R−1δΨtarget = C− 1
2UΣ−1V?C

1
2 δΨtarget. (1.20)

This inverse operator is difficult to obtain. Moreover it is not optimal in the
sense that it does not minimise the energy which is necessary to excite the target
pattern Ψtarget. The inverse matrix Σ−1, which has the reciprocal singular values
in the diagonal, gives δx more projection onto weakly growing modes and less
onto the ones with stronger amplification. But note the resemblance to Eq. (4.9),
which is derived in section 4.2 for the optimal perturbation. It reads

δxopt = λR?δΨtarget = λC− 1
2UΣV?C

1
2 δΨtarget (1.21)

when translated to the nomenclature and problem of this section (here, λ is just
a scalar factor). This time Σ is not inverted in order to make optimal use of
the energy of the initial perturbation by emphasising the singular vectors which
dominate the growth in the direction of the target. The energetically optimal per-
turbation (Eq. 1.21, a.k.a.maximum sensitivity perturbation, Frederiksen, 2000)
and the inverted target (Eq. 1.20) are the same if and only if the target pattern
has projection only on final time singular vectors with singular values of unity
i.e. neutral growth.

1.4 Climate sensitivities

When it comes to the sensitivity of the climate of a chaotic model with respect to
parameters or initial conditions (control variables hereafter), problems arise. It
turns out that the response of the observed quantity is not smoothly depending on
the control variables, at least not for finite averaging times. This “un-smoothness”
is reflected by gradients (when computed with the adjoint model) which grow very
rapidly with averaging time.
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1.4.1 Dependence of sensitivities on the integration pe-
riod

For the long time limit exponential growth of the sensitivities can be expected,
since in the far limit the growth of the largest Lyapunov exponent should dom-
inate. Indeed Figs. 1.2 and 1.3 show exponentially growing sensitivities with
increasing lead time for most verification times (compare Fig. 3.1 for the global
atmospheric circulation model PUMA). These are directly linked to predictability.
Interestingly, the vertically banded structure of the norm of the sensitivity vector
in Figs 1.2 and 3.1 is a hint that predictability seems to be more a property of
the state to be predicted than of the development leading to it.
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In principle, exponential growth of sensitivities, should also appear when finite
differencing methods with very small perturbations are used. This problem was
dealt with by Lea et al. (2000) for the Lorenz-’63-model and by Lea et al. (2002)
for an ocean model. They achieved best results with an ensemble method and in-
termediate averaging times. This averaging time has to be a compromise between
the constraints from the exponentially growing gradient and the time the model
dynamics takes to respond to the changed control variables. Since growth of the
adjoint gradients is directly related to the first Lyapunov-exponent of the model
in question Köhl and Willebrand (2002) successfully used an adjoint model with
reduced spatial resolution, and therefore reduced instability, for the gradient com-
putations, while McLay and Marotzke (2008) demonstrate limits for the method
in an eddie resolving ocean model. Based on theoretical considerations Eyink
et al. (2004) suggest two algorithms related to Lea’s approach for the practical
computation of climate sensitivities. The exponential growth of the sensitivities
is not only a problem for numerical reasons but also for statistical ones, since the
distribution of the sensitivities becomes degenerate, with a non-existing mean.
They also show that for the Lorenz-’63-model the required ensemble size grows
very quickly with averaging time to an extent which would make the method
impractical for a computationally more demanding model. How far this carries
over to an atmospheric global circulation model will play an important role in
chapters 3 and 4.

1.4.2 Finding optimal parameters - climate tuning

Probably the main problem with the computations of climate sensitivities with
an adjoint model is the limited time range in which the adjoint model can give
a sensitivity which is not only valid for an infinitesimal perturbation but for a
finite one. In any nonlinear model these two are trivially not identical. Therefore
Blessing et al. (2004) suggest a technique (documented earlier by Pires et al.,
1996) where the averaging time for the climate is varied from very short times
where the linearisation is a good approximation to the model dynamics to longer
times which are more relevant to climate. There are three underlying assumptions
to this technique:

1. There is a unique set of optimal parameters.

2. The target function is flat in parameter space around the solution, i.e.
adjoint gradients approximate the macroscopic gradient or sensitivity to
finite perturbations near the optimal parameter value.

3. The optimal parameters for the different averaging times form a curve in
parameter space, i.e. a small change in averaging time only leads to a small
change in parameters.
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Figure 1.3: Mean and quantiles of the norm ‖X?‖ of the adjoint sensitivities of
the X-component of the Lorenz’63 system from Fig. 1.2. The displayed quantiles
are from a 1000 member ensemble and correspond to median, 1σ, and 2σ of a
normal distribution. Note that ‖X?‖ as a positive definite quantity cannot be
normally distributed and more likely follows a Maxwell-Boltzmann distribution
for the three-component Lorenz’63 system.
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For study purposes the first assumption can be fulfilled in part by an identical
twin experiment in which a given parameter set produces a climate which is then
attempted to recover with the same model, starting from perturbed parameters.
The second assumption is a consequence of the first one, but the notion of near
may converge to infinitesimality for increasing averaging times (the timescale on
which climate is defined). Also the third assumption is probably not justified for
long averaging times, especially when the system trajectory of the model passes
bifurcation points. Nonetheless, this may be smoother than the dependence of
the observed climate on the parameters for a fixed averaging time.
To check the validity of these assumptions in a highly nonlinear model, many
integrations were made with the Lorenz-’63 model for different values of the
parameter r and varying integration times, in the manner of Fig. 2 of Lea et al.
(2000). The squared distance between the resulting time mean value of Z and a
fictional target value (26) is plotted in Fig. 1.4. This shows that all the above
assumptions are violated for the Lorenz-’63 model, maybe except for the local
flatness at the solution. Instead the figure shows the typical self-similar structures
of a fractal. Averaging over 10 (Fig. 1.5a) and 100 (Fig. 1.5b) different initial
conditions removes some of the fractal structure and makes the path from left
to right into the absolute minimum of the cost function on a longer timescale
considerably smoother. But even for the 100-member ensemble secondary minima
remain which will impede any algorithm that relies on gradient information.
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(a)

(b)

Figure 1.4: Lorenz-’63 model: Value of cost functions J(r, t) = (Z̄t(r)− 26)2 for
different averaging times t and parameter r. (a) with initial condition X(0) =
(−2.4,−3.7, 14.98), and (b) with initial condition X(0) = (8,−2, 36.05), same
as for lines 1 and 2 of Fig. 2 in Lea et al. (2000), which are cross-sections of these
plots. Contours are logarithmic with black as the minimum and identical levels
for all subfigures.
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(a)

(b)

Figure 1.5: As Fig. 1.4, but for ensemble means and a smaller parameter range:
(a) Ensemble average over 10 different initial conditions taken at intervals from
one model run, (b) same as (a) but with 100 different initial conditions from a
different run. Contours are logarithmic with black as the minimum and identical
levels as in Fig. 1.4.
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In section 4.2 a technique is described where the gradient with respect to
a constant forcing over a certain period of time is computed. Applying this
approach to the Lorenz-attractor and forcing, for instance, the Z-component
with a forcing fZ over time t yields Fig. 1.6. The plotted quantity is, as above,
the deviation of the time mean model output from some target value Za: J =
(Z̄t − Za)

2. Here Za is chosen to be the unforced mean over 50 time units. The
adjoint gradient of J with respect to Z-forcing, f ?

Z = ∇fZ
J = 2( ∂Z̄t

∂fZ
)?(Z̄t − Za)

is structurally equivalent to the derivative of the projection I used in section 4.2.
Fig. 1.6 indicates that a relatively wide range of change of fZ has only little impact
on the climatological value of Z̄t. Nonetheless, ∇fZ

J will show very high values
because of the small scale structure of J . This again, renders the adjoint gradients
of J useless for determining the sensitivity or finding the global minimum for this
case. These examples are important to bear in mind when evaluating sensitivity
fields. Lea et al. (2002) shows similar problems for an ocean model. To what
extent these effects hamper the application of PUMA, is investigated in sections 3.2
and 3.3.3. For comparison of PUMA with Fig. 1.6, see Fig. 3.12.

1.5 Summary

In this chapter we showed the concept of the adjoint model in a linear (heat
exchange) and a non-linear (Lorenz’63) example. In the course of this, tangent-
linearity is introduced as linearity with respect to a predefined time-varying refer-
ence state. Since the adjoint is the transpose of the Jacobian matrix of the model,
it runs backward in time, efficiently computing gradients when the derivatives of
a low-dimensional output with respect to a high-dimensional input are required.

Sections 1.2.1 shows that this is fundamentally different from a mathemati-
cally inverse model. With the aid of the singular value decomposition of the prop-
agator, introduced with the stability theory in section 1.3, an expression for this
in singular value space is found in section 1.3.4, showing that the inverse model
highlights decaying structures and attenuates growing structures (Eq. 1.20). In
contrast, the adjoint sensitivity calculation highlights those initial time struc-
tures whose corresponding final time structures have large projection onto the
target (Eq. 1.21). This perspective on the stability theory of non-normal linear
operators is important for the understanding of the limitations of the tangent-
linear model in a climate context. In section 1.4 we show how the value of the
adjoint gradients or sensitivities degrades with integration time in the Lorenz’63
model and discuss some techniques how to circumvent this gap between the first
order Taylor approximation and the actual behaviour of a finite perturbation in
a non-linear model. One technique is dismissed as it can be demonstrated, using
the Lorenz’63 system, that it cannot be generally expected that the phase space
topology of the target function has the required properties, namely a smooth
transition of a unique minimum at short integration time to the global minimum
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at increased integration time. From the literature and conceptual experiments we
show, that two other techniques are more promising, which are, in the context of a
numerical atmospheric model, reduction of spatial resolution in order to suppress
fast-growing small scale phenomena which may be of subordinate importance to
the large-scale circulation (Köhl and Willebrand, 2002), and second, averaging
of the gradients over many realisations at many locations in model state-space
(reference trajectory ensemble). This does not necessarily increase the accuracy
of the gradient at the given location in state space, but reflects the sensitivity
of the model climate to perturbations of the respective quantity, even if the lead
time has to be chosen relatively small (compared to climate time scales) in order
to ensure that the average of the gradients remains a meaningful, non-degenerate
quantity (Eyink et al., 2004). In the following chapters these concepts will be
tested for a numerical model of the global atmospheric circulation.
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Chapter 2

PUMA and its adjoint

In this work, the Portable University Model of the Atmosphere (PUMA, Fraedrich
et al., 1998, 2005c) is used1. Descriptions of the variations in the individual setups
are provided in the respective sections, while the more technical aspects of the
adjoint puma code with its extensions for the computation of derived adjoint
quantities used in chapter 4 are described in appendix B.

2.1 The PUMA model

PUMA is a primitive equations model with Newtonian cooling, Rayleigh friction
and optional orography. The model equations are solved on σ-levels on a Gaus-
sian grid with the spectral transfer method and a semi-implicit time-stepping
scheme. Nonlinear tendencies are computed in gridpoint-space. The spacing of
the σ-levels is equidistant in this study but has recently been changed to allow
for customised settings in order to study stratospheric dynamics (Kunz 2008, in
preparation). The model is based on the spectral model described in Hoskins and
Simmons (1975) with the vertical scheme of Simmons and Burridge (1981). It
has recently been validated by Liakka (2006). The model has been used in var-
ious studies, ranging from different types of stochastic forcing (Perez-Munuzuri
et al., 2003; Seiffert et al., 2006; Sardeshmukh and Sura, 2007), the dependence
of entropy production on various parameters (Kunz et al., 2008a; Kleidon et al.,
2003, 2006), low-frequency variability and the internal large-scale dynamics (Fri-
sius et al., 1998; Franzke et al., 2000, 2001; Walter et al., 2001; Müller et al.,
2002; Fraedrich et al., 2005c; Bordi et al., 2007), climate change (Lunkeit et al.,
1998), tracer studies (Bagliani et al., 2000), chaotic synchronisation experiments
Lunkeit (2001), to applications on Mars (Segschneider et al., 2005) and Titan
(Grieger et al., 2004).

1The model is available for download at http://www.mi.uni-hamburg.de/PUMA.215.0.
html

21

http://www.mi.uni-hamburg.de/PUMA.215.0.html
http://www.mi.uni-hamburg.de/PUMA.215.0.html
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2.1.1 Model equations

The model equations are the Primitive Equations. They are non-dimensional
equations of motion for an inviscid, adiabatic, hydrostatic perfect gas surrounding
a rotating, spherical planet. See table 2.1 for the de-dimensionalisation constants.
There are four prognostic equations for vorticity ζ, divergence D, temperature T
and natural logarithm of surface pressure ln ps and one diagnostic equation for
geopotential Φ (hydrostatic equation):

∂ζ

∂t
=

1

1− µ2

∂

∂λ
FV −

∂

∂µ
FU (2.1)

∂D

∂t
=

1

1− µ2

∂

∂λ
FU +

∂

∂µ
FV −∇2

(
U2 + V 2

2(1− µ2)
+ Φ + T̄ ln p∗

)
(2.2)

∂T

∂t
= − 1

1− µ2

∂

∂λ
(UT ′)− ∂

∂µ
(V T ′) +DT ′ − σ̇

∂T

∂σ
+ κ

T ṗ

p
(2.3)

∂ ln p∗
∂t

= −
∫ 1

0

Adσ (2.4)

∂Φ

∂ lnσ
= −T (2.5)

(2.6)

with

FU = V ζ − σ̇
∂U

∂σ
− T ′∂ ln p∗

∂λ
(2.7)

FV = −Uζ − σ̇
∂V

∂σ
− T ′(1− µ2)

∂ ln p∗
∂λ

(2.8)

A = D + V.∇ ln p∗ (2.9)

and horiz. advect. op. (V.∇) =

(
U

1− µ2

∂

∂λ
+ V

∂

∂µ

)
(2.10)

σ̇ = σ

∫ 1

0

Adσ − 1

σ

∫ σ

0

Adσ (2.11)

ṗ = p

(
V.∇ ln p∗ −

1

σ

∫ σ

0

Adσ

)
(2.12)

and the definitions U = u cos θ and V = v cos θ for the horizontal velocities,
and ζ = 2µ + 1

1−µ2
∂V
∂λ
− ∂U

∂µ
and D = 1

1−µ2
∂U
∂λ

+ ∂V
∂µ

for absolute vorticity and

divergence. Furthermore µ = sin θ and σ = p/p∗, where θ is longitude and p∗ the
surface pressure. The temperature is split up as T = T̄ (σ) + T ′(λ, µ, σ) for the
semi-implicit scheme. For details refer to Hoskins and Simmons (1975), Liakka
(2006) and the PUMA User’s Guide (Fraedrich et al., 2007).

2This value was used throughout this study even though it represents a pre-1900 estimate
for the Northern Hemisphere. Trenberth (1981) estimates a value of 1011.0 hPa and gives a
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Quantity Scale Value Source
length a 6.371 · 106 m planet radius
time Ω−1 13713 s reciprocal of planet’s angular velocity
temperature a2Ω2/R 752 K (R: gas constant for dry air)
pressure p0 101325 Pa mean sea level pressure2

Table 2.1: constants used for de-dimensionalisation

2.1.2 Parameterisations

In its standard configuration the model uses Newtonian cooling as a heating
parameterisation and Rayleigh friction at the bottom layer. For this purpose an
additional term is added to the temperature equation:

(∂T/∂t)diab. = (TR − T )/τT (2.13)

with T being the model temperature and TR the relaxation temperature. Note
that the model is relatively free in its response to this forcing the strength of
which is modulated by the time constant τT . Usually advective processes lead
to substantial differences between the relaxation temperature and the long term
mean of the model temperature T . The parameterisation for the Rayleigh friction
is similar, with a time constant τfrc, except that the relaxation “field” is the
planetary vorticity. To increase the numeric stability of the model a hyper-
diffusion is applied to fields of motion and temperature. It has the shape of
∇2n with 4 being a typical choice for n. It has an associated time constant τH .
This configuration corresponds to the setup for the intercomparison of dynamical
cores proposed by Held and Suarez (1994). These three time constants are the
three model parameters for which the derivative is computed in section 3.2, while
section 3.3 explores an assimilation scheme for the relaxation temperature TR

when the mean of T is given. For chapter 4 the relaxation temperature TR is not
used. Instead, a fixed forcing term is used in the tendencies of all model fields in
a manner similar to Hall (2000).

2.2 The adjoint of the atmospheric model

The adjoint with respect to initial conditions and forcings has been generated with
the aid of the Tangent-linear and Adjoint Model Compiler (TAMC, Giering and
Kaminski 1998). To aid the automatic differentiation, careful examination of the
model code was necessary a few examples of which are given in this section.

historical overview. See Trenberth and Smith (2005) for a recent update. The implications for
the results of this study are expected to be negligible.
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2.2.1 Alterations and special directives

The adjoint of the spectral transformation was generated by hand, since in prin-
ciple the operator for the Fourier transform is unitary, i.e. S∗ = S−1. In PUMA,
however, the transform contains a factor which had to be compensated for by
providing interface routines (S∗ = λintS

−1). Furthermore the computation of
index variables from loop indices was made explicit, e.g. in the Legendre trans-
form (compare codes in programs 2.2.1 and 2.2.2). The reason is that otherwise
re-computations for the variables jr, ji, and jw would have been triggered by
TAMC in order to determine their final value after execution of the nested loops.
For an example of the generated adjoint model code see program 2.2.3. Since
the Legendre transform is linear, a corresponding directive was passed to TAMC
and no special tangent-linear code was generated for this routine. Instead, the
tangent-linear model calls the routine twice, once for the computation of the refer-
ence trajectory (unperturbed model) and a second time to compute the evolution
of the perturbed quantities. The same occurs for the aforementioned case of the
Fourier transform, where the adjoint routine already exists in the full model.

