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Abstract. This paper explores the consequences of resolution of surface fluxes on
synthesis inversions of carbon dioxide. Synthesis inversion divides the Earth’s surface
into a set of regions and solves for the magnitudes of fluxes from these regions. The
regions are generally quite large. By considering an inversion performed at the resolution
of the underlying transport model we show that the aggregation to large regions can cause
significant differences in the final results, with errors of the same order of magnitude as
the fluxes themselves. Using a simple model, we derive an algorithm to reduce this error.
This algorithm accounts for the extra data uncertainty that is caused by uncertainty in the
small-scale flux components. In the spatial synthesis inversion this extra data uncertainty
reaches a maximum value of 3.5 ppmv. Accounting for it can halve the aggregation error.
We provide suggestions for dealing with this problem when high-resolution inversions are
not feasible.

1. Introduction

One of the critical uncertainties in predicting the trajec-
tory of the climate system is the prediction of radiative forc-
ing. Since a major cause of variations in this forcing is
changes in greenhouse gas concentration, it is important
to predict the budgets of the major greenhouse gases. As
demonstrated by Enting et al. [1994], a major uncertainty
in such a prediction is the uncertainty in the current budget.
Also, any attempt to manage, for example, the global carbon
cycle will require detailed quantitative understanding of the
regional fluxes of carbon to the atmosphere. For both these
reasons, it is important to refine techniques to infer these
fluxes.

One important technique for such inferences is the inverse
determination of sources using atmospheric concentration
measurements. In the last decade or so, there have been sev-
eral such studies. Examples include Keeling et al. [1989],
Tans et al. [1990], Enting et al. [1995], Fan et al. [1998],
Rayner et al. [1999], and Bousquet et al. [1999] for CO �
and Fung et al. [1991], Brown [1993], and Hein et al. [1997]
for CH � .

Although there have been other approaches, the most com-
mon (used by all the studies cited above) is usually termed
synthesis inversion [Enting et al., 1995]. In synthesis inver-
sion the flux field is constructed as a linear combination of
a set of patterns. The solution of the inverse problem then
involves finding the coefficients multiplying each of the pat-
terns. The patterns may be contiguous regions as in the work
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by Rayner et al. [1999] or regions reflecting some underlying
similarity such as the biome classifications used by Enting
et al. [1995]. The patterns also may have some prescribed
internal structure, reflecting external knowledge of fluxes,
e.g., Fan et al. [1998], who used net primary productivity to
shape their terrestrial flux patterns. Finally, the patterns also
contain temporal structure such as a prescribed seasonal cy-
cle or monthly pulses. We shall refer to each of these space-
time flux patterns as basis functions. To carry out any sort of
inversion, we need to know the concentration arising from a
given basis function when subject to atmospheric transport.
We refer to this as the corresponding response function.

Response functions are normally calculated by using a ba-
sis function as an input to an atmospheric transport model.
The response function is generated by sampling the output
of the transport model at chosen observation locations. The
matrix of response functions for the full set of basis func-
tions is the Jacobian matrix for the problem and contains
all the information about atmospheric transport relevant to a
particular setup.

There are two problems caused by the a priori choice of
basis functions. The first is an arbitrary limit on the informa-
tion that can be returned by an inversion. Ideally, this limit
would be set by the inversion procedure itself, a situation
that will arise with a large enough number of basis functions.
The second problem is that the structure chosen for the ba-
sis functions will determine the magnitudes returned by the
inversion procedure. The problem is illustrated in Figure 1. Figure 1.
Figure 1b depicts a schematic diagram of a Jacobian for the
idealized configuration of two source regions and one ob-
servational site shown in Figure 1a. Since region 1 is more
upwind of the site than region 2, the response to an emis-
sion

���
at region 1 is smaller than to an equal emission

�
�

at region 2. The Jacobian depicted in Figure 1b is based on
separate response functions for both regions. As mentioned
above, in many inversion studies, largescale flux patterns are
prescribed. Figure 1c shows two examples of these flux pat-
terns, i.e., combinations of fluxes in both regions. The inter-
esting point is that both patterns yield the same response at
the observational site, although the first pattern quantifies a
net source and the other one a net sink. If we imagine two
inversions based on either response function, they would de-
rive net fluxes of opposite sign from a measured concentra-
tion at the site. Hence an error in the internal structure of the
basis function can spoil our inversion result.