2.2.2 Reference trajectory handling

Furthermore the position in the code had to be identified in which variables
needed as reference values had to be saved. Even though TAMC comes with a
storage library and supports the insertion of appropriate code, a different way
was chosen, which allowed for holding only parts of the total reference trajectory
in memory (see scheme in appendix B.3) and the required code was developed.
Reference values are stored in spectral representation and their gridpoint repre-
sentation is recomputed during the adjoint model run. For the data processed for
the investigations described in chapter 4 the following solution was found to pro-
vide the reference trajectory: first, daily values are provided as data file. From
these the reference trajectory is interpolated to Fortran scratch files, providing
different reference fields for every time step.

2.2.3 Customisation

The resulting derivative code was modified by hand in order to receive output for
intermediate time steps and sensitivities with respect to derived quantities. A set
of routines was developed for the convenient input and output of trajectory, target
pattern, and adjoint quantities to and from the adjoint model. This functionality
is described in appendix B. Details for the use of geopotential height as target
pattern are given in section 4.2.2. How to obtain the derivative with respect to
isentropic potential vorticity is explained in appendix A.

For other purposes not described in this work, such as SVD-computations,
it was necessary to produce pure tangent-linear code, which does not compute
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Program 2.2.1 Indirect Legendre transform with implicit computation of vector
indices (jw, jr, ji).

subroutine sp2fc(psp,pfc,pol)
use pumamod
implicit none
REAL pol(NLPP,NCSP)
REAL psp(2,NESP/2)
REAL pfc(NLON,NLPP)
REAL zr,zi
pfc = 0.0
jw = 1
jr = 1
ji = 2
do jm = 0 , NTRU

do jn = jm , NTRU
zr = psp(1,jw)
zi = psp(2,jw)
do jt = 1 , NLPP

pfc(jr,jt) = pfc(jr,jt) + pol(jt,jw) * zr
pfc(ji,jt) = pfc(ji,jt) + pol(jt,jw) * zi

end do ! jt
jw = jw + 1

end do ! jn
jr = jr + 2
ji = ji + 2

end do ! jm
return
end
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Program 2.2.2 Changed indirect Legendre transform with explicit dependence
of vector indices jw, jr, ji on loop counters jn, jm.

subroutine sp2fc(psp,pfc,pol)
use pumamod
implicit none
REAL pol(NLPP,NCSP)
REAL psp(2,NESP/2)
REAL pfc(NLON,NLPP)
REAL zr,zi
pfc = 0.0
do jm = 0 , NTRU

jr=2*jm+1
ji=2*jm+2
do jn = jm , NTRU

jw=jn+jm*ntru-((jm-1)*jm)/2+1
zr = psp(1,jw)
zi = psp(2,jw)
do jt = 1 , NLPP

pfc(jr,jt) = pfc(jr,jt) + pol(jt,jw) * zr
pfc(ji,jt) = pfc(ji,jt) + pol(jt,jw) * zi

end do ! jt
end do ! jn

end do ! jm
return
end
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Program 2.2.3 Adjoint of program 2.2.2, automatically generated with TAMC
(comments manually compacted for ease of presentation). Adjoint variables are
prefixed with “ad”.

subroutine adsp2fc( pol, adpsp, adpfc )
C***************************************************************
C***************************************************************
C** This routine was generated by the **
C** Tangent linear and Adjoint Model Compiler, TAMC 5.3.2 **
C***************************************************************
C***************************************************************

use pumamod
use adpumamod
implicit none

C define arguments
REAL adpfc(nlon,nlat)
REAL adpsp(2,nrsp/2)
REAL pol(nlat,ncsp)

C define local variables
REAL adzi
REAL adzr
integer ji
integer jm
integer jn
integer jr
integer jt
integer jw

C RESET LOCAL ADJOINT VARIABLES
adzi = 0.d0
adzr = 0.d0

C ROUTINE BODY
do jm = 0, ntru
adzi = 0.d0
adzr = 0.d0
jr = 2*jm+1
ji = 2*jm+2
do jn = ntru, jm, -1
jw = jn+jm*ntru-(jm-1)*jm/2+1
do jt = 1, nlat
adzi = adzi+adpfc(ji,jt)*pol(jt,jw)
adzr = adzr+adpfc(jr,jt)*pol(jt,jw)

end do
adpsp(2,jw) = adpsp(2,jw)+adzi
adzi = 0.d0
adpsp(1,jw) = adpsp(1,jw)+adzr
adzr = 0.d0

end do
end do
adpfc = 0.d0
end subroutine adsp2fc
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its own reference trajectory, but reads it from a file. The reason is, that the
reference trajectory stays the same during repeated calls of the combined operator
R?R (compare section 1.3.3).

2.3 Testing of the adjoint model

The first test for a tangent-linear as well as an adjoint model is the comparison
to gradients computed with finite differences. This test was helpful in the de-
velopment stage of the adjoint model to identify errors (Blessing 2000). See the
tests applied in section 3.2.3, where it is carried out for the special case of the
model taken to map three of these process parameters to a cost function measur-
ing mean temperature difference.
The most common test for the adjointness of the adjoint code is the identity
from Eq. (1.1). The test ensures that the adjoint actually is the adjoint of the
tangent-linear model. This also has been satisfactorily tested during the devel-
opment stage of the adjoint model. An even more rigorous test for this is the
comparison of the gradients computed by the adjoint model and the tangent-
linear model by numerically extracting the propagator matrix from both models
for each forecast time step. Tab. 2.2 shows the resulting deviations of the entries
of the propagator matrix aij = (A)ij and the adjoint propagator matrix from the
adjoint model bji = (B)ji for a resting and a dynamic atmosphere.

The relatively small gain of precision for computations with doubled floating

floating point precision [Byte] 4 8
smallest mantissa 1.2 · 10−7 4.5 · 10−16

number of time steps 1 10 1 10
resting atmosphere:

maxi,j |aij − bji| 1.9 · 10−6 1.1 · 10−5 4.9 · 10−8 6.9 · 10−6

1
NM

∑N,M
i,j=1 |aij − bji| 9.1 · 10−10 2.0 · 10−9 1.5 · 10−12 3.3 · 10−10

1
NM

∑N,M
i,j=1 |aij| 3.0 · 10−4 8.2 · 10−5 3.0 · 10−4 8.2 · 10−5

dynamic atmosphere:
maxi,j |aij − bji| 3.8 · 10−6 3.1 · 10−5 1.7 · 10−7 1.3 · 10−5

1
NM

∑N,M
i,j=1 |aij − bji| 2.2 · 10−10 7.2 · 10−9 3.1 · 10−12 7.5 · 10−10

1
NM

∑N,M
i,j=1 |aij| 3.0 · 10−4 3.1 · 10−4 3.0 · 10−4 3.1 · 10−4

Table 2.2: consistency of tangent-linear and adjoint model for resting and dy-
namic atmosphere.

point precision is striking. A hypothetical explanation could be the use of fixed
precision parameters in a portion of the model that has been adjoint in an an-
alytical way rather than the line-by-line technique which has been adopted for
most portions. This indeed is the case with the Fourier transform in the model,
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which is making use of the fact that the direct transform is the adjoint of the
indirect transform (and vice versa) but this part is not depending on fixed preci-
sion parameters, as e.g. the Bessel functions which in the model are given with
ten digits after the comma. Therefore this is not an explanation. Nonetheless the
differences are relatively small and there is some gain of precision, which reduces
the probability of a systematic error. Errico (2004, personal communication)
gives nine identical digits with eight Byte precision. Taking into account that
the diagonal elements of the matrix are close to unity, this corresponds reason-
ably well with the maximal absolute deviation of 4.9 ·10−8 from Tab. 2.2. Further
tests are the test of the linearisation against finite differences approximations of
the gradient as shown in section 3.2.3 and in Fig. 3.12.



30 CHAPTER 2. PUMA AND ITS ADJOINT



Chapter 3

Sensitivities in an atmospheric
GCM

In this chapter the theoretical concepts of the preceding chapter are tested in
the context of the atmospheric global circulation model PUMA introduced in sec-
tion 2.2. Section 3.1 gives an overview of reference trajectory, target pattern,
propagator and sensitivities for the PUMA model for the setting of the sensitivity
of a projection index on an initial state perturbation. Section 3.2 explores the
timescale on which the gradient of a cost function with respect to a model pa-
rameter can be determined with the adjoint method. Section 3.3 uses climate
sensitivities computed with an averaging method to recover the parameter field
of the heating relaxation which produces a given climate.

3.1 Sensitivities to an initial state

As an instructive example for the computation of derivatives with the adjoint
model, Fig. 3.1 shows the elements involved when a projection index is differenti-
ated with respect to initial model conditions. First a projection index is defined
by projecting the deviation of the model state from its long-time mean onto the
dipole pattern shown in the upper left panel. Part (a) of the figure shows a
clipping of the time evolution of this index from an ordinary model run. The
colour shading in the two maps located above two distinct days (c: “May 14”
and d: “May 24”) of this index plot show the respective model state in terms
of vertically averaged streamfunction deviations from the long-term mean. We
choose “May 24” to be “verification time” and “May 14” to be “initial time”.
The vertical axis of the blue panel (labelled e) indicates the lag or lead time for
the derivative of the projection index (difference between verification and initial
date). The derivative or sensitivity of the index with respect to a streamfunction
perturbation is indicated as green contours in the “weather” maps for “May 14”
(initial, c) and “May 24” (verification, d). In the “May 24”-map they represent

31
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the sensitivity for zero lead-time (as if this was initial and verification time at
once). This is equivalent to the derivative of the projection index with respect
to model output and consequently reflects the shape of the pattern projected on.
In the “May 14”-map the sensitivity for a 10-day lead time is shown. This is
the derivative of the “May 24”-index with respect to “May 14”-initial conditions.
Since this is computed with the knowledge of the unperturbed development, i.e.
in a tangent-linear sense, it is the precise first derivative of these quantities in the
given model. Finally, the blue shading shows for each combination of verification
and lead time the norm of the sensitivity. Low sensitivity has been equated to
good predictability while high sensitivity corresponds to low predictability. In
this sense the “May 24”-maximum of the index (a) )would have been relatively
well predictable (only slow growth of sensitivity norm with increasing lead time
in panel e for “May 24”), while, the index state on “May 17” and “May 22”
appear to be relatively uncertain to predict, judging from the two flame-like fea-
tures in panel (e). As before, in the similar representation of sensitivities in the
Lorenz’63 model (Fig. 1.2), predictability seems to be strongly linked to the state
at verification time and less to the trajectory sections passed, or the impact of
the trajectory on the sensitivities is very time critical.

3.2 Sensitivity of the model climate to a param-

eter

In this section a feasibility study for a Climate Prediction Data Assimilation Sys-
tem is presented. The usefulness of accurate gradient information for estimating
process parameters of the spectral atmospheric circulation model PUMA on climate
time-scales is investigated. Pseudo observations of the long-term mean surface
temperature are generated by the model itself. The gradient of the model-data
misfit computed by the tangent linear version of the model provides a good ap-
proximation for integration periods of 10 days and one year. In an identical twin
experiment the correct parameter values can be retrieved by variational assim-
ilation of the pseudo observations for an integration period of 10 days. For an
integration period of 100 days this works after adding pseudo observations of the
seasonality of the surface temperature.

3.2.1 Introduction

State of the art climate predictions rely on numerical models of the earth system.
One of the major sources of uncertainty in these predictions is the correct rep-
resentation and parametrisation of the processes underlying the climate system
(Cubasch et al., 2001; Prentice et al., 2001). Due to their high complexity, state
of the art earth system models are extremely demanding in terms of computer
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Figure 3.1: Schematic illustration of sensitivity calculation in an idealised PUMA

experiment. (a) Target pattern to define projection index, (b) time series of
projection index, (c) exemplary vertically averaged streamfunction anomaly on
“May 14” (colour shading) and 10-day lead sensitivity of projection index for
verification time “May 24” (green contours), (d) as (c) but on “May 24” and
0-day lead sensitivity, (e) norm of sensitivity for all combinations of lead and
verification time (logarithmic colour scale from dark blue=low to bright=high).
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time. This complicates both the systematic estimation (or calibration) of pro-
cess parameters from observations (so-called model tuning) and the systematic
assessment of the associated uncertainty in predictions.

These systematic approaches can, thus, typically only be pursued for mod-
els with reduced spatio-temporal resolution, simplified process representations,
and/or reduced sets of uncertain (tunable) parameters. For instance, Jones et al.
(2005) employ FAMOUS, a reduced resolution version of its parent general cir-
culation model HadCM3 to demonstrate the systematic tuning of eight process
parameters. This subset of the full parameter space, which for the atmosphere
component alone has about 100 dimensions (Murphy et al., 2004), was kept small
for computational reasons. This is because they approximate the gradient infor-
mation in the optimisation procedure by finite differences of model runs, at a
cost proportional to the number of tunable process parameters. Similarly, Mur-
phy et al. (2004) demonstrate a systematic quantification of the uncertainty on
model predictions associated with the uncertainty in 29 of the model’s process
parameters. Their reason for the restricted parameter space is also of compu-
tational nature, imposed by an algorithm which uses finite differences of model
runs. Kunz (2003, 2007) scans the entire space of process parameters for PUMA,
the model used in this study, in a simple but expensive procedure.

For both applications, model tuning and uncertainty assessment, the use of
adjoint parameter sensitivities avoids restrictions of the parameter space. For the
terrestrial biosphere component of the climate system this approach is demon-
strated by the Carbon Cycle Data Assimilation System (CCDAS, Scholze, 2003;
Rayner et al., 2005; Scholze et al., 2007).

The construction of an assimilation system around a coupled climate model,
in what follows called CPDAS (Climate Prediction Data Assimilation System),
is both tempting and challenging. It is tempting, because it would allow to
employ, for instance, observational paleo records as a constraint on the process
parameters of the underlying climate model. Furthermore, the impact of all
process parameters and boundary conditions on the model’s climate sensitivity
could be rigorously assessed in a single adjoint run. Typically, such an assessment
is done by perturbing one parameter at a time (Murphy et al., 2004) or by Monte
Carlo simulations (Stainforth et al., 2005), at a computational cost proportional
to the ensemble size.

One of the associated challenges is imposed by the code size of a coupled
climate model. A number of examples, however, demonstrate the applicability
of TAF (or its predecessor TAMC) to large codes representing components of
the climate system, such as the atmospheric general circulation models MM5
(Nehrkorn et al., 2002), WRF (Xiao et al., 2005a), ARPS (Xiao et al., 2005b)
and fvGCM (Giering et al., 2005) , or the oceanic general circulation models
MITgcm (Marotzke et al., 1999; Heimbach et al., 2002), HOPE (van Oldenborgh
et al., 1999; Junge and Haine, 2001), and MOM3 (Galanti et al., 2002).

As described in section 1.4, a more fundamental challenge results from the
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non-linearity of the climate system. The usefulness of derivative code depends
on the capability of the linearisation around a point to represent the model in
the point’s neighbourhood. This capability is closely connected to the concept of
predictability, which Lorenz (1963) analysed for a non-linear three-dimensional
system that possesses a strange attractor. Lea et al. (2000) use this system
to demonstrate that the usefulness of the linearisation of the long-term mean
state around the system’s parameters decreases with increasing integration pe-
riod. Köhl and Willebrand (2002) analyse how this affects the parameter estima-
tion from the long-term mean state via a gradient method for the same model as
well as for a high-resolution quasi-geostrophic model. In this estimation context,
the poor linearisability of the long-term mean shows up in the form of multiple
local minima in the model-data misfit. Pires et al. (1996) using the Lorenz model
and Tanguay et al. (1995) using a β-plane model address the linearisation prob-
lem in the context of four-dimensional variational data assimilation, estimating
initial conditions that minimise the model-data misfit. Lorenc (2006) presents a
summary of the linearisation topic, together with a sketch of a four-dimensional
variational assimilation system, which models probability density functions for
the uncertain, small-scale processes.

This section examines the feasibility of a CPDAS in the light of the lineari-
sation problem. For the ocean component the feasibility has been demonstrated
by the ECCO project Stammer et al. (2002), and for the terrestrial component
by the Carbon Cycle Data Assimilation System. Hence, the focus on the at-
mospheric component. Section 3.2.3 investigates, for time scales of up to one
year, the validity range of the model’s linearisation with respect to three process
parameters. If the linearisation was not valid even in a small neighbourhood of
the linearisation point, a gradient based optimisation environment could not even
find a local minimum of the model-data misfit. Although the model-data misfit is
used as target quantity, this is primarily a test of the model. The next experiment
Section 3.2.4, in contrast, tests the combination of model and observing system.
In a so-called identical twin setup, an attempt is made to recover the values of
the three process parameters from (pseudo)-observations that have been gener-
ated by the model itself. Since, as mentioned above, model calibration from the
paleo record is a tempting perspective, such observation systems are deliberately
selected that mimic the paleo record. Section 3.2.5 lists a few conclusions.

3.2.2 Model and Parameters

Regarding the feasibility of a CPDAS, PUMA is particularly interesting, because it
is the atmospheric component of the Planet Simulator (Fraedrich et al., 2005a,b),
a coupled climate model designed for long integration periods, and also one of the
available atmospheric modules in the coupled climate model BREMIC (Lohmann
et al., 2003).
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PUMA is introduced in section 2.1. It is a primitive equations model of the
global atmospheric circulation. Although many of the process representations are
simplified, PUMA simulates atmospheric key processes, for instance storm tracks
(Frisius et al., 1998) by means of a prescribed heating relaxation (see section 2.1
for details). A model setup with 64 × 32 grid cells in the horizontal domain
(T21 in spectral space), 5 vertical levels, and a time step of 1 hour is used. This
setup does not contain orography nor a hydrological cycle or land-sea differences.
Lacking a representation of direct solar heating, the model induces a heating
dipole by relaxation against a prescribed temperature field. In Figure 3.2 the
relevant information is therefore just the relative location of the storm tracks
(shown as standard deviation of 500 hPa height) with regard to the prescribed
heating. The heating relaxation and, thus, the temperature, have no seasonality.

Three tuning parameters have been selected. The first parameter is the relax-
ation time scale of the heating. The second and the third parameter influence the
model’s friction and diffusion schemes, respectively. Kunz (2003, 2007) gives a
detailed description of the parameters and schemes and estimates the parameters
in a simple but expensive procedure that scans the entire parameter space.

In view of parameter estimation from the paleo record, the long-term mean
temperature over the integration period at each surface grid cell was selected as
observed quantity, i.e. there are 64 × 32 observations. The model M was set
up such that it directly produces this quantity as output. A vector of pseudo
observations, d, are generated and recorded by running the model, M(x), with
the standard values of the parameters, xopt, forward in time, i.e.

d = M(xopt) . (3.1)

For a given set of parameter values, x, the misfit of the model simulation and the
data can then be quantified by the cost function

J(x) =
1

2
((M(x)− d)T Cd

−1 (M(x)− d)) , (3.2)

where, for convenience, Cd, which expresses the combined uncertainty from model
and observational error, is the identity.

Tangent linear and adjoint versions of the model had been generated in (Bless-
ing, 2000; Blessing et al., 2004) by means of TAF’s predecessor TAMC. These
codes were generated to evaluate derivatives of the final state with respect to the
initial state and not with respect to the process parameters. Hence, the model
code was rearranged for the purpose of this section to express the mapping of
the three tuning parameters on the cost function in a TAF-compliant way. A
vectorial version of the tangent linear model (TLM), simultaneously evaluating
the derivative of the cost function with respect to the three parameters, was
generated by TAF.
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Figure 3.2: Standard deviation of 500 hPa geopotential height [m] in a year-long
integration of the PUMA setup with two heating dipoles. The maxima of the
contours indicate the location of the simulated storm tracks on the Northern
Hemisphere. The light and dark shading mark the maxima (325 K) and minima
(215 K), respectively, of the relaxation temperature field. Due to the setup with-
out orography the longitudinal position is arbitrary but the distance of 150◦ is
most effective to approximate observed variability (Franzke et al., 2000).
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3.2.3 Finite Difference Tests

Before addressing the parameter estimation problem, the linearisability of the
model around a base point x0 in parameter space is investigated. Regarding
the selection of the base point, the point xopt is avoided, at which the pseudo
observations have been generated (see Eq. (3.1)). Being the global minimum of
the cost function with zero gradient, xopt is a special point. Instead, a generic base
point is constructed by adding a relative perturbation of 0.5 to each parameter
value, i.e.

x0 = (1 + 0.5)xopt . (3.3)

First an integration period of 10 days is used. Figure 3.3 shows both the cost
function and its linearisation around the base point over the relative perturbation
size. Both functions are evaluated for 14 perturbations with relative sizes ranging
from 10−13 to 1. For relative perturbation sizes up to 0.1 the agreement is excel-
lent. Another way of quantifying the usefulness of the linearisation is to plot the
difference between the derivative provided by the TLM against its approximation
by finite differences:

fd(x0, ε) =
J(x0 + ε)− J(x0)

ε
. (3.4)

The norm of this difference is shown in Figure 3.3, for parameter perturbations,
ε, spanning several orders of magnitude. For very small perturbations the ac-
curacy of the finite difference approximation is low due to rounding error. For
large perturbations the effect of quadratic and higher order terms in the Taylor
expansion becomes visible, i.e. the non-linearity of the model. In between there is
a range of good agreement, which strongly supports the correctness of the TLM
and also demonstrates the smoothness of the cost function.

Figure 3.4 shows the same quantities for a 1-year integration. Compared
to the 10-day integration the non-linearity has increased, but nevertheless, the
function is still reasonably smooth.

3.2.4 Parameter Estimation

The previous section demonstrated that the model is linearisable with good ac-
curacy. The experiments in this section investigate the model’s behaviour in an
iterative optimisation procedure for parameter estimation. The cost function (see
Eq. (3.2)) introduced in section 3.2.2 is used, which is based on the pseudo ob-
servations generated from the model’s standard parameter values (see Eq. (3.1)).
From a base point in parameter space (see Eq. (3.3)) it is aimed to reconstruct the
original parameter values with an iterative gradient search algorithm (Fletcher
and Powell, 1963). This type of setup is known as identical twin experiment.

Regarding the optimisation strategy, there are different options. The typi-
cal procedure in operational numerical weather prediction, known as incremental
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(a)

(b)

Figure 3.3: Linearisation properties for 10-day integration: (a) Cost function
(solid) and its linearisation around the base point (dashed). (b) Difference be-
tween TLM and finite differences.
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(a)

(b)

Figure 3.4: As Figure 3.3, but for 1-year integration: (a) Cost function (solid)
and its linearisation around the base point (dash (b) Difference between TLM
and finite differences.
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4D-VAR and introduced by Courtier et al. (1994), is to solve (in a so-called outer
loop) a sequence of optimisation problems. For each of these problems, a fixed
linearisation point for the model is chosen and the corresponding quadratic cost
function is minimised iteratively (in a so-called inner loop) by the gradient algo-
rithm. The solution of one problem defines the linearisation point for the next
problem. The advantage of this technique is that, owing to their quadratic cost
functions, the individual optimisation problems cannot be trapped in secondary
minima. At worst, the optimisation problem could be underdetermined, so that
the global minimum is reached not only for a single point but for a set of points.
But this is avoided by including prior information (a so-called background term)
in the cost function. The guaranteed convergence of the individual optimisa-
tion problems is particularly useful in an operational context, with its hard time
constraint.

Here, a slightly different strategy is used, which applies the gradient algorithm
directly to the non-linear model. This avoids the risk of the inner loop improving
only the fit to the linearised model but not to the non-linear model. Instead
the gradient algorithm can benefit of an update of the linearised model in every
iteration on its way to the minimum. Indeed, the experiments show that the
model’s linearisation with respect to process parameters changes continuously.
The same approach is used in assimilation systems for other components of the
climate system, e.g. in the ECCO system for the ocean (Stammer et al., 2002)
and in CCDAS for the terrestrial biosphere (Scholze, 2003; Rayner et al., 2005;
Scholze et al., 2007). In contrast to these systems, the experiments presented
do not use any prior information on the parameters, although it stabilises the
inverse problem via the convex component it adds to the cost function. This is
done deliberately in these twin experiments, in order to not include the knowledge
of the true parameter values in the solution process. When applying a CPDAS
to real observations, one would certainly include a prior information term in the
cost function.

Figure 3.5 illustrates the performance of an optimisation for an integration
period of 10 days. Both the cost function and the gradient decrease over several
orders of magnitude. As the observations have been generated by the model, the
optimal parameter values are known. Unlike in an experiment with real obser-
vations, it is hence possible to also record, in each iteration, the distance from
the optimum. The optimisation algorithm has no problem finding the optimum.
Figure 3.6a shows the cost function for a section in parameter space (using rela-
tive units) through the optimal parameter value (s = 0) with the starting point
(s =

√
3 · 0.52). The function decreases by 14 orders of magnitude from the

starting point of the optimisation to the minimum.
The same experiment for a 100-day integration period did not succeed in re-

constructing the original parameter values. The norm of the gradient decreases
by about 7 orders of magnitude, but the cost function value decreases only by
one order of magnitude to about 0.002. The final parameter distance from the



42 CHAPTER 3. SENSITIVITIES IN AN ATMOSPHERIC GCM

convergence behaviour (10 day)
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Figure 3.5: Integration period of 10 days: Various aspects of convergence be-
haviour of cost function, its gradient, and distance from optimum over iteration
number.
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(a) 10 day

(b) 100 day

Figure 3.6: Cost function for section in parameter space. (a) 10 day integration
period, (b) 100 day integration period.
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Figure 3.7: Difference in surface temperature simulated from optimal parameters
(global minimum) and parameter set at local minimum of cost function, 100 day
integration period.
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optimum is about s = 0.4. Unfortunately this minimum is only a local one. The
existence of local minima is supported by the section shown in Figure 3.6b. The
decrease of the gradient norm suggests that the optimisation was indeed suc-
cessful in finding a minimum, which is another confirmation for the usefulness
(and correctness) of the gradient information discussed in section 3.2.3. Fig-
ure 3.7 shows the difference in simulated surface temperature between the local
and global minima of the cost function. Interestingly, the difference also contains
large-scale structure.

The constraints incorporated in the cost function are not powerful enough to
render its shape more convex and avoid the optimisation’s getting trapped in lo-
cal minima. This problem can, however, be tackled by changing the formulation
of the cost function. As mentioned above, this feasibility study for a CPDAS also
aims at investigating the potential of paleo observations as data constraint. The
paleo record (Boenisch et al., 2001) provided by the BIOME 6000 project, for
instance, includes in addition to local annual mean temperature also information
on the local seasonal cycle in temperature and moisture. Since the PUMA ver-
sion under study does not include a hydrological cycle, the moisture constraint
could not be included. Usage of the seasonal cycle in temperature is also limited,
because the PUMA version under study is forced without seasonal cycle. Never-
theless three additional constraints are implemented on the temporal variation of
the local temperature, each yielding an additional pseudo data point per surface
grid cell. To emphasise the small seasonal signal, all three constraints first remove
the temporal mean:

1. The variance over the integration period, i.e. for a surface grid point with
coordinates λ and φ an observation dvar(λ, φ) is produced by

dvar(λ, φ) =
1

N

∑
i=1,N

[
T (λ, φ, ti)−

1

N

∑
j=1,N

T (λ, φ, tj)

]2

, (3.5)

where T denotes the temperature, ti the time in years, and N the number
of time steps.

2. The projection on a cosine signal with annual period, i.e.

dcosine(λ, φ) =
1

N

∑
i=1,N

cos(2πti)T (λ, φ, ti)

− 1

N

∑
i=1,N

T (λ, φ, ti) ·
1

N

∑
i=1,N

cos(2πti). (3.6)

This is the discretised form of

dcosine(λ, φ) =

∫
cos(2πt)

(
T (λ, φ, t)− T̄ (λ, φ)

)
dt, (3.7)
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where the the overlying bar denotes the average over the integration time.

3. The projection on a sine signal with annual period (dsine).

The effect of adding various combinations of these pseudo data to the cost func-
tion is assessed, i.e. instead of Eq. (3.2) now the extended cost function

Jext = J + αvarJvar + αcosineJcosine + αsineJsine (3.8)

is minimised, with different choices of the weighting factors αvar, αcosine, and αsine.
Figure 3.8 shows the convergence behaviour for a cost function with the cosine

and the sine constraints added to the mean constraint, all with equal weights. The
optimal parameter values were reconstructed after 37 iterations. The behaviour
of the individual components of the gradient and the parameter vector is shown
in Figure 3.9.

Other combinations of pseudo-data were equally successful. For instance,
when adding only the cosine component to the mean component, giving it ten
times more weight than the cosine component, the optimisation reconstructs the
optimal parameter set in 24 iterations.

Repeating the same experiment for a 1-year integration period, different com-
binations of cost function contributions were tested. The optimisation was, how-
ever, not able to reconstruct the optimal parameter set. Instead, it converged
well (with the gradient norm reduced by 3–7 orders of magnitude) to local min-
ima. Motivated by the structure of the difference in surface temperature simu-
lated from the optimal parameter vector and the one in the local minimum (see
Fig. 3.7) a smoothness constraint was added. To this end a corresponding contri-
bution to the cost function was implemented as the squared difference in surface
temperature between neighbouring grid cells, summed up for each pair of neigh-
bouring cells on the horizontal grid. Activating this cost function contribution
punishes small scale deviations from the (pseudo)-observed surface temperature
field. Figure 3.10 shows all cost function contributions that were implemented for
a section in parameter space from the optimisation’s starting point to the optimal
parameter value. The challenge is to compose these contributions to an over-all
cost function with a shape sufficiently close to convex to avoid the optimisation’s
getting trapped in local minima.

3.2.5 Conclusions

The linearisation of the chosen cost function of three process parameters is a good
approximation for integration periods of 10 days and one year. In an identical
twin experiment the three parameters could be retrieved from pseudo observations
of long-term mean surface temperature for integration periods of 10 days. For an
integration period of 100 days this worked only after adding pseudo observations
of the seasonality. For a 1-year integration period the true parameter values could
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Figure 3.8: Various aspects of convergence behaviour for an integration period
of 100 days: Cost function, its gradient, and distance from optimum over iter-
ation number. Setup with cost function contributions by cosine, sine and mean
components, all with equal weights.
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Figure 3.9: Convergence behaviour for an integration period of 100 days:
(a) components of gradient and (b) distance of parameter vector to optimum.
Setup with cost function contributions by cosine, sine and mean components, all
with equal weights.
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not be retrieved. For all these integration periods, however, the optimisation
algorithm has converged in only a few 10 iterations to (sometimes local) minima,
with a gradient norm reduction by 3–7 orders of magnitude. This demonstrates
that the gradient information provided by the linearised model has been very
useful, but there were not enough observational constraints to avoid the local
minima. The PUMA version used here had no seasonal cycle in the temperature, so
that the temporal constraint was only a weak one. Furthermore, no hydrological
cycle is included. The seasonality of temperature and the hydrological constraint,
which are both available in observational records (both historical and paleo), are
expected to have a favourable impact on the optimisation.

On purpose, an experiment setup was selected for which the optimum was
known. Hence, no observational or model error were added to the observations,
which are expected to complicate the parameter estimation. On the other hand no
prior information was incorporated, which would have regularised the estimation
problem by its quadratic contribution to the cost function and usually speeds up
the estimation procedure considerably.

For the estimation a gradient approach was used in a straightforward way.
Promising technical extensions such as using an averaged gradient (Lea et al.,
2000), a gradient from an even coarser resolution model in grid point (Köhl and
Willebrand, 2002) or spectral (Tanguay et al., 1995) space in conjunction with
averaged forward integrations, or tracking the absolute minimum when extend-
ing the integration period (Pires et al., 1996, shown to be unsuccessful for the
Lorenz’63-case in 1.4.1) have not been applied, nor was, in this section, the system
run in an incremental mode as described by Courtier et al. (1994).

3.3 Assimilation of a model climate

In this section the encouraging results of the previous section are used to set up
a climate assimilation system. From the technical extensions, suggested above to
avoid secondary minima of the cost function and to receive meaningful gradients,
the averaging method is demonstrated to be successful.

3.3.1 Aims and Methods

The long-term or climate mean fields are considered as the response to a forcing.
In particular, changes in the climate are linked to changes in the climate forcing.
Here we analyse the link from a time-mean temperature field (target climate
T T from the control run) to its forcing field. That is, a suitable forcing field is
reconstructed (for example, the PUMA relaxation temperature TR), whose time-
mean response (substitute climate, T ) should be as close to the target climate
T T , as possible. A unique forcing-response relation, however, cannot always
be guaranteed as different forcings may lead to the same climate mean state.
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Therefore we carry out an internal experiment in the sense that the target climate
itself has been produced by the PUMA with a prescribed forcing. This allows an
objective judgement of the quality of the forcing reconstruction by comparison
with the known solution. For the forcing reconstruction we define a cost function
J , which describes the distance between target and its substitute in a manner
similar to the J used in section 3.2:

J :=
1

2

(
T − T T , T − T T

)
. (3.9)

In the experiments discussed here the inner product (·, ·) contains area weights
to compensate for the geometry of the model grid and variance scaling with the
temperature variance of the control run. For the forcing reconstruction this cost
function needs to be minimised by choice of appropriate parameters TR of the
relaxation temperature. The gradients of J with respect to the parameters are
calculated by the adjoint PUMA. Let H be the mapping of the n εN parameters
TR on the n elements of T as calculated by PUMA:

H : IRn → IRn

TR 7→ T . (3.10)

This makes the cost function J and its first order approximation δJ :

J(TR) =
1

2

(
H(TR)− T T ,H(TR)− T T

)
(3.11)

δJ = (∇TR
J(TR), δTR) . (3.12)

This equation introduces the gradient operator with respect to the parameters
of the relaxation temperature field ∇TR

to relate a small perturbation of this pa-
rameter δTR to a change in the cost function δJ . Let R |TR0

be the tangent-linear
model of H, which is the Jacobian of H at a first-guess relaxation temperature
field TR0 . By writing δT = R

∣∣
TR0

δTR, the differentiation of (3.11) and subsequent

application of the adjoint model R∗ yields:

δJ = (H(TR0)− T T ,R
∣∣
TR0

δTR0) (3.13)

= (R∗∣∣
TR0

(
H(TR0)− T T ), δTR

)
. (3.14)

Comparing (3.14) with the definition of the gradient of the cost function∇TR
J(TR0)

(3.12) leads to (in analogy to the development of Eq. 1.10):

∇TR
J(TR0) = R∗∣∣

TR0

(
H (TR0)− T T

)
. (3.15)

The linear operators R |TR0
and R∗ |TR0

represent the tangent linear model and its
adjoint. Both depend on the first guess relaxation temperature field TR0 about
which the model is linearised. Equation (3.15) shows how the gradient of the
cost function with respect to the relaxation temperature parameters can be cal-
culated efficiently by feeding the misfit between the calculated and the targeted
time mean model temperature, H(TR0)− T T , into the adjoint model R∗ |TR0

.
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3.3.2 Single storm track climate (control run)

Reconstructing the forcing of the mean climate we use a single storm track cli-
mate (Frisius et al., 1998). It is generated by a meridionally oriented heating
and cooling dipole of the relaxation temperature TR (Fig. 3.13a), representing
the contrast between a cold continent and a warm ocean current. In the vertical
its amplitude follows a lapse rate and becomes isothermal near the tropopause.
The climate response is characterised by a storm track developing downstream of
the heating dipole. We use the climate mean temperature T (Fig. 3.13b) of this
model climate (and its standard deviation σT ; Fig. 3.13c) as the target climate
T T to reconstruct the forcing TR.