Solving for the fluxes in both regions separately consti-
tutes a way to avoid prescribing a fixed, potentially wrong
pattern. Since the inverse problem of inferring two fluxes
from one observation is underdetermined, a Bayesian ap-
proach (as sketched in section 2) can be used to stabilize
such type of inversion. Again, a flux pattern, which is made



3

up of prior estimates for the fluxes from both regions, is as-
sumed, and the fluxes from both regions will be adjusted sep-
arately. In the case of a wrongly shaped pattern, which yields
a mismatch to the observations, the necessary adjustment,
in general, will primarily concern the flux region with the
strong response, i.e., region 2, and, in contrast to a fixed pat-
tern approach, only slightly change the flux from the badly
observed region 1. In this sense, the Bayesian approach pre-
vents us from an over-interpretation of the concentrations
collected at sparse networks and thus is preferable in this
situation.

Avoiding the aggregation according to fixed patterns, how-
ever, increases the number of basis functions, which is com-
putationally inconvenient, if not impossible, for two main
reasons: First, as traditionallycomputed, each response func-
tion requires a separate tracer calculation in an atmospheric
transport model. For 25 spatial basis functions and 12 month-
ly pulses we need 300 runs of an atmospheric transport
model for perhaps 3 years each. Even with relatively low
model resolution this is computationally demanding. Sec-
ond, the size of the inversion calculation itself is a problem.
More basis functions mean more unknowns and larger ma-
trices in the inversion calculation. Given these constraints,
inversions with relatively large predefined regions will re-
main a common tool. We need techniques to account for and
reduce the errors displayed in Figure 1. Such a method is the
purpose of this paper.

Recently, using an adjoint method, Kaminski et al. [1999a]
have demonstrated the efficient calculation of a set of ba-
sis functions at the resolution of their transport model, thus
eliminating the first problem. Provided the observing net-
work is decided in advance, they can compute 10,000 re-
sponse functions for their transport model (TM2 [Heimann,
1995]) at the cost of � 100 response functions if computed
by the conventional method. Of course, the cost of the actual
inversion at this resolution remains. In two inversion studies
based on these response functions Kaminski et al. [1999b]
and Houweling et al. [1999] used only 1 year of data, repre-
senting an average. Inversions of many years of data at this
spatial resolution require inversion techniques more sophis-
ticated than the straightforward matrix inversions performed
in the above mentioned studies. More generally, the meth-
ods used by Kaminski et al. [1999a] will allow us to generate
higher-resolution Jacobian matrices than we can invert.

The high-resolution Jacobian gives us a tool for investi-
gating the size of the aggregation error. We can do this by
deriving a low-resolution Jacobian, quantifying the response
to a number of basis functions that is typical for inversion
studies. Then the difference between an inversion with the
full Jacobian and one with the low-resolution Jacobian quan-
tifies the aggregation error. Such an approach was used by
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Peylin et al. [2000], who compared low- versus very low-
resolution inversions. They generated significant errors due
to this aggregation, a problem we can expect to be worse
with our higher-resolution inversions.

Obviously, we would like to reduce such aggregation er-
rors rather than merely characterizing them. An approach to
this problem was described by Trampert and Snieder [1996],
who proposed an algorithm for dealing with this that requires
a high-resolution model. The algorithm is to compute an ex-
tra contribution to data error resulting from the uncertainty
in the inhomogeneity of fluxes within resolved regions. We
will discuss the extra data error and then apply this algorithm
to the case of atmospheric CO � inversions.

The outline for the remainder of the paper is as follows:
in section 2 we recall the Bayesian inversion technique and
describe the aggregation to regions. In section 3 we quan-
tify the aggregation error by comparing a high-resolution in-
version to a number of low-resolution ones, with different
forms of aggregation. In section 4 we introduce a simple box
model and use the model to quantify the aggregation error
and to demonstrate the algorithm to reduce it. In section 5 we
return to the three-dimensional model. Section 5 quantifies
the extra error on the data side that accounts for the uncer-
tainty in the unresolved small-scale fluxes and then applies
the algorithm to the aggregation error. Finally, we make
some recommendations about performing low-resolution in-
versions based on our experience. The appendix gives a step-
by-step recipe for applying the algorithm. It should be possi-
ble to apply the algorithm even if all the detail of the two-box
calculations proves difficult.