3.3.3 Cost function properties

Experience has shown that with the above type of cost function, where the time
average of a variable is included, a few precautions need to be taken. Lea et al.
(2000) investigate the dependence of a time averaged variable of the Lorenz (1963)
model on a single parameter. Their results suggest that analytical gradients
calculated with the adjoint model are not useful for minimising the cost function
when the averaging time is too long. Nonlinear dependence of the cost function
on the parameter lets the gradient attain too large values which only represent
the slope in a very small neighbourhood. On the other hand, for short averaging
times, the dependence on the initial conditions of the model variables distorts
the picture. Therefore, they suggest an ensemble of adjoint gradient calculations,
with different initialisations of the model variables and an intermediate averaging
time. In the PUMA model the shape of the cost function depends on the high-
dimensional relaxation temperature field. Figs. 3.11 and 3.12 are an attempt to
plot this relationship in a similar fashion as Fig. 1.6 for the Lorenz63-model. In
order to plot the cost function for the PUMA model against the averaging time
and the choice of the relaxation temperature, it is made dependent on a single
parameter λ which represents a one-dimensional parameter subspace:

TR = (1− λ)T T + λTR0 . (3.16)

Here TR0 is chosen to be the relaxation temperature of the control experiment,
which is the forcing of the single storm track climate. Choosing the mean tem-
perature response as the target climate T T in the cost function J , we expect J
to converge towards zero for λ = 1 and t → ∞. Fig. 3.12 shows the value of
a cost function which measures the difference between the PUMA-model climate
for perturbed (λ 6= 1) and unperturbed (λ = 1) parameter values for different
averaging times from daily mean to year mean (one model year are 8640 hours).
No seasonal variations were included.
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Figure 3.11: Cost function depending on different averaging times and param-
eters. The relaxation temperature parameters TR change from the target mean
temperature T T (λ = 0) to the known relaxation temperature of the control run
TR0 (λ = 1) as described by equation (3.16). All integrations start (t = 0) from
the same atmospheric state randomly chosen from the control run.

Figure 3.12: PUMA: Value of cost function J(λ, t), as Fig. 3.11, for different averag-
ing times t in a one-dimensional projection of parameter space (shading, quadratic
scale). The cost function measures the distance to a target spacial temperature
distribution and parameter λ varies the heat source. λ = 0 was used to create
the target in a 10-year run of the model. The blue line is the zero-contour of the
differentiated model (∂J/∂λ) while the thin white line is the centred differences
approximation for comparison. Seasonality is not included.
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Indeed the cost function possesses a marked minimum, where the forcing has
the right shape and amplitude (λ = 1) even for short averaging times. This
justifies the choice of an averaging time of 240 time steps for the cost function
in the gradient calculations. At intermediate times in the order of months, how-
ever, internal variability causes some shifting of the minimum without severely
changing its location.

3.3.4 Forcing reconstruction

An internal experiment is carried out to reconstruct the forcing of the single
storm track climate. The mean temperature distribution of the control run (Fig.
3.13b) is taken as the target climate T T in the cost function J . An iterative
algorithm is used: First an ensemble of five calculations of the gradient is carried
out with an averaging time of 240 time steps (corresponding to ten days). The
initial conditions of the next ensemble member are the final conditions of its pre-
decessor. The ensemble mean gradient field is then used to alter the relaxation
temperature field TR (that is the forcing) by a small amount. Subsequently the
model is run for 1200 time steps (50 days) to let the circulation adapt to the new
parameters; then the cost function is evaluated. The final atmospheric conditions
are made the initial conditions of the next iteration. The procedure is repeated
until there is no further decrease of the cost function.

3.3.5 Results and Discussion

The gradients of the cost function J , obtained by the adjoint model and applied to
reconstruct the single storm track climate of the control run, determine the forcing
reasonably well in the lower levels of the model (Fig. 3.13d) while the upper
levels (not shown) are less well defined. In this experiment, the relaxation time
constant τ(σ) (from the diabatic part of temperature tendency (∂T/∂t)diab. =
(TR − T )/τ) is larger in the upper (30 days) than in the lower levels (10 and
5 days, respectively). They reflect the relative importance of advection versus
radiative forcing. Long relaxation timescales should make the problem more
nonlinear. However shorter relaxation times in the upper layers cannot be seen
as a remedy since they would make the model less realistic and consequently alter
the link between climate and forcing.

A PUMA simulation with the reconstructed relaxation temperature TR leads to
a time mean temperature (Fig. 3.13e), which is remarkably similar to the mean
temperature distribution of the control run (T T ). This is also true for the upper
levels and in contrast to the poor reconstruction of the forcing in these levels.
Again their longer relaxation timescale appears to be the reason but this time
with a positive effect. Baroclinic processes probably triggered by the bottom
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Figure 3.13: Control run (single storm track climate): (a) Relaxation tempera-
ture TR0 , (b) mean temperature T and target temperature T T in the cost func-
tion J , (c) standard deviation of the temperature σT . Reconstruction: (d) Re-
laxation temperature TR reconstructed from T T , (e) mean temperature of a sim-
ulation with TR, (f) standard deviation of the temperature in the simulation with
relaxation temperature TR (all at σ-level 0.9 near 900 hPa).



56 CHAPTER 3. SENSITIVITIES IN AN ATMOSPHERIC GCM

level make up for the errors in the radiative-convective parameterisation in the
temperature tendency. The similarities between the temperature variances in the
control run (Fig. 3.13c) and the simulation (Fig. 3.13f) are less well pronounced
but some features are reproduced. A second experiment, which includes orog-
raphy in the control run and in the run with the reconstructed forcing, yields
results of comparable quality (not shown).

The experiment demonstrates that the combined information of model dy-
namics and a spacial distribution of the mean temperature can contain enough
information to reconstruct main aspects of a historical climate. On the technical
side, the averaging of gradients over different realisations has proven successful to
avoid secondary minima far away from the known solution. The remaining un-
certainty reflects the internal fluctuations of the model climate. It remains open
whether comparable results could be achieved for a model of increased resolution.



Chapter 4

Interpreting the atmospheric
circulation trend during the last
half of the 20th century

The tangent linear adjoint for a low resolution dynamical model of the atmosphere
(T21, 5 levels in the vertical) PUMA (see chapter 2) is used to derive the optimal
forcing perturbations for all state variables such that after a specified lead time the
model response has a given projection, in terms of an energy norm, on the pattern
associated with the 51 year trend in the northern hemisphere winter tropospheric
circulation, 1948/49-1998/99. A feature of the derived forcing sensitivity is a
Rossby wave-like feature that emanates from the western tropical Pacific and is
associated with the deepening of the Aleutian low, whereas an annular pattern
in the forcing sensitivity in the uppermost model level is shown to be associated
with the pattern of the trend over the Euro-Atlantic/Asian sectors, including the
upward trend in the North Atlantic Oscillation Index. We argue that the Rossby
wave-type feature is consistent with studies that have argued a role for the upward
trend in tropical sea surface temperature during the 51 year period . On the other
hand we interpret the annular pattern in the forcing sensitivity as being consistent
with studies that have argued that the trend over the Euro-Atlantic sector was
associated with influences from the stratosphere. In particular, a nonlinear model
driven by the optimal forcing perturbation applied only to the top model level
is successful at reproducing the trend pattern with the correct amplitude in the
Euro-Atlantic sector, but implies a trend over the North Pacific towards a weaker
Aleutian low, contrary to what was observed but similar to the spatial pattern
associated with the Northern Annular Mode. These results show that the adjoint
approach can shed light on previous apparently different interpretations of the
trend. The study also presents a successful application of a tangent linear adjoint
model to a climate problem.

57
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4.1 Introduction

Figure 4.1 shows the trend in northern hemisphere winter (DJF) 500 hPa geopo-
tential height (hereafter Z500) during the last half of the 20th century (1948/49 –
1998/99) taken from NCEP reanalysis data. Although there are some variations
in details between different reanalysis products, the basic features are robust, in
particular the deepening trend for both the Aleutian and Icelandic lows. The
latter was associated with an upward trend in the North Atlantic Oscillation
(NAO) index (e.g. Hurrell 1996; Hurrell et al. 2003) which, itself, has been the
subject of much speculation regarding the possible role of anthropogenic forcing
(e.g. Wunsch 1999; Greatbatch 2000; Feldstein 2002; Gillett et al. 2003). The
pattern of the trend projects strongly onto the so-called COWL (Cold Ocean
Warm Land) pattern (see Lu et al. 2004; Wu and Straus 2004) identified by
Wallace et al. (1996), and it has been suggested that the trend corresponds to
an increased occupancy of the circulation regime associated with COWL (Corti
et al. 1999).

Currently, there are two competing hypotheses as to the origins of the circu-
lation trend, both of which could involve some contribution from anthropogenic
forcing. The first concerns the upward trend in tropical ocean sea surface temper-
ature (SST). In particular, Hoerling et al. (2001) showed that the NCAR CCM3
model, run with the time series of the observed SST at the lower boundary, re-
produces the observed trend in northern hemisphere winter Z500 in the ensemble
mean sense, but with the amplitude reduced by half. Their work further pointed
to the importance of forcing from the tropical Pacific and Indian Oceans, and
indeed, there was a marked shift in tropical convection eastwards in the tropical
Pacific associated with the climate shift that took place around 1976 (e.g. Tren-
berth et al. 2002; Deser et al. 2004). Nevertheless, Hoerling et al. (2004) and
Hurrell et al. (2004) have gone on to argue an important role for the upward
trend in SST in the tropical Indian Ocean (see also Bader and Latif 2003) and
have noted that forcing the model with only the linear trend in SST at the lower
boundary is successful at capturing the deepening trend of the Icelandic low, but
that the deepening trend of the Aleutian low depends in their model on including
the interannual variability of the tropical ocean SST. These authors have further
argued that the discrepancy in amplitude between the trend in Z500 in their
model simulations and in reality can be accounted for by a coincidence between
the forced signal (captured by the ensemble mean) and internal variability of the
climate system. Work by other authors has also pointed to the importance of
forcing from the tropics, notably Lu et al. (2004) and Kucharski et al. (2006).
The latter argue that the western tropical Pacific warm pool region played an
important role in forcing the trend.

There has also been much speculation about the possible role of the strato-
sphere in the dynamics of the northern hemisphere winter circulation trend. This
is because the strengthening of the circumpolar vortex was not confined to the tro-
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Figure 4.1: Linear trend in 500 hPa height over 51 winters of NCAR/NCEP
reanalysis data. Contours are every 5 m(10 yr)−1 and negative regions are shaded.
All centres are significant on the 5%-level under the assumption that winter means
are independent and normally distributed.

posphere alone, but also occurred in the stratosphere (e.g. Thompson et al. 2000).
Furthermore, there is mounting evidence that circulation changes in the winter
stratosphere can indeed affect the troposphere, with the changes in the strato-
sphere leading those in the troposphere on a time scale of days to months (e.g.
Baldwin and Dunkerton 1999; Polvani and Kushner 2002; Gillett and Thompson
2003; Gillett et al. 2003; Charlton et al. 2004; Jung and Barkmeijer 2006). In-
deed, Scaife et al. (2005) have pointed out that models driven by the observed
time series of SST at the lower boundary consistently fail to capture the correct
amplitude of the trend, some models doing much worse in this respect than Ho-
erling et al. (2001). Scaife et al. take a different approach and impose a trend
on the stratospheric circulation in the Hadley Centre AM3 model comparable to
that observed in the stratospheric circulation, and find that the model success-
fully reproduces the trend in the tropospheric circulation over the Euro-Atlantic
sector with the correct amplitude, even though there is no anomalous SST forc-
ing. These results suggest an important role for the stratosphere in the dynamics
of the trend, at least over the North Atlantic sector. Nevertheless, there is still
the question of the origin of the changes in the stratospheric circulation. In the
case of the northern hemisphere, there is no really conclusive evidence that this
is related to changes in the chemical composition of the stratosphere (e.g. ozone;
Gillett et al. 2003), in which case the trend in the stratospheric circulation may
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well originate from the troposphere. Evidence that there is an influence from El
Niño events on the stratosphere has been presented by Taguchi and Hartmann
(2006), suggesting a possible link, once again, to tropical ocean SST.

In order to gain more clarity about the different hypotheses, a method is
required which identifies forcing perturbations that can excite a given climate
response (in our case the pattern associated with the atmospheric circulation
trend during the last half of the 20th century). For non-linear systems like the
atmosphere, this is a non-trivial task and a variety of methods exist, all of which
have in common that they attempt to estimate a linear operator which links
changes in climate to changes in forcing. The simplest and computationally most
expensive approach is the execution of many forward runs using different small
forcing perturbations, e.g. at each grid point, in order to estimate a complete set
of Greens functions (an example is given by Branstator 1985). Another approach
is based on a modified fluctuation-dissipation theorem (Gritsun and Branstator
2007 and references therein) and estimates the climate response to a (weak)
forcing perturbation by using the covariances and lag-covariances of fluctuations
of the undisturbed system. This approach relies on historical or synthetic data
and involves the computation and handling of correlation matrices of what is
usually a very high-dimensional state space. A related study is that of Penland
(1989) based on the assumption that the atmosphere can be optimally modelled
by a linear Markov process. Penland’s approach assumes that the underlying
system dynamics is linear and noise driven whereas the Fluctuation Dissipation
approach of Gritsun and Branstator has the advantage that it does not require
this assumption. A similar approach is that of Branstator and Haupt (1997) who
construct a linear empirical model by seeking a best fit between the state vector
of a fully nonlinear dynamical model and its time tendency.

Our approach is different again and uses a tangent-linear adjoint for a nonlin-
ear dynamical model applied to both, model-generated (state space-) trajectories
and trajectories taken from observations. The computations directly yield an
estimate of the forcing perturbation that optimally excites the given climate re-
sponse with a given lead-time. Since the forcing perturbation is optimal (in the
sense to be defined in Section 4.2) it is not the only forcing perturbation that can
excite the climate response and, in the case of the trend, it is not necessarily the
forcing perturbation that actually led to the trend during the last half of the 20th

century. Rather, our approach indicates the most effective way of exciting a cli-
mate response that is similar to the trend pattern and, hopefully, throws light on
the different interpretations of the trend noted earlier. This approach is compa-
rable to established methodology in ocean-model studies (e.g. Junge and Haine,
2001; Junge and Fraedrich, 2007). A general discussion of the approach can be
found in Eyink et al. (2004). A related issue is the question of the relevance
to the climate problem of optimal forcing perturbations derived using a linear
adjoint model with a lead time of days. Previous works, e.g. Corti and Palmer
(1997) and, more recently Jung and Barkmeijer (2006), suggest that forcing de-
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rived using a tangent linear adjoint, and applied to a fully nonlinear dynamical
model, does indeed lead to a systematic forcing of the target pattern, an issue
discussed further in this chapter and also by Iversen et al. (2008). Iversen et al.,
like us, use a tangent linear adjoint to determine optimal forcing perturbations
for the COWL pattern (to which the pattern of the trend is closely related).
Their basic model is the ECMWF operational model and they are only able to
determine the optimal forcing with a lead times of 4 days. In our study, due to
the much coarser resolution of our model, we are able to extend the lead out as
far as 14 days (the results we show use 12 days lead time).

The dynamical model used to derive the tangent linear adjoint is essentially
the same as that used by Lu et al. (2004). Lu et al. had earlier argued that
the trend can be captured by a model linearised about the climatological winter
mean state and that the important forcing originates in the tropical Indo-Pacific
region. We therefore begin by using the adjoint for a model linearised about
the winter climatological mean state, and then go on to use the adjoint tangent
linear version of the model linearised about both observed and model generated
trajectories.

We begin in Section 4.2 by describing the model set-up and the adjoint tech-
nique. Section 4.3 presents the results and Section 4.4 provides a summary and
discussion.

4.2 Description of the adjoint model

We take as our starting point the model of Hall (2000), previously used by Lu
et al. (2004) to study the trend. The dynamical core of the Hall model is the
semi-spectral model of Hoskins and Simmons (1975) and is essentially the same
as employed in the PUMA model (Portable University Model of the Atmosphere;
Fraedrich et al. 2005) developed at the University of Hamburg. The PUMA model
is used for all the model runs presented here (the dynamical cores of the two
models differ only in the spectral truncation: while PUMA uses triangular, the
Hall model uses a “jagged” truncation). The Hall model has a flat-bottom,
a horizontal resolution of T21 and a vertical resolution of five σ-levels. The
model solves the dry primitive equations on a sphere and employs empirical
forcing for all state variables derived from daily mean data for the northern
hemisphere winter season taken from the NCAR/NCEP reanalysis (the technique
is an extension to the primitive equations of that applied by Marshall and Molteni
1993 to a quasi-geostrophic model). The model exhibits a realistic climate (Hall
2000) and also reproduces the principal modes of variability exhibited by the
northern hemisphere winter troposphere (e.g. the North Atlantic Oscillation and
the Pacific-North America pattern, Wallace and Gutzler 1981). To study the
trend, Lu et al. (2004) used forcings derived independently for each winter from
1948/49 to 1998/99. These forcings consist of climatological forcing (the average
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(a) Hall in linear mode (b) linearised PUMA

Figure 4.2: Response of 500hPa-geopotential height in the linear model to the
forcing from the tropical western Indo-Pacific (36◦ S – 36◦ N, 60◦ E – 180◦ E) de-
rived in Lu et al. (2004): (a) Hall model in linear mode (after Lu), (b) linearised
PUMA model. Both simulations use the same climatological reference state; results
are averaged from day 10 through day 16.

over all 51 winters) plus forcing anomalies for each winter. In the present study,
we take the inverse approach. In particular, we use the adjoint model to infer the
optimal forcing anomaly that can excite the pattern associated with the trend
with lead times up to 14 days. The model parameters and resolution are the same
as used by Hall (2000) and Lu et al. (2004). Forward model runs are carried
out (see below) using a constant forcing. The tangent linear and adjoint code
were generated with the aid of the TAMC (Tangent linear and Adjoint Model
Compiler, Giering and Kaminski 1998), a source-to-source compiler.