2. Bayesian Synthesis Inversion
and Aggregation

In a Bayesian synthesis inversion for a flux field of a pas-
sive tracer we start with a prior estimate of fluxes ��� , data

� � ,
uncertainties for both quantified by the respective covariance
matrices, ������	�
 and �����	�
 , and finally a linear operator, the
Jacobian of the problem, � , that maps fluxes to data. We
wish to estimate � such that the function��� ���

��� ������� � 
������ 	 
�� � ����� � � 
! ��� �"� � 
 � ������	#
 � � �����$� � 
&% (1)

is minimized, i.e., to match fluxes and data as closely as pos-
sible but taking account of the quality of our prior estimates
and data. It can be simply shown [Tarantola, 1987] that (1)
is minimized by '

� � � � ! � � � � � � �(��� � 
$) (2)

where � � � , the generalized inverse of � , is given by

�*� � � � �+�,���� 	 
�� � � ! ����� 	 
�� � %-� � �+�.����� 	 
/� �#0 (3)
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For our demonstration of the aggregation error in sec-
tion 4.3.1 to be as simple as possible, we will apply a non-
Bayesian inversion. That is, we do not assume any prior
knowledge about the fluxes. This can be considered a spe-
cial case of (2), with ������	#
 tending to infinity; the respective
expressions are

'
� � � � � � � (4)

�*� � � � �+�,����� 	 
�� � �+%-� � �+������ 	 
�� � 0 (5)

In (3) and (5) the uncertainty on the data side ���� 	 
 , whose
inverse weights the data, is the sum of the uncertainties of
both observations and model [Tarantola, 1987]:

������	�
 � ���� 	 � obs 
 ! �����	 � mod 
 0 (6)

Throughout this paper we wish to consider what hap-
pens when we move from a relatively high-resolution ver-
sion of the problem to a reduced one, presumably for com-
putational reasons. In the real cases later, � will initially
have 864 spatial components corresponding to the number
of surface grid points in the transport model TM2 [Heimann,
1995]. We will aggregate these to produce cases of 18 com-
ponents (a 9 � 6 grid cell aggregation) or 54 components (a
4 � 4 grid cell aggregation). These aggregations are deter-
mined by the chosen sets of 18 (or 54) basis functions. To
perform an inversion that (based on (2)) infers the multipli-
ers � of these basis functions, we need a prior estimate for
these multipliers and a covariance matrix of their uncertain-
ties. These quantities are determined by their counterparts
on the TM2 grid. The respective formulas become sim-
ple, if we normalize the 18 (or 54) basis functions such that
� � ������	#
 � � � ���

, where the columns of B are composed
of the basis functions. In our case (though not necessarily),
basis functions occupy disjoint regions. Thus any grid point
belongs to only one basis function. Hence this normalization
is readily achieved by multiplying every basis function with
the appropriate scaling factor.

To find the priors for the multipliers we carry out an op-
timal fit for the low-resolution basis functions to the prior
estimate for sources. We can use (4), with

�
taking the role

of � and ���� 	 
 that of ����� 	 
 , to yield

� � � � � � ���� 	�
 � � � % � � � � ������	#
 � � � � ��� � ������	#
 � � � �
(7)

and the covariance of their uncertainties

��������
�� � ��� �.����� 	 
�� � � �	� ) (8)

in which we have exploited the normalization of the basis
functions. (The non-Bayesian form is appropriate to infer
the prior � � and its uncertainty, since a priori we do not have
any knowledge about the multipliers.)
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Inserting these quantities and the low-resolution Jacobian��� � � � in (2) and (3) finally solves for the multipliers,
while the data side remains unchanged.