To understand how the adjoint technique works, we begin by noting that the
forward model can be written as the action of a nonlinear operator N on the
model state Ψ plus a time-independent forcing term f :

∂Ψ

∂t
= N(Ψ) + f . (4.1)

Linearising about a given (possibly time dependent) reference state Ψ0(t) with
respect to model state and forcing yields the tangent-linear model with forcing.
The tangent linear model predicts the first order development of perturbations
of the original model:

∂ δΨ

∂t

∣∣∣∣
Ψ0(t)

=
∂N

∂Ψ

∣∣∣∣
Ψ0(t)

δΨ + δf . (4.2)
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Lu et al. (2004) approximate the operator ∂N
∂Ψ

∣∣
Ψ0(t)

of the above equation for the

case of a time-independent reference (or ’basic’) state Ψ0. To achieve this, they
apply a special forcing to the nonlinear operatorN to maintain the reference state,
and choose δf sufficiently small to get a mainly linear response. Figure 4.2a shows
a result from their study created with this method. In the present study we use
the operator ∂N

∂Ψ

∣∣
Ψ0(t)

itself, which allows us to use time-varying reference states.

Integrating Eq. (4.2) from time t = t1 to t2, with the forcing perturbation δf set to
zero, gives an operator Rt2

t1
(called the resolvent or propagator, δΨt2 = Rt2

t1
δΨt1),

which is linear with respect to the initial state perturbation δΨt1 , but still depends
nonlinearly on the reference state Ψ0(t). It propagates a perturbation δΨt1 at

t = t1 to δΨt2 at t = t2 and can be expressed as Rt2
t1

=
∂Ψt2

∂Ψt1
. This is the tangent-

linear model for initial state perturbations. The solution of Eq. (4.2) with forcing
then gives the tangent-linear model for forcing and initial state perturbations:

δΨt2 = Rt2
t1
δΨt1 +

∫ t2

t1

Rt2
t δf dt (4.3)

(compare, for example, with Eq. 6 in Barkmeijer et al. 2003). Setting the initial
perturbation of the model state δΨt1 to zero and replacing the integral with a
sum over the actually performed model time steps leads to

δΨt2 =

t2∑
t=t1

Rt2
t δf ∆t. (4.4)

Thus the effect of the forcing is expressed as the accumulated action of the linear
operator Rt2

t on the small model perturbation δf ∆t at each time step. Figure 4.2b
shows an example of a run of this model forced with the tropical western Indo-
Pacific part of the forcing derived in Lu et al. (2004), using the their climatology
as a constant reference state for comparison.

In the following it is the adjoint Rt2
t
∗

of Rt2
t that is used to determine the

optimal constant anomalous forcing δfopt required to excite a targeted state
perturbation δΨT with lead time t2 − t1. By definition, an adjoint operator
satisfies the equation 〈RΨa,Ψb〉 = 〈Ψa,R

?Ψb〉 for some scalar product. Here
〈·, ·〉 defines the Euclidian scalar product so that, in matrix notation, we have
(RΨa)

TΨb = ΨT
a (RT Ψb).

We now introduce a projection index I of the model state Ψ on the observed
trend pattern δΨT . Its variation δI with respect to an evolved model state
perturbation δΨ2 is given by:

δI = (δΨt2 ; δΨT ) (4.5)

The scalar product (·; ·) is defined as the area- (W) and energy-weighted (E)
Euclidean scalar product 〈·,WE ·〉. The energy-weighting attempts to make the
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contributions of the different physical variables of the model state vector compa-
rable in the contribution to the norm (see the sensitivity measure in Langland
et al 2002 and Barkmeijer et al. 2003 for further discussion of this issue). The
entries of the matrix E are derived from the linearised total energy norm of a
perturbation to an isothermal, resting atmosphere with horizontally invariant
surface pressure (Talagrand 1991, Errico 2000). It is diagonal and its elements
are defined in terms of the Euclidian scalar product 〈·, ·〉 by the equation

〈δΨ1,WE δΨ2〉 =

1
2g

∑
λ,φ

((∑
σ

((
δu1(σ)δu2(σ) + δv1(σ)δv2(σ) + cp

Tref
δT (σ)1δT (σ)2

)
p̄s∆σh

)

+ TrefprefRδln ps1δln ps2

)
wλ,φ

)
. (4.6)

Here Ψi = (ζi, Di, Ti, ln psi)
T , where ζ is vorticity, D is horizontal divergence, T

is temperature and ps is surface pressure. The horizontal velocity (ui, vi) is a
function of ζi and Di given by [(k̂ × ∇)∆−1ζ + ∇∆−1D] (k̂ is a unit vector in
the upwards vertical direction), g is the gravitational acceleration, p̄s the global
mean surface pressure, cp is the specific heat of dry air at constant pressure,
Tref = 300 K is a reference temperature, ∆σh is the distance between adjacent
half-levels, pref = 800 hPa is a reference pressure, R is the gas constant for dry
air, and wi,j are the relative area weights. Thus, using Eqs. (4.4), (4.5), linearity,
and the adjoint propagator Rt2

t
∗
, we get:

δI =

〈
t2∑

t=t1

Rt2
t δf ∆t , WE δΨT

〉
(4.7)

=

〈
δf ,

t2∑
t=t1

Rt2
t
∗
WE δΨT ∆t

〉
. (4.8)

The sum is over individual time steps ∆t of the model. Given the equivalence

δI = 〈δf , f∗〉 ⇔ f∗ = ∇fI, the expression f∗ =
t2∑

t=t1

Rt2
t
∗
WE δΨT ∆t in the scalar

product of Eq. (4.8) is just the gradient of I with respect to a constant forcing
or, for brevity, forcing sensitivity (cf. Barkmeijer et al. 2003). It has the
unit of [I]/[f ]. Maps of forcing sensitivity f? show at each point how strong
an index perturbation δI would result from a unit perturbation of the forcing
of the respective state variable at that point in a forward run of the linearised
model. Eq. (4.9) below shows how to use f? to construct a forcing which uses
minimal energy to produce a given index perturbation δI. In a linear context
this is equivalent to the maximum response at a given forcing energy. Such a
forcing perturbation is termed optimal forcing in the remainder of this chapter.
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Mathematically, for a forcing perturbation δf to be optimal we require that for a
given index change δI = 〈δf , f∗〉 and lead time t2 − t1, the forcing perturbation
has minimal “energy” 〈δf ,WE δf〉. Using the method of Lagrange-multipliers
yields

δfopt = λE−1W−1f∗, with λ =
δI

〈f∗,E−1W−1f∗〉
. (4.9)

4.2.1 Relationship of sensitivities and optimal forcing

The kinetic energy part of the energy matrix defined by Eq. (4.6) involves the
transform of vorticity and divergence to the horizontal velocity components u and

v. Defining U as the operator
(
k̂×∇,∇

)T

, which converts (u, v)T to (ζ,D)T ,

and Z = U−1 = U∆−1 as the inverse of U (as used for Eq. 4.6), the following
relationship holds for the optimal forcings in terms of velocities, foptu,v , and
vorticity and divergence, foptζ,D

:

foptζ,D
= Ufoptu,v , (4.10)

and for the forcing sensitivities with respect to velocities, f∗u,v and vorticity and
divergence, f∗ζ,D (cf. Appendix B of Kleist and Morgan 2005):

f∗u,v = U∗f∗ζ,D. (4.11)

Furthermore we can write the sub-matrix Eζ,D of E which operates on the com-
ponents contributing to kinetic energy as

Eζ,D = Z∗Eu,vZ, (4.12)

since W is diagonal and 〈Z·,WEu,vZ·〉 = 〈·,Z∗WEu,vZ·〉. Inserting Eq. (4.12)
into Eq. (4.9) yields

foptζ,D
= λUE−1

u,vW
−1U∗f∗ζ,D. (4.13)

Since Eu,v and W are diagonal, we find the shape of f∗ζ,D and foptζ,D to differ
only from the combined operator UU∗ which is equal to −I∆ (I being the identity
matrix). This reflects the difference between kinetic energy weights and enstrophy
weights. The fact that the optimal forcing involves the application of a Laplacian
operator to the forcing sensitivity explains why the latter has much more small
scale structure than the former. Apart from the scaling, the sensitivities have
the structure of the stream function field corresponding to the optimal vorticity
perturbation.
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4.2.2 Geopotential height as target pattern

Throughout this chapter geopotential height is conveniently used for the graph-
ical representation of the thermal structure of the lower half of the troposphere.
Nonetheless, with the aid of the total perturbation energy norm (Eq. 4.6), the
projection index I (Eq. 4.5) is defined for projections onto full atmospheric states,
i.e. including three-dimensional temperature, velocity fields and surface pressure.
Alternatively it is possible to project directly onto geopotential height fields. In-
troducing a linearised operator Dzp which diagnoses the first order response of the
geopotential height of a pressure surface p to changes in temperature and surface
pressure, we can change the definition of the index I by replacing the projection
on an anomaly of the model state δΨT (target pattern) by a geopotential height
pattern δzpT . For this case the matrix E is dropped from the projection index
since there is no need to weigh the contributions of different physical fields.

δI =
〈
Dzp δΨt2 ,W δzpT

〉
(4.14)

=

〈
Dzp

t2∑
t=t1

Rt2
t1
δf ∆t,W δzpT

〉
(4.15)

=

〈
δf ,

t2∑
t=t1

Rt2
t1

?
D?

zp
W δzpT ∆t

〉
(4.16)

Consequently, the forcing sensitivity for this case takes the form:

f? =

t2∑
t=t1

Rt2
t1

?
D?

zp
W δzpT ∆t (4.17)

Note that E still is part of the norm and Eq. (4.9) applies. However, throughout
this chapter a projection index will be used which projects onto the trend in all
model variables unless explicitly stated otherwise. The reason is that a geopo-
tential height pattern as target may be dynamically ambiguous and could lead to
forcing sensitivities which reflect the action of gravity waves on short timescales.

4.2.3 Sensitivity Averaging

In Section 4.3.1 we discuss results when we have an ensemble of trajectories taken
from either the NCAR/NCEP reanalysis data or from an unperturbed forward
run with the model of Hall (2000). When using an ensemble of trajectories,
the optimal forcing perturbation is computed using equation (4.9) applied to the
average of the sensitivities, but with the amplitude rescaled so that the forcing
perturbation has the same total energy norm (Eq. 4.6) as the optimal forcing
perturbation in the case linearised about winter climatology. We note that by
averaging over the sensitivities we hope to capture some information about the
eddying, nonlinear character of the real atmosphere hopefully leading to a more
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realistic derived forcing perturbation than for the cases that use a model linearised
about the winter mean climatology. In terms of the investigations of section 1.4,
this is to ensure the sensitivity reflect the sensitivity of the model climate.

4.3 Results

In what follows, the target or trend pattern is the total change over 51 years
related to the linear trend during winter, 1948/49 to 1998/99, at each grid point
and for each model variable, except that we restrict the target to the region north
of 20◦N in order to focus on the northern hemisphere. Figure 4.1 shows the trend,
as it appears in Z500, and Figure 4.3 shows the area weighted (Euclidean) pro-
jection of daily mean NCAR/NCEP Z500 data on the trend pattern. Figure 4.3
gives an indication of the day to day variability in the occupation of the trend
pattern by the atmosphere over all 51 winters. There is a clear trend over the
51 year period toward more days with a stronger than average projection on this
pattern, as expected.

4.3.1 The forcing sensitivities

We begin by using the adjoint to determine the optimal forcing perturbations for
a fixed projection on the target pattern and different lead times. For the case
linearised about climatology, we can test the “efficiency” with which the forcing
at different lead times excites the target pattern by plotting the amplitude of
the optimal forcing as a function of lead time. The forcings are the result of
equation (4.9) with δI=34.4 kJm−2, which is the projection of the target upon
itself, 〈δΨT ,WE δΨT 〉. Their amplitudes are computed using the square root of
the energy norm. As can be seen from Fig. 4.7, the amplitude initially decreases
rapidly as the lead time increases, and then levels off. Furthermore amplitude
times lead time also decreases as lead time increases. These results indicate that,
at least out to 14 days, the longer the lead time the more efficient the optimal
forcing becomes at exciting the trend pattern. As the lead time is increased the
forcing sensitivities settle down into the patterns shown in parts (a-c) of Figs. 4.4
to 4.6 for which the lead time is 12 days. (Unless stated otherwise all following
experiments use a 12 day lead time.) We show mostly forcing sensitivities, and
not the optimal forcing perturbations themselves, because the latter have a lot of
small scale structure for vorticity and divergence. (Compare parts c and d of the
figures and see section 4.2.1 for a detailed explanation.) In essence, the presence
of the small scale structures in the optimal forcing for vorticity and divergence
are a consequence of using the energy norm and the need, as a consequence, to
convert from vorticity and divergence to velocity. The result is that the optimal
forcings for vorticity and divergence are related to their corresponding forcing
sensitivities by a Laplacian operator which, in turn, puts weight on small spatial
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Figure 4.3: Projection of daily NCAR/NCEP 500 hPa height data onto the
500 hPa trend north of 20 N (Fig. 4.1). The line separates the higher 10% from
the lower 90%. Crosses mark the maxima used for the subset of composites that
terminate with a strong projection on the trend pattern (see text).
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(a) climate sensitivity (b) NCEP ensemble mean sensitivity

(c) PUMA ensemble mean sensitivity (d) PUMA forcing perturbation

Figure 4.4: Sensitivities (in 1012 Jm−2s−1) for the vorticity forcing in the middle
model level (about 500 hPa) in (a) the linear adjoint experiment, (b) averaged
over many realisations of the adjoint using the NCAR/NCEP trajectories, and
(c) averaged over many realisations of the adjoint PUMA experiment. (d) optimal
forcing perturbations (in 10−12s−2) derived from (c). In parts (b) and (d) only
sensitivities which are significant on the 10%-level are shaded (light grey: positive;
dark: negative). All sensitivities are scaled to relate to the full observed amplitude
of the trend pattern. Optimal forcing perturbations in (d) are scaled to have the
same global amplitude as in the case linearised about climatology (see text for
details).
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(a) climate sensitivity (b) NCEP ensemble mean sensitivity

(c) PUMA ensemble mean sensitivity (d) PUMA forcing perturbation

Figure 4.5: As Figure 4.4 but for vorticity forcing in the highest model level
(about 100 hPa).
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(a) climate sensitivity (b) NCEP ensemble mean sensitivity

(c) PUMA ensemble mean sensitivity (d) PUMA forcing perturbation

Figure 4.6: As Figure 4.4 but for temperature forcing in the highest model level
(100 hPa). Sensitivities (a,b,c) in 106 Jm−2K−1 and optimal perturbations (d) in
10−6 Ks−1.
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Figure 4.7: Amplitude of the optimal forcing (solid line), and amplitude times
lead time (dashed line), measured using the energy norm and as a function of lead
time, for the case linearised about climatology [(Jm−2)1/2]. For ease of plotting,
the amplitude of the forcing in the solid line case is multiplied by 2 days.

scales. We note that the optimal vorticity forcing converted to streamfunction
would have the same spatial structure as the sensitivity to vorticity forcing.

We begin by using the adjoint for the model linearised about the winter clima-
tological mean state (part a of the figures) and then go on to consider the adjoint
for a tangent linear model linearised about time evolving states (parts b and c of
the figures). Results from areas where the flat bottom of the model is in strong
contradiction with reality, namely the Himalaya, are omitted. Looking first at
the vorticity sensitivity for level 3 (at about 500 hPa) shown in Fig. 4.4a, we see
what looks like a Rossby wave train originating over the tropical western Pacific
south of our cut-off latitude of 20◦N. This feature is present at other model levels
and has corresponding features in the forcing sensitivities for other variables. It
is reminiscent of a Rossby wave source (e.g. Sardeshmukh and Hoskins 1988) and
is in a similar (though not identical) position to the Rossby wave source identified
by Greatbatch and Jung (2007) as being effective in forcing the positive NAO in
the ECMWF model. Nevertheless, it is important to realise that what is plotted
is forcing sensitivity and so is not actually a Rossby wave itself. Rather, the
adjoint technique selects the optimal forcing that excites a model response with
a given projection onto the trend pattern. It follows that if a Rossby wave train
emitted from the tropical Pacific is a potentially important part of the trend,
then the adjoint approach will find the most efficient way to excite the Rossby
wave train within the given lead time, and this may not be the same way that
the Rossby wave train was excited in nature. For example, directly forcing the
pattern of the Rossby wave train itself (as appears to be the case here) could
well be more efficient than a diabatic heat source in the tropical Pacific, even if
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in reality the latter were the physically relevant forcing perturbation. It should
also be noted that the way the model finds it most efficient to excite a particular
feature probably also depends on the resolution of the model.

Nevertheless, a Rossby wave source in this region is broadly consistent with
the finding of Lu et al. (2004) that forcing from the tropical Indo-Pacific region is
important for driving the target pattern (i.e. the 51 year trend). The importance
of forcing over the western tropical Pacific for driving the trend has also been
noted by Kucharski et al. (2006) in forward model runs using a simplified GCM.

In addition to the Rossby wave feature, Fig. 4.4a also exhibits an annular
pattern with implied positive vorticity forcing over the polar region and implied
forcing of the opposite sign around the 30◦N latitude belt, indicative of forc-
ing for the positive phase of the Northern Annular Mode (or Arctic Oscillation,
Thompson and Wallace 2000). The annular forcing feature is even clearer in
the top model level vorticity forcing sensitivity (Fig. 4.5a), although the Rossby
wave feature can be seen here too. Looking at the sensitivity for temperature
in the top model level (Fig. 4.6a), we again see both the annular mode-type
forcing pattern, with cooling over the pole and warming at lower latitudes, and
the Rossby wave-type pattern originating from the tropical western Pacific. It
is possible that the presence of the annular mode-type forcing in the uppermost
model levels mimics influences from the stratosphere. Such a view is consistent
with the work of Scaife et al. (2005) who have argued an important role for the
stratosphere in explaining the trend. Other features in parts (a) of Figs. 4.4 to
4.6, such as the large forcing anomaly over east Africa in Fig. 4.5a, become less
important when time-evolving trajectories are considered, as we discuss next.

Next we turn to forcings derived using the tangent linear model linearised
about time-evolving trajectories. We begin by using trajectories obtained by
projecting daily mean realisations from the NCAR/NCEP reanalysis onto the
model grid. Each 12 day-integration using the adjoint model yields sensitivity
fields which are then averaged to produce a “composite” sensitivity to forcing
and this “composite” sensitivity is then tested for significance against the null
hypothesis of zero sensitivity (for a discussion on how the corresponding forcing
perturbation is derived from average of the sensitivities, see Section 4.2). Here
we use 1000 partly overlapping trajectories, each using a different daily realisa-
tion as the initial condition. The results are shown in part (b) of Figures 4.4
to 4.6. We have also considered a subset of trajectories selected on the basis
that the trajectories terminate with a strong projection on the target pattern
(see Figure 4.3). The results for this subset are basically the same as for the
case using all available trajectories and are not discussed further here. To en-
sure that the mean of the sensitivities is actually meaningful, i.e. , has bounded
variance, we checked the ensemble distribution of the sensitivities at a few in-
dividual gridpoints and found them to be reasonably Gaussian. To get a more
complete picture, we compared ensemble mean and ensemble median of the sen-
sitivities and found the corresponding maps to be largely similar, with differences
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attributable to the skewness of the distributions. In the figures, regions where the
sensitivity is significantly different from zero at the 10% level are shaded (light
grey: positive; dark: negative; independence was assumed). It is immediately
clear that the main features in parts (b) are the same as in part (a) of the fig-
ures, indicating that linear dynamics, linearised about the winter climatological
mean state, is an important aspect of the dynamics of the 51 year trend in this
model, consistent with Lu et al. (2004). We can investigate this further using
trajectories taken from a fully non-linear, time-evolving model run, rather than
based on observations. Here, the model run uses time-independent climatological
forcing, as in Hall (2000), and corresponds to the same model set-up that forms
the basis for our adjoint model. Again, 1000 trajectories are used. The results
are shown in part (c) of the figures, together with the corresponding optimal
forcing perturbation in part (d) (the amplitude of the latter being determined
as for the case linearised about NCAR/NCEP trajectories). The sensitivities are
again found to be very similar to those shown in parts (a) and (b), except that
compared to the cases linearised about NCAR/NCEP trajectories (part b), there
is an increase in the area where the forcing sensitivity is significantly different
from zero, reflecting the reduced spread of the trajectories taken from the model
compared to those based on observations. It is interesting that when linearising
about time-evolving trajectories, the Rossby wave-type feature from the tropical
Pacific is reduced in amplitude compared to the annular forcing pattern in the
top model level (Fig. 4.5), especially when using model trajectories (part c). In
addition, in Figure 4.4, the part of the Rossby wave feature that extends west-
ward over the Asian continent, as well as the feature over Africa in the case
linearised about climatology (part a) is also reduced in importance when using
time-evolving trajectories (parts b and c).

Finally in this section we note that the amplitude of the optimal forcings we
have derived are not unrealistic. For example, the temperature forcing shown in
Fig. 4.6d corresponds to a forcing at 100 hPa of less than 0.2 Kelvin per day and
the vorticity forcing in Fig. 4.4d to ≈ 10−5 per second per day at the maximum.

4.3.2 Forward runs using a linear model

We now verify the optimal forcings derived above by using them to drive a model
linearised about the climatological winter mean flow. The model is based on the
PUMA model code and uses the same dissipation parameters as in the fully non-
linear model of Hall (2000). In each case, the model forcing is that derived with a
lead time of 12 days, and the model, in turn, is run forward for 12 days. Fig. 4.8b
shows the response pattern to the forcing diagnosed from the model linearised
about climatology. It should be noted that the amplitude of the forcing used to
produce Fig. 4.8b is determined from Eq. (4.9) with δI equal to the projection
(using the energy norm) of the target on itself (this choice is made so that the
amplitude of the model response can be compared with Figure 4.1, repeated for
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(a) NCEP Z500 trend (b) response to clim. forcing

(c) response to NCEP forcing (d) response to PUMA forcing

Figure 4.8: (a) Linear trend in 500 hPa height from Figure 4.1, (b) 500 hPa-
response in a 12d-run linearised about NCAR/NCEP climatology to the optimal
anomalous forcing. The forcing is scaled to produce the same projection as the
trend projected onto itself. The amplitude of the response is 2.2 times larger
than the target pattern, and the pattern correlation is 0.46. (c) The same for
the anomalous forcing derived from averaged sensitivities using the NCAR/NCEP
trajectory. With the forcing scaled as in the optimal case the response reaches
a relative amplitude of 1.4, the projection on the target is 73 %, and the pat-
tern correlation is 0.55. (d) The same for the anomalous forcing derived from
averaged sensitivities using a PUMA trajectory. With the forcing scaled as in the
optimal case, the response reaches a relative amplitude of 0.91, the projection
on the target is 54 %, and the pattern correlation is 0.59. Contours are every
5 m(10 yr)−1 and negative regions are shaded.
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convenience as Fig. 4.8a). If we define correlation and amplitude using the energy
norm, the model response has a correlation of 0.46 with the target pattern, but a
larger amplitude by a factor of 2.2. By construction, for this case the projection
onto the target is 100 %, corresponding to the projection of the target onto
itself. The main centres of action are reproduced, but with some shortcomings
over Asia and southern North America and with the amplitude of the Aleutian
low overemphasised. The fact the model does not reproduce the target pattern
exactly is because “optimality” of the derived forcing perturbation is measured
in terms of projection onto the target using the energy norm and does not require
that the model response correspond exactly to the target itself. Chiefly the result
is a mathematical compromise between the growth rate of internal modes and
their respective pattern correlation with the target. Fig. 4.8c shows the model
response to the forcing derived from the average of the sensitivities obtained using
trajectories derived from the NCAR/NCEP reanalysis. The amplitude of the
forcing in this case is chosen to be the same as the amplitude of the forcing used
to produce Fig. 4.8b. This time the amplitude of the model response is weaker
(only 1.4 times that of the target amplitude), but the correlation is increased to
0.55. On the other hand, the projection on the target is 73 % of the projection of
the target on itself. The reduced projection is an indication that the forcing is less
efficient at exciting the target than the previous forcing for the particular model
being used here (that is a model linearised about climatology). We have also used
forcing derived from the time-evolving model trajectories (see Fig. 4.8d), where
the amplitude of the forcing is again the same as the amplitude of the forcing used
to produce Fig. 4.8b. In this case, the model response has even less amplitude
(0.91), a slightly higher correlation (0.59), but an even smaller projection on the
target of 54 % of the projection of the target on itself, indicating that the forcing
in this case is even less efficient at exciting the target pattern for the particular
model used here (that is, linearised about climatology).

4.3.3 Forward runs using a nonlinear model

We now turn to forward model runs that use the fully, nonlinear dynamical model,
in this case the model of Hall (2000), except that the model core uses the PUMA

model code. The model forcing is the climatological mean forcing used by Hall
(2000), with the climatological forcing perturbed by the forcing derived using the
adjoint model. For the model runs shown here, different perturbed forcings are
considered using different amplitudes and derived using different lead times. In
all cases, the perturbed forcing is derived from the tangent linear model applied to
model trajectories, as in Fig. 4.8d described above, as this is the forcing considered
most consistent with the model dynamics. For each particular choice of forcing,
an ensemble of 30 model runs is created, each ensemble member being initialised
with a random realisation from the NCAR/NCEP reanalysis projected onto the
model grid and run for 6 months with only the last 3 months being used for
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(a) ens. mean response, pos. forcing (b) ens. mean response, neg. forcing

Figure 4.9: Ensemble mean response to forcing derived in a nonlinear run. Shown
is 500hPa-geopotential height difference from a control ensemble, significant on
the 10%-level. The forcing was scaled to yield the same projection in a linear run
as the full observed trend and the result was divided by the number of decades
to make it comparable to Fig. 4.1. (a) for positive, (b) for negative forcing.
Contours are at 1, 2, and then every 5 m, significant positive (negative) areas are
shaded in light (dark) grey.
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(a) 12 days lead
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Figure 4.10: Responses in nonlinear runs to anomalous forcings optimal for lead
times (a) 12 days and (b) 6 days. The x-axis gives the amplitude of the applied
forcing relative to the respective optimal forcing in the fully linear experiment.
The y-axis is scaled with the projection of the full trend onto itself (except for
correlation). We show projection onto the trend (solid line), correlation with
the trend (dashed), and amplitude of the response measured in the energy norm
(dotted).
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analysis. For comparison with the perturbed runs, a control run is also carried
out using climatological forcing only (the perturbed forcing is zero), this time
using 100 ensemble members. Fig. 4.9 shows the ensemble mean model response
to the perturbed forcing (perturbed forcing minus control) when the amplitude
in terms of the total energy norm of the perturbed forcing is the same as used
to produce Fig. 4.8d. Positive and negative forcing cases are shown. The same
basic structure is seen when the amplitude is reduced to 1/3 of that used here, or
if forcing derived for a lead time of 6 days is used, rather than the 12 days lead
time used here. We see that the ensemble mean model response is quite similar
(but with the sign reversed in the negative forcing case) to both that of the
target pattern (Fig. 4.8a) and of that produced by the linear model (Fig. 4.8d),
indicating that forcing derived using an adjoint with a lead time of days (in this
case 12 days) can systematically excite a pattern similar to that of the target
when applied in a non-linear dynamical model. Compared to Fig. 4.8d, the
model response in the nonlinear case shows a weakening of the Aleutian low and a
deepening of the Icelandic low features. Figs. 4.10a and b show plots of amplitude,
correlation and projection (using the energy norm and where projection is relative
to that of the projection of the target pattern on itself) for different amplitudes
of the forcing, where 1 on the abscissa corresponds to the forcing amplitude used
in the linear model run shown in Fig. 4.8b. The fact that the correlations are
roughly constant either side of zero indicates the model response is rather linear
with increasing amplitude of the forcing. We also see that the amplitude of the
model response also increases with an increase of the forcing amplitude, although
this increase is steeper for the negative forcing cases. Likewise, the projection
suggests essentially linear behaviour. Using forcing derived with a lead time of
6 days gives similar results (see Fig. 4.10b).

As noted in the introduction, previous studies (e.g. Corti and Palmer 1997
and Jung and Barkmeijer 2006) have shown that nonlinear models, perturbed by
forcing derived using an adjoint model with a lead time of days, show a systematic
tendency to excite the corresponding target pattern. Our results confirm this
effect. We suggest that the connection between forcing derived using lead times
of, say, 10 days, and forcing that systematically excites a pattern in an ensemble
mean sense on climate time scales, arises because the dissipation time scale in
the atmosphere is typically measured in 10’s of days, a time scale comparable
to the lead times we have considered. Nevertheless, a close comparison between
Figs. 4.8d and 4.9a shows that in the nonlinear runs, the anomalies associated
with the Aleutian low tend to be weaker than in the linear model runs, whereas
the anomalies associated with the Icelandic low tend to be increased for both
positive and negative anomalous forcing (most likely due to systematic forcing
from the eddies in the nonlinear runs). In addition, the features in the ensemble
mean response tend to be shifted slightly eastward in their positions compared
to their linear counterparts.
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4.3.4 Forcing restricted to parts of the model domain

We begin by examining the role played by the Rossby wave feature noted in the
forcing sensitivities (Figs. 4.4 to 4.6), and which originates in the western trop-
ical Pacific region. To do this, the forcing perturbations for all model variables
diagnosed using the PUMA model trajectories are restricted to the Western Trop-
ical Pacific (WTP: 30◦S to 30◦N and 120◦E to 210◦E); see Fig. 4.4c, d). This
part of the forcing contributes 18 % of the energy (measured using the squared
energy norm) of the total forcing in all variables. Fig. 4.11a shows the response of
500 hPa height to this forcing in the model linearised about winter climatology.
It accounts for 12 % of the projection of the response to full forcing onto the tar-
get pattern with a pattern correlation of 0.24. As expected, the model response
shows a wave train emanating from the western tropical Pacific and extending
across North America, not unlike the pattern shown in Lu et al. (2004, Fig. 5d,
e) when their model forcing was restricted to the western tropical Indo-Pacific
region, but with the centres of action slightly shifted. These results confirm the
importance of the Rossby wave feature in the forcing sensitivities for exciting
this part of the trend pattern, supporting claims by a number of authors (e.g.
Hoerling et al. 2004; Hurrell et al. 2004; Lu et al. 2004; Kucharski et al. 2006).
We now restrict the anomalous forcing (forcing for all variables) to the top model
level (about 100 hPa). The response of the linear model about climatology is
shown in Figure 4.11b. The model response accounts for 28 % of the projection
of the full response onto the target with a pattern correlation of 0.56. In this
case, the model response is very similar to that of the trend pattern itself, but
with reduced amplitude, and captures the features of the trend pattern over the
Euro-Atlantic/Asian sector not accounted for by the Rossby wave-type forcing
(cf. Figure 4.11a).

The importance of the forcing in the top model level for driving an annular-
type response can be seen in Figure 4.12a. Here the ensemble mean response of
the nonlinear model (ensemble minus control, as before) is shown for the same
forcing as used to produce Figure 4.11b. Interestingly, the amplitude of the model
response is greatly increased in this case compared to the linear model run, and
is about two thirds of the amplitude when the full anomalous forcing is used
(cf. Fig. 4.9). This suggests that synoptic eddies in the troposphere can act to
amplify signals that are imposed on the troposphere from the overlying strato-
sphere (albeit in the very simple model setting being used here). For the case
shown, the amplification is by a factor of up to 5 compared to the linear model;
indeed the model response over the North Atlantic in this case is comparable to
that in the trend pattern itself (Figure 4.1). Our results therefore provide some
corroboration for the finding of Scaife et al. (2005) that imposing the observed
trend on the stratosphere in a model can drive a trend similar to that observed in
the troposphere over the Euro-Atlantic sector. We note, however, that although
the model response in this case implies a deepening trend for the Icelandic low,
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(a) lin. response to WTP forcing (b) lin. response to top-level forcing

Figure 4.11: Same as Fig. 4.8d but with the anomalous forcing restricted to
(a) vorticity in the second-to-top (300 hPa) model level in the Western Tropical
Pacific (30◦S to 30◦N and 120◦E to 210◦E), and to (b) vorticity, divergence, and
temperature in the top model layer (about 100 hPa).

similar to what was observed, the opposite trend is implied in the North Pacific;
that is a trend towards a less deep Aleutian low than in climatology and the
opposite to what was observed. Interestingly, the spatial pattern associated with
the northern annular mode also shows a weakened Aleutian low together with a
deepened Icelandic low (Thompson and Wallace 2000). Clearly further studies
using higher resolution model versions (especially higher vertical resolution) will
be required to explore further the role played by the stratosphere in the trend.
We also show the response of the nonlinear model to the negative of the forcing
used to produce Figure 4.12a. In this case (Figure 4.12b), the model response
is similar in both pattern and amplitude to the negative of the response in Fig-
ure 4.12a, suggesting that a negative trend in the stratosphere can excite a similar
negative trend in the underlying troposphere. Finally, for completeness we show
the result of two nonlinear model runs using both signs of the forcing used to
produce Fig. 4.11a. In this case (Figure 4.12c,d), the nonlinear model leads to
some distortion of the linear model response, but with similar amplitude, and
will not be discussed further here.

4.4 Summary and discussion

In this chapter, we have applied a tangent linear adjoint model in an effort to
clarify aspects of the forcing for the trend in the northern hemisphere winter
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(a) to top level forcing (b) to negative top level forcing

(c) ens. mean response to WTP forcing (d) to negative WTP forcing

Figure 4.12: As Fig. 4.9 but with the anomalous forcing restricted to (a) to
vorticity, divergence, and temperature in the top model level (about 100 hPa),
(b) as (a) but with reversed sign, and (c) vorticity at the second-highest model
level (300 hPa) in the Western Tropical Pacific (30◦S to 30◦N and 120◦E to
210◦E), and (d) as (c) but with reversed sign.
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tropospheric circulation, 1948-1999. In particular, we have taken as a target pat-
tern the 51 year trend restricted to the region north of 20◦N, and asked what is
the optimal forcing that excites this target with different lead times. The mod-
elling system we use is the PUMA model developed at the University of Hamburg
(Fraedrich et al. 2005) and the set-up and model parameters we use are the same
as in Hall (2000) and Lu et al. (2004). In particular, we use T21 horizontal
resolution with 5 levels in the vertical. In the fully nonlinear (forward) model
runs, the forcing for the unperturbed control integration is the same as used in
Hall (2000) and leads to a realistic northern hemisphere winter climate. In these
runs, the optimally-derived forcing is added as a perturbation to the climatolog-
ical forcing using a range of amplitudes and lead times. For two different lead
times (6 and 12 days), and for a range of both positive and negative amplitudes,
we find that application of the derived forcing shows a systematic tendency (in an
ensemble mean sense) to reproduce the target pattern (with negative amplitude
if the forcing is negative). We also verified the derived forcing using forward runs
with a model linearised about climatology, again showing the tendency of the
model to produce the target pattern. This is true both for forcing derived from
a model linearised about climatology, and for forcing that is the average of sen-
sitivities derived from a tangent linear model in which the trajectories are taken
either from observations (projected on the model grid) or from a nonlinear model
run with climatological forcing. It is clear from the results that the essence of the
forcing sensitivities is captured by the case linearised about climatology, although
using averaged sensitivities from time-evolving trajectories of either observations
or the nonlinear model generally simplifies the forcing sensitivities (e.g. by re-
ducing the forcing sensitivity over the Asian continent and Africa in part (a) of
Figs. 4.4 to 4.6).

The optimal forcing we have derived indicates the importance of forcing from
the tropical Indo-Pacific region, as in Lu et al. (2004), especially for the deepening
trend of the Aleutian low, consistent with Hurrell et al. (2004) and Hoerling et
al. (2004). The optimally derived forcing for the top level is also suggestive
of forcing for the Northern Annular Mode (or Arctic Oscillation), related to
influences from the stratosphere. By restricting the forcing to specific parts of
the model domain, we are able to confirm the ability of forcing over the tropical
Pacific region to force the North Pacific part of the trend. We also find that
the annular mode-type forcing is effective at exciting the trend pattern in the
Euro-Atlantic/Asian sector. It is particularly interesting that a nonlinear model
run, with the perturbed forcing applied only to the top model level, excites an
annular mode-type response of similar amplitude and of the right sign as the
observed trend in the Euro-Atlantic/Asian sector, but of opposite sign over the
North Pacific sector. This result lends support to Scaife et al. (2005) who have
argued an important role for the stratosphere for explaining the observed trend
over the Euro-Atlantic sector. Furthermore, it is possible that the stratospheric
trend itself could be a consequence of the upward trend in tropical SST during the
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last half of the 20th century, rather than being of internal stratospheric origin,
an issue for further study. If this is the case, then the stratosphere could act
as a “bridge” linking forcing in the tropical Indo-Pacific region to the Euro-
Atlantic/Asian sectors.

Finally we note that the adjoint approach outlined in this chapter finds only
the optimal forcing perturbation that gives a model response with a given projec-
tion on the target pattern. This means, for example, that forward model runs to
which the derived forcing is applied are not guaranteed to reproduce the target
pattern exactly, even when the forward model is linear (a good example can be
seen by comparing Figure 4.8b with 4.8a). More importantly, the derived forcing
perturbation need not be representative of the forcing perturbation that actually
generated the target pattern in nature. For example, Gritsun and Branstator
(2007) find that a diabatic heating anomaly over the Indian Ocean is important
for driving the positive phase of the Northern Annular Mode in their model, a
result that is consistent with the work of Hoerling et al. (2004). Yet such a
diabatic heating anomaly is not extracted by our adjoint technique, suggesting
that it is not “optimal”. Nevertheless, we believe our work shows how a tan-
gent linear adjoint can successfully be applied to the understanding of a climate
response problem, even though the theoretical underpinning is linear with lead
times of order 10 days.



Chapter 5

Overall summary and outlook

5.1 Summary

This work has demonstrated how gradients with respect to different model quan-
tities, namely process parameters (section 3.2), a temperature relaxation field
(section 3.3), and forcing fields (chapter 4), can be used for climate related prob-
lems. While the first two have their focus on the realisation of a Climate Predic-
tion Data Assimilation System (CPDAS Kaminski et al., 2007), the third one is
a demonstration of the application of an adjoint model as a diagnostic tool in an
investigation of climate sensitivity.

In section 1.4 the principal problem of adjoint gradients for minimisations
derived with long lead-times (i.e. climate-related), is outlined. Basically, systems
with instabilities show exponential growth of the sensitivities with increasing
lead-time. These steep gradients can be identified as the slopes of the sides of
narrow secondary minima of the cost function. In the literature three methods
are suggested to mitigate this problem for a given cost function. Firstly, using
a coarse resolution model excludes, linearises (via parameterisations), or damps
small scale processes which can have growth properties deteriorating an adjoint
approach. This approach is followed in principle by using the T21 version of PUMA
in all the later chapters. Secondly, averaging of the gradients over intermediate
lead times is supposed to combine accurate local sensitivity information from dif-
ferent places of the model state space. The third approach, which is tracking the
location of the minimum for successively increased lead-times, is discarded, since
it cannot be guaranteed that such a minimum does not develop into a secondary
minimum (e.g. Fig. 1.4). Some techniques which modify the cost function itself
in order to reduce secondary minima were tested in section 3.2.4.

The good correspondence of finite differences and adjoint gradients of process
parameters on timescales up to one year encourage the use of the relatively coarse
resolution (T21) atmospheric model PUMA in a CPDAS, showing that the gradients
do not degenerate on that timescale. Secondary minima of the cost function
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which appear after tens of days are a concern, which call for the application of
mitigation techniques. From the three suggested techniques (averaging, coarse
resolution, minimum tracking; cf. section 3.2.5), a combination of the first two
is successfully used for climate assimilation (section 3.3) and trend sensitivity
diagnosis (chapter 4).

The assimilation of a climate into the model by means of an adjoint adjust-
ment procedure for a relaxation temperature field in section 3.3, is a prototype
for a CPDAS. Limitations for such a future coupled assimilation system would
mainly arise from the short timescales of most atmospheric processes. There-
fore, the successful demonstration with the atmospheric component has encour-
aging implications for the whole system. The experiment demonstrates that the
combined information of model dynamics and a spacial distribution of the mean
temperature can contain enough information to reconstruct main aspects of a his-
torical climate, including second moments. On the technical side, the averaging
of gradients over different realisations has proven successful to avoid secondary
minima far away from the known solution. The remaining uncertainty reflects the
internal fluctuations of the model climate. It remains a question for future studies
whether comparable results can be achieved for a model of increased resolution.

A different perspective is the diagnostic value of adjoint sensitivities for cli-
mate related diagnosis. Chapter 4 demonstrates this for the example of the atmo-
spheric trend in the northern hemisphere during the last half of the 20th century.
Sensitivity maps can help to identify important processes which have the potential
to amplify small and regional changes. The presented method uses an ensemble
of linearisations around observed trajectories (i.e. NCEP reanalysis, sequences of
atmospheric states) in order to account for the time dependence of sensitivities.
Moreover this ensemble adjoint approach ensures that nonlinear processes present
in the observations can be captured to some degree. For the generation of sensi-
tivity maps statistical models have been applied in the literature (e.g. Gritsun
and Branstator, 2007, and references therein). The advantage of the presented
adjoint approach is, apart from its computational efficiency, the combination of
observed data with dynamical principles from the model equations. This drasti-
cally reduces the amount of data needed for the reliable diagnosis of a dynamical
dependency.

With such applications in mind, appendix A shows how the adjoint mod-
elling and diagnosis system built around PUMA in the course of this work (see
appendix B.5 for details) can be used to determine sensitivities to Isentropic Po-
tential Vorticity. This is a feature suggested before (Arbogast 1998; Romero et
al. 2005 for Quasi-Geostrophic PV), but not previously realised for a Primitive
Equations model.



5.2. FUTURE IMPROVEMENTS AND OUTLOOK 87

5.2 Future improvements and outlook

Many aspects of this study lead to further questions for future investigation. For
instance the dependence on resolution of the sensitivity growth with increasing
lead time was rather assumed than demonstrated, merely justified from the litera-
ture (Köhl and Willebrand, 2002; McLay and Marotzke, 2008) or the suppression
of non-linearity by increased viscosity and diffusivity used to bound adjoint gra-
dients by Hoteit et al. (2005). Next to runs with higher resolutions, a model
domain vertically extended to the stratosphere and inclusion of orography are
further points on a wish list for subsequent studies. A severe limitation in the in-
vestigations of the trend in chapter 4 is the use of a flat bottom. A large fraction
of the sensitivities had to remain uninterpreted since it was unclear whether they
reflected the lack of orography in the model or an actual atmospheric mechanism.
Also, for convenience only daily values were used in the reference trajectory which
can be expected to reduce the detected influence of eddie fluxes to some extent.
By careful comparison of available atmospheric re-analysis products, it is doubt-
ful whether the choice of the NCEP re-analyses is optimal. Nonetheless it was apt
to demonstrate the technical capabilities of the adjoint diagnostic with PUMA in
combination with trajectories from a far more complex model. For experimental
purposes, a mean state with orography from ERA-40 re-analyses (Uppala, 2003)
was already successfully interpolated onto the model grid and used in the PUMA

sensitivity software.

As elegant as the adjoint sensitivity calculations seem at first, we still ended
up doing an ensemble of adjoint runs in chapter 4 as a consequence of the non-
linearity of the problem. Nonetheless, the gain in effectivity compared to sys-
tematic sensitivity computations via perturbed forward runs is still substantial
since the adjoint approach yields a full gradient vector in a single run, while a
perturbed forward run of the non-linear model produces a single component of
the gradient vector and would still require ensemble averaging in order to reflect
the sensitivity of the system’s climate rather than an instantaneous value. This
raises the question of an estimate for the required size of an adjoint ensemble
at a given lead time. This would be helpful for the layout of applications using
ensemble adjoint sensitivities. To some degree confidence is tested by the hy-
pothesis test applied to the sensitivities in section 4.3.1, showing that under the
assumption of independence the chosen size was at least sufficient. A more in-
structive theoretical treatment of the link of predictability, Lyapunov exponents,
local growth properties and sensitivities could be of value for this aim.

Initial state sensitivities reflect to a large degree the model’s treatment of
gravity waves and numerical phenomena. It has been demonstrated that the
time step is influential on the computed sensitivities (not included). Therefore
all adjoint runs in this work use a time step half as long as recommended for the
forward model with identical resolution.

An idealised test case for the demonstration of the computation of sensitivity
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to isentropic potential vorticity is still missing and is prerequisite to the applica-
tion of this feature in future work.

Future development could be a stepwise extension of the assimilation sys-
tem from simple to complex, building on earlier studies (e.g. Lee et al., 2000).
Being the atmospheric component of the Planet Simulator (PlaSim, Fraedrich
et al., 2005a), PUMA could be extended by adding component by component of
the climate system. This would include coupling to ocean models of increasing
complexity, for instance a slab ocean, a shallow water ocean, and ultimately the
MIT ocean model, for which an adjoint version is maintained (Heimbach et al.,
2005). Also, experiments will be required to understand the effect of simultane-
ously present slow and fast components in coupled experiments on sensitivities.

In contrast to assimilation in numerical weather prediction, the assimilation
of a climate into a coupled system will need to find optimal values for model
parameters from the parameterisations, which contain many variables which even
for present day conditions cannot be measured in nature. While such initial
conditions as albedo and ocean state will clearly be important to the simulations,
the exact initial atmospheric state will, quite contrary to weather prediction
purposes, be of secondary importance (Tziperman and Sirkes, 1997).

The use of adjoints as diagnostic tool in climate science also bears potential
for future research. One option would be the application to conceptual studies
of the dynamics of circulation patterns, for instance the link of tropospheric
wave breaking, the North Atlantic Oscillation and the stratosphere (Scaife et al.,
2005; Blessing et al., 2005; Kunz et al., 2008b, and references therein). Since
the wave-breaking is conveniently shown in terms of isentropic potential vorticity
maps, sensitivity with respect to this quantity could be particularly useful. Also
other cases could be investigated in more realistic setting (using re-analysis data
as reference trajectory) where a link between atmospheric phenomena and their
potential precursors was suggested by other studies, e.g. sea surface temperatures
and Rossby-waves (Hoskins and Karoly, 1981).

One of the known sensitivities of the ecosystem are so-called hot spots which
are geographically small regions containing a large fraction of earth’s current
biodiversity. A coupled adjoint simulation system would call for an attempt to
determine the origins of climatic changes which have strong impact on the hot
spots in an adaption of the diagnostic technique outlined in chapter 4. Again,
this can also be applied to model parameters and serve for the diagnosis of conse-
quences of parameter uncertainties for climate and subsequent ecosystem change
predictions which in turn could direct attempts for the reduction of these uncer-
tainties to the most relevant and influential subset.
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Appendix A

Sensitivity to Potential Vorticity

This appendix is the theoretical outline for an experimental feature incorporated
in the code extensions to the adjoint PUMA. This feature is implemented as For-
tran 90-module arbogast in the code described in appendix B for both balance
conditions described in section A.3 below. They are chosen via a cpp switch at
compile time. Nonetheless, the current state of the code is still experimental and
no rigorous test has been applied.

A.1 Purpose

In section 4.3.1, the quantity that is used to evaluate the relative contribution
of the optimal forcings to the projection on the target pattern is their respective
contribution to the energy. By using a projection with unit of energy, it is possible
to break down this contribution by gridpoint and variable in the fashion described
by Langland et al. (2002). The implementation of this mechanism is described
in section B.4 of the appendix.

However, this energy perspective on the optimal forcing perturbations or, in
other applications, state perturbations, is of limited value for the dynamical evalu-
ation of the results. Therefore, another idea for the interpretation of sensitivities,
is the generation of a derived quantity which depends on all state variables, is
invertible at least to some degree, and describes the dynamical properties of the
flow. A such quantity is Potential Vorticity (PV).

Sensitivity to potential vorticity combines sensitivity information from the
flow field and the pressure and temperature variables into one quantity. A bal-
ance condition is used to ensure the uniqueness of the relationship. Therefore
sensitivity to potential vorticity also shows the sensitivity to the balanced part of
a perturbation. Interestingly, it appears that the same formalism can be applied
to the balance condition, yielding the sensitivity to imbalance. There is not much
experience with this measure and the role of the PV which enters the formalism
in the same way as the balance equation is used for the computation of PV? is
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not yet well explained.
Potential vorticity is conserved on isentropic surfaces. Ertel’s potential vorticity
is defined as

PV =
1

ρ
(f + ζθ)

∂θ

∂p
, (A.1)

where f is the Coriolis term, ζθ the relative vorticity component perpendicular
to an isentropic surface and θ the potential temperature. The method described
here follows the procedure of Arbogast (1998). Rather than constructing the
adjoint of the inverse PV diagnosis operator, an iterative procedure is employed,
which minimises a cost function using gradient information.

A.2 Formalism

We start from the expressions for PV and the balance condition. Analysis of the
main contributions in Eq. (A.1) lead to (cf. Montani and Thorpe 2002):

PV ≈ −g(ζ + f)
∂θ

∂p
(A.2)

Linearising this with respect to ~V and θ, as

δPV = RV δ~V +Rθδθ (A.3)

we get for the R-operators:

Rθ =
∂PV

∂θ
(A.4)

Rθ = −g(ζ + f)
1

ps

∂

∂σ
(A.5)

R~V =
∂PV

∂~V
(A.6)

Ru = gps
∂θ

∂p

∂

∂y
(A.7)

Rv = −gps
∂θ

∂p

∂

∂x
. (A.8)

We need an additional condition which is equivalent to what is needed when po-
tential vorticity is inverted. With this balance condition B (see sec. A.3) Equa-
tions (A.4) and (A.27) can be written as(

Ru Rv Rθ

Bu Bv Bθ

) δu
δv
δθ

 =

(
δPV
δB

)
. (A.9)
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The adjoint equation consequently is R?
u B?

u

R?
v B?

v

R?
θ B?

θ

( PV?

B?

)
=

 u?

v?

θ?

 . (A.10)

Multiplying Eq. (A.10) from the left with(
B?

θ B?
θ −(B?

u + B?
v)

R?
θ R?

θ −(R?
u +R?

v)

)
(A.11)

yields,(
SP B?

θ(B?
u + B?

v)− (B?
u + B?

v)B?
θ

R?
θ(R?

u +R?
v)− (R?

u +R?
v)R?

θ SB

)(
PV?

B?

)
=

(
UP

UB

)
.(A.12)

The above symbols are defined as follows:

SP = B?
θ(R?

u +R?
v)− (B?

u + B?
v)R?

θ (A.13)

SB = R?
θ(B?

u + B?
v)− (R?

u +R?
v)B?

θ (A.14)

UP = B?
θ(u

? + v?)− (B?
u + B?

v)θ
? (A.15)

UB = R?
θ(u

? + v?)− (R?
u +R?

v)θ
?. (A.16)

If in equation (A.12) B?
θ and (R?

u+R?
v) commutate, then PV? and B? are separated

and the first row can be solved independently. To this end a cost function is
defined which, when minimised for potential vorticity, indicates the solution of
the first row:

J =
1

2
(SP PV? − UP )2. (A.17)

Its gradient with respect to PV? is given by

∇PV?J = S?
P (SP PV? − UP ). (A.18)

Equations (A.17) and (A.18) can be used in any minimisation algorithm that
uses gradient information.
Equally the second row of Eq. (A.12) could be solved for B?, if R?

θ and (B?
u +B?

v)
commutate, giving the sensitivity to thermal wind imbalance, W?, or using the
second definition for B, to divergence tendency, I?. The cost function for this
case is

K =
1

2
(SBB? − UB)2, (A.19)

and its gradient with respect to B? is given by

∇B?K = S?
B(SBB? − UB). (A.20)
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If this separation is not possible, as for the chosen wind balances in this chapter,
Eq. (A.10) or (A.12), can still be solved for adjoint potential vorticity and adjoint
balance together, using the same numerical approach as outlined above, but with
a two-component vector as control variable, consisting of PV? and B?.

For the construction of the adjoints and the transformation of the model
variables of the adjoint PUMA model the following relationships are required:

~V ? =

(
∂y −∂x

−∂x −∂y

)(
ζ?

D?

)
, (A.21)

T = θ

(
p

pref

)R/cp

= θ

(
σ

pref

)R/cp

pR/cp
s (A.22)

θ? = pR/cp
s

(
σ

pref

)R/cp

T ? − cp
Rθ

(
T

θ

)cp/R
pref

σ
p?

s. (A.23)

(A.24)

A.3 Balance conditions

Two balance conditions are available. In a first attempt thermal wind balance is
assumed:

∂~V

∂ ln p
= −R

f
∇T. (A.25)

To make this a scalar quantity W which measures the degree of imbalance, the
divergence of Eq. (A.25) is taken:

W = − ∂D

∂ ln p
− R

f
∇2T. (A.26)

Consequently we define:

δW = WV δ~V +Wθδθ (A.27)

Wθ = −R
f

(σ/pref )
R/cp

(
2∇pR/cp

s ∇+ pR/cp
s ∇2 +∇2pR/cp

s

)
(A.28)

Wu = − ∂2

∂ ln p ∂x
; Wv = − ∂2

∂ ln p ∂y
. (A.29)

In a second step it is required that the perturbations which contribute to the
potential vorticity perturbation diagnosed by Eq. (A.3) do not cause a diver-
gence tendency in the model. To this end Eq. (13) of Hoskins and Simmons
(1975) is used as a measure I for B, thus taking advantage of the already coded
tangent-linear and adjoint versions of the non-linear divergence tendency contri-
butions and ensuring an approach compatible with the semi-implicit numerics
and the angular momentum conserving vertical scheme of Simmons and Burridge
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1981 which are used in the PUMA model. Therefore this equation is not treated
analytically. The commutativity of the adjoint operators I?

θ and I?
~V

is tested
numerically. In the dimensionless notation of Hoskins and Simmons (1975) this
balance condition becomes:

I = D −∇2(Φ̄t + T̄ ln ps
t
). (A.30)

Note that D contains contributions from the horizontally varying part of the
temperature field which formally should be contained in the bracket in order to

have separate terms for mass and wind field. ( )
t
denotes the current time step.

Moreover D contains centrifugal force and horizontal and vertical advection of
momentum.
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Appendix B

The adjoint modelling
environment

In order to embed the adjoint code of PUMA into a runnable program, some ex-
tensions were programmed which are described in this appendix. It is intended
as a reference manual for people actually working with the program. The exten-
sions to the namelist input of the regular PUMA are documented as well as the
available options and formats for input and output to the program. Moreover
some fundamental hints about the structure of the program are given in order
to enable the reader to interfere with the code and to adapt or extend it to her
own needs. For readers not familiar with the handling of PUMA and the theory of
adjoint models this appendix is not a recommended read.

While the cost function used here is always a projection on some anomaly
pattern, the way the gradients are computed offers possibilities which go beyond
the applications described in this work. Also note that in the context of data
assimilation the anomaly pattern is simply replaced by the prediction error. Also
note that the applications from chapter 3 represent a different line of development
which is not covered in this appendix but is sufficiently described in the respective
sections.

All adjoint routines mentioned here are adjoint with respect to the Euclid-
ian scalar product 〈·; ·〉. It is made heavy use of the definition of adjointness,
〈x;Ay〉 = 〈A?x; y〉, mostly for the special case of real matrices, and the relation-
ship (A ◦B)T = BT ◦AT ; A and B being real valued linear operators, and x and
y vectors.

B.1 Reference trajectory

Every tangent-linear and adjoint run requires a reference trajectory which is the
basic state that is used for the linearisation. Three methods were implemented:

97
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• a recalculation with PUMA,

• an externally given trajectory from a file,

• and a constant state from a file.

For the recalculation PUMA is run, starting from a restart file and the resulting
trajectory is provided to the adjoint run in direct access scratch files. The
advantage of this method is, that no large files have to be provided externally.
On the other hand it is the computationally most expensive variant. These steps
are taken care of automatically inside the program if the following namelist

parameters are set:

nrestart=1,

l trajectory in file=.false., [default]
l trajectory is const=.false. [default]

The externally given trajectory is read from a file named “TRAJECTORY.srv”
which has to be provided by the user. It is a binary file with 32 bit floating point
precision in SERVICE1 format. It contains for every time step and model level
the fields of vorticity (code 138, [s−1]), divergence (code 155, [s−1]), temperature
(code 130, [K]), and logarithm of surface pressure (code 152; only one level, [log
Pa]). The following namelist parameters must be set:

nrestart=0, [default]
l trajectory in file=.true.,

l trajectory is const=.false. [default].

If the external trajectory does not exist for every time step, the namelist

parameter ntspd t must be set to the number of available time levels per day.
This results in linear interpolation of the trajectory between the existing time
levels. Depending on how integration period and time levels coincide it may be
necessary to provide one extra time-level at the end of the integration period in
order to have enough information for the interpolation. The constant reference
state is also read from a file, named and formatted as above. The first time level
in this file is used as the time constant reference state. In this way the model is
not adjoint to the tangent-linear but to a linearised PUMA. This is the way to go

1 Fortran-blocked binary file, with alternating header and data fields:
integer, dimension (8) :: i head ! code,level,date,time,nx,ny,dispo1,dispo2
real, dimension (nx,ny) :: data ! data field with dimensions nx, ny
open (unit=10,file=’data file’,form=’UNFORMATTED’,access=’SEQUENTIAL’)
write (10) i head(:)
write (10) data(:,:)
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when linearising about a time mean state or a balanced or resting non-evolving
state. The following namelist parameters must be set:

nrestart=0, [default]
l trajectory in file=.true.,

l trajectory is const=.true.

B.2 Adjoint Preprocessing

Due to the inverted time direction in the adjoint model, pre- and postprocessing
of the adjoint fields requires special attention. Adjoint Preprocessing is used here
to describe all steps necessary between the input of the program and the adjoint
dynamical model (see Fig. B.1). Mathematically it is the computation of the
derivative of the cost function (here a projection index) with respect to the model
variables at target time. The target pattern is read from a SERVICE-formatted file
named TARGET.srv. All variables in this file must be defined on the whole model
grid on model levels (except for geopotential height, see below). Not all codes and
levels need to be present, and some are mutually exclusive. The codes mostly
are derived from the naming convention of the pumaburner. Anomalies or
perturbations of a quantity have the code number of that quantity minus 100.
These computations take place in read adj target. The program recognises
the following codes as input for the target pattern of the total energy-weighted
projection index (Eq. 4.5), some of which are mutually exclusive (“conflict”) since
they contain information which is either similar or hard to combine:

• 30 target temperature anomaly ([K])

• 31 target zonal velocity anomaly ([ms−1], conflicts with codes 38, 48, and
55)

• 32 target meridional velocity anomaly ([ms−1], conflicts with codes 38, 48,
and 55)

• 34 target surface pressure anomaly ([Pa], conflicts with codes 51 and 52)

• 38 target vorticity anomaly ([s−1], conflicts with codes 31, 32, and 48)

• 48 target streamfunction anomaly ([m2s−1], conflicts with codes 31, 32,
and 38)

• 51 target sea level pressure anomaly ([Pa], in the absence of orography,
conflicts with codes 34 and 52)

• 52 target logarithm-of-surface-pressure anomaly ([log Pa], conflicts with
codes 34 and 51)
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S?



Z?

adj. dimensioning︷ ︸︸ ︷
Ω · · 0
· Ω ·
· cT ·
0 · · 1


from weighted

scal. prod.︷︸︸︷
WE

︸ ︷︷ ︸
metric()



Z

 {
1
a2∇2S 48

S 38

S 55


30
52

ln

(
1 +

34
psmean

)
ln

(
1 +

51
psmean

)


adj. dimensioning︷ ︸︸ ︷

0 · · 0
· 0 ·
· cT ·
0 · · 1

 addiag geop p W 56

︸ ︷︷ ︸
read adj target()

in file: sensitivity.F90

Figure B.1: Schematic overview of the preprocessing for the adjoint model
run. Information flow is from right to left, describing the formation of a com-
posed input vector (δζ, δD, δT, δ ln ps)

T for the adjoint spectral transform from
the numbers in boxes, which are codes provided as input to the adjoint in file
TARGET.srv. S (S?) is the (adjoint) spectral transform, Z (Z?) is the (adjoint)
conversion of divergence and vorticity to velocities, and left braces mark alterna-
tive input. The name of the subroutine responsible for a specific step is given ei-
ther in operator style (addiag geop p) or annotated with an underbrace (metric,
read adj target()), while overbraces are plain remarks.

• 55 target divergence anomaly ([s−1], conflicts with codes 31 and 32)

Alternatively the geopotential height anomaly on one pressure level can be given
(code 56 [m]). In this case the header of the SERVICE-file must contain the pres-
sure in Pascal. Also the unit of the projection index changes from Joule to square
meters in this case (cf. Eq. 4.14). Code 29 [m2s−2] is also recognised as geopo-
tential anomaly. If the pressure surface on which you provide the geopotential
target anomaly does cut through the ground the program issues a warning. The
adjoint temperature of the lowest model level will show sensitivity to such a tar-
get, since the temperature of the lowest model level would have been used in the
extrapolation of such a sub-surface geopotential. The end of a target pattern in
TARGET.srv is assumed when either the file ends or redundancy in the provided
codes is detected.
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B.3 Adjoint integration

The program is set up to efficiently compute repeated adjoint integrations for
overlapping pieces of one long reference trajectory. Therefore the namelist pa-
rameter nrun has changed its meaning. The following parameters control the
integration:

• nadvance: Duration of one adjoint run in time steps.

• nafter ad: Output interval in time steps for files adoutgp n m.srv and
g ingp n m.srv.

• nrun: The length of the trajectory to use in time steps. The number of
performed integrations will be (nrun-nadvance)/nafter ad+1, i.e. just as
many as fit onto a trajectory of that length when the starting times are
spaced with nafter ad.

For a single integration of the adjoint model over 48 time steps with an output
interval of 6 time steps, you must set the following values:

nadvance=48,

nafter ad=6,

nrun=48.

For repeated integrations over 360 time steps along a trajectory of 2160 time
steps and an output interval of 12 time steps, set:

nadvance=360,

nafter ad=12,

nrun=2160.

The following diagram illustrates the described behaviour:

|--------------------NADVANCE-------------------| run 1.1.

|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-| output 1.1.

|--------------------NADVANCE-------------------| run 1.2.

|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-| output 1.2.

|--------------------NADVANCE-------------------| run 1.3.

|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-| output 1.3.

|--------------------NADVANCE-------------------| run 1.4.

|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-|-NAFTER_AD-| output 1.4.

|--------------------------------------NRUN-----------------------------------------|

length of required trajectory
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B.4 Adjoint Postprocessing

Postprocessing of adjoint output is the adjoint of the preprocessing of a forward
run. It means calculating the derivative with respect to a non-model quantity
and requires, in general, the adjoint of the inverse diagnostic operator for that
quantity. Such adjoint quantities, as well as the adjoint model variables, are de-
noted with ()?. Their computation and output is implemented in the routines
adoutgp, adwritegp, and adwritegpgp. All fields are transformed to sensitiv-
ities in grid-point space and stored in SERVICE format. Two output files are
available, one giving the sensitivities, the other one giving the optimal perturba-
tions, scaled to yield a unit change in the target function (see Eq. 4.9). As above,
the codes mostly are derived from the naming convention of the pumaburner.
Sensitivities with respect to a quantity have the code number of that quan-
tity minus 100. Sensitivities with respect to forcing have 5400 added to the
regular sensitivity code. The output is selected in the namelist via the variable
ncodes in adoutgp. Up to 20 codes can be selected this way in a comma sep-
arated list. The output is written to a file named adoutgp n m.srv, with n
being the target time step and m the length of the adjoint integration. This is
meaningful for repeated sensitivity calculations for different sections of the same
trajectory. Possible choices are (see also Fig. B.2):

• 30 adjoint temperature

• 31 adjoint u-wind

• 32 adjoint v-wind

• 38 adjoint vorticity

• 48 adjoint streamfunction

• 52 adjoint logarithm of surface pressure

• 55 adjoint divergence

• 60 adjoint potential vorticity (experimental!)

• 5430 adjoint temperature forcing

• 5431 adjoint u-wind forcing

• 5432 adjoint v-wind forcing

• 5438 adjoint vorticity forcing

• 5452 adjoint logarithm of surface pressure forcing

• 5455 adjoint divergence forcing.
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1xx xx 54xx
xx ref. value sensitivity forc. sensitivity
29 Φs - -
30 T T ? f ?

T

31 u u? f ?
u

32 v v? f ?
v

38 ζ ζ? f ?
ζ

48 ψ ψ? -
52 ln ps (ln ps)

? f ?
(ln ps)

54 fT [K/s](2) (use 5430) -
55 D D? f ?

D

60 - PV ? -
(experim.)

Figure B.2: Possible choices for the values of the namelist-array
ncodes in adoutgp.

The optimal perturbations are written to a file named g ingp n m. Two ad-
ditional quantities are available. They represent the initial energy distribution
of the cost function response to the optimal perturbation (4000) and to the op-
timal forcing perturbation (9400). This concept stems from Eq. (6) of Langland
et al. (2002). These quantities are useful to view all sensitivities at once, bundled
into one quantity which has the unit of energy. Area weights are removed from
the output of codes 40xx and 94xx in order to facilitate plotting. The selection
is done via the namelist parameter ncodes in g ingp in a comma separated list
of up to 20 entries. Possible values are (see also Fig. B.3):

• 30 optimal temperature perturbation

• 31 optimal u-wind perturbation

• 32 optimal v-wind perturbation

• 52 optimal logarithm of surface pressure perturbation

• 4000 vertically integrated energy of optimal perturbation

• 4030 u-wind contribution to 4000

• 4031 v-wind contribution to 4000

• 4032 temperature contribution to 4000

• 4052 ln ps contribution to 4000

2Caution! This code is often also used for the relaxation temperature with unit [K].
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• 5430 optimal temperature forcing perturbation

• 5431 optimal u-wind forcing perturbation

• 5432 optimal v-wind forcing perturbation

• 5452 optimal logarithm of surface pressure forcing perturbation

• 9400 vertically integrated energy of optimal forcing perturbation

• 9430 temperature contribution to 9400

• 9431 u-wind contribution to 9400

• 9432 v-wind contribution to 9400

• 9452 ln ps contribution to 9400

B.5 Computational details

To illustrate the meaning of the postprocessing of the adjoint it may be helpful
to derive it from the preprocessing of a tangent-linear forward run. The following
is a detailed example for the case of sensitivity to streamfunction. The tangent-
linear mapping of a streamfunction perturbation δψ(t1) to streamfunction δψ(t2)
at a later time may be written as

δψ(t2) = modeltl(δψ(t1)). (B.1)

Since the tangent linear PUMA does not operate on grid point streamfunction the
operator modeltl implicitly contains transformation from grid point- to spectral
space (fc2sp ◦ gp2fc)3, de-dimensioning ( 1

ΩR2 ), the inverse Laplaceian operator
(∇−2), and the inverse operation of all the aforementioned. In order to avoid
possible problems with the different time levels of the leap-frog-scheme used in
PUMA, the perturbation is applied to both time levels and a few Euler steps (set
by nkits) are carried out prior to the regular integration. Therefore modeltl
from (B.1) can be rewritten as:

modeltl =

postprocessing︷ ︸︸ ︷
fc2gp ◦ sp2fc ◦ ΩR2∇−2 ◦
PUMAtl ◦

Euler− stepstl ◦
(

1
1

)
◦ fs2sp ◦ gp2fc ◦ 1

ΩR2
∇2︸ ︷︷ ︸

preprocessing

3read as: f(ourier) c(oefficients)-to-sp(ectral) and
g(rid)p(oint)-to-f(ourier) c(oefficients)
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1xx xx 40xx 54xx 94xx
xx ref. value opt. pert. sens. energy opt. forc. forc. energy

00 - - W−1λ
∑

j,k(Ψ
?
i,j,k - W−1λ

∑
j,k

C−1
k Ψ?

i,j,k) (f ?
Ψi,j,k

C−1
k f ?

Ψi,j,k
)

30 T λC−1T ? W−1λT ?
i C−1

T T ?
i λC−1f ?

T W−1λf ?
Ti
C−1

T f ?
Ti

31 u λC−1u? W−1λu?
i C

−1
u u?

i λC−1f ?
u W−1λf ?

ui
C−1

u f ?
ui

32 v λC−1v? W−1λv?
i C

−1
v v?

i λC−1f ?
v W−1λf ?

vi
C−1

v f ?
vi

38 ζ λC−1ζ? - λC−1f ?
ζ -

52 ln ps λC−1 W−1λ(ln ps)
?
i λC−1 W−1λf ?

(ln ps)i

(ln ps)
? C−1

(ln ps)
(ln ps)

?
i f ?

(ln ps)
C−1

(ln ps)
f ?

(ln ps)i

55 D D? - λC−1f ?
D -

Figure B.3: Possible choices for the values of the namelist-array
ncodes in g ingp. Index i stands for grid points, summation j is over model
levels, and k goes over variables u, v, T , and (ln ps). W−1 is inverse area weight-
ing to allow plotting of the energy contributions, C equals WE as defined in
Eq. (4.6), and λ is defined in Eq. (4.9).

The matrix

(
1
1

)
represents the perturbation of both time levels at once. 1 is

the identity matrix with the rank of the number of spectral coefficients in PUMA.
For the adjoint Operator modeladj = (modeltl)

∗ follows:

modeladj =

adj. postprocessing︷ ︸︸ ︷
adgp2fc ◦ adfc2sp ◦ 1

ΩR2
◦ ∇2 ◦

(
1 1

)
◦ Euler− stepsadj ◦

PUMAadj ◦
∇−2 ◦ adsp2fc ◦ adfc2gp ◦ ΩR2︸ ︷︷ ︸

adj. preprocessing

Adjoint Preprocessing: Note that in Eq. (B.2) as well as in the actual im-
plementation the order of the adjoint spectral to grid point transform and the
adjoint dimensioning is reversed. This has only technical reasons and does not
change the operation since the transform is linear and unaffected by other quan-
tities. The adjoint transform into grid point space corresponds to the forward
transform from grid point to spectral space, since this is one of the special cases
where the inverse operation is also the adjoint. In PUMA it is split up into two
steps, transformation from grid point space to Fourier coefficients along the lat-
itudes (gp2fc) and the transformation from Fourier to spectral space (fc2sp)
by projection onto spherical harmonics. This is one of the few cases where the
inverse operation is also the adjoint. Due to a different scaling of forward and
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backward transform, an interface routine adsp2fc4 is called, which calls fc2sp

in turn and adjusts the scaling.
The Laplaceian ∇2 in spectral space takes the form of a diagonal matrix and
therefore is self-adjoint. The same is true for the inverse Laplaceian ∇−2 and its
adjoint ∇−2∗.

Adjoint Postprocessing: Before outputting the adjoint variables have to be
transformed back into grid point space. This is done in the subroutines adfc2sp5

and adgp2fc6. As above, adfc2sp is an interface to sp2fc. On top of that
the adjoint variables undergo adjoint de-dimensioning. This is self-adjoint and
corresponds to de-dimensioning in the forward model.

4read as: ad(joint) sp(ectral)-to-f(ourier) c(oefficients)
5read as: ad(joint) f(ourier) c(oefficients)-to-sp(ectral)
6read as: ad(joint) f(ourier) c(oefficients)-to-sp(ectral)
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