Some of the most important quantities inferred by inver-
sion studies are the regionally averaged fluxes. In sections
3 and 5 we will compare the regionally averaged fluxes in-
ferred by low-resolution inversions to those inferred by an
inversion on the TM2 grid. In one case we first aggregate
and then invert, while in the other we reverse the order of
these operations. Denoting the averaging operator for region�

by ��� , the difference in the average flux for region
�

is

�
'
� �

� �
� � � � ! ��� � � � � � � ��� � � 
%

����� � � � ! �*� � � � � � ��� � 
&% 0 (9)

3. Demonstration of the Effect

The goals of this section are to demonstrate and better
understand the effect of aggregation in the flux space on
the result of inversions. We investigate the impact both of
the degree of aggregation and of the various details that in-
fluence the aggregation. The essential tool for these inver-
sions is the Jacobian matrix of TM2. TM2 [Heimann, 1995]
is one of the three-dimensional atmospheric transport mod-
els typically used for biogeochemical studies [Law et al.,
1996; Denning et al., 1999] including inversion of the atmo-
spheric transport [Hein et al., 1997; Bousquet et al., 1999].
For a typical observational network the full Jacobian ma-
trix, i.e., the one quantifying the response of the fluxes re-
solved on the full model grid, can be efficiently computed
by means of the model’s adjoint [Kaminski et al., 1999a],
which has been generated by the Tangent linear and Ad-
joint Model Compiler (TAMC (R. Giering, 1997, available
at http://puddle.mit.edu/ � ralf/tamc)).

First, to better understand the mechanism causing aggre-
gation error, we resume the discussion of Figure 1. For ag-
gregation error to appear, two criteria must be fulfilled. First,
the response functions for both regions must differ. Re-
call that the errors we are concerned with are in small-scale
structure. In the case of Figure 1 these are errors in the dif-
ference of fluxes between the two regions. If the responses
were the same from both regions then such errors would not
be observable and would not damage our inversion. Sec-
ond, sampling must be inhomogeneous. We can already see
this in the case shown in Figure 1 where the inversion for
the large region is biased toward the more strongly observed
sub-region. We will show this more clearly in section 4. Figure 2.

That the first criterion applies to our type of inversion
study is suggested by Figure 2. Figure 2 quantifies the sen-
sitivity of the January concentration at station Point Barrow
in Alaska (see location of the cross) to surface fluxes in the
same month at all grid points. Figure 2 clearly shows that,
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e.g., the sensitivity to fluxes over North America is far from
uniform. Second, inhomogeneous sampling is inevitable
since typical networks comprise less than 100 sites, while
even a coarse resolution model like TM2 has � 800 spatial
flux components.

As described in section 2, all inversions presented here
are set up as Bayesian synthesis inversions. Except for de-
tails of aggregation, their setups are almost identical to the
standard setup of Kaminski et al. [1999b]; they infer a cy-
clostationary CO � surface flux field (12 monthly means at
each TM2 surface grid cell) from a quasi-stationary sea-
sonal cycle, which they have fitted to observations at 25
observational sites (12 monthly means at each site). The
observations span the period 1981–1986 and were provided
by the National Oceanic and Atmospheric Administration
Climate Monitoring and Diagnostics Laboratory (NOAA-
CMDL) [Globalview–CO2, 1996]. They use prior flux es-
timates and uncertainties based on process models of the
ocean and the terrestrial biosphere as well as on statistics
of fossil fuel burning and land use change. The data un-
certainties are the residuals to the fit of the quasi-stationary
seasonal cycle and are meant to account for all variability in
the data that the cyclostationary model setup cannot mimic.
We assume zero correlation among these uncertainties.

The only detail in which our reference inversion R differs
from their inversion is that we set a uniform (and uncorre-
lated) data uncertainty of 0.5 ppmv. A uniform uncertainty
has been used by Rayner et al. [1999] as well, but they take
the higher value of 0.7 ppmv in order to account for the ad-
ditional uncertainty arising from uncertainty in fluxes they
do not resolve. We will come back to this point in section 5.

Our reference inversion has the spatial resolution of the
TM2 grid, i.e., 36 flux components in the zonal direction
times 24 components in the meridional direction. For our
standard experiments we aggregate every six components in
the zonal direction and every eight components in the merid-
ional direction (see Figure 3 for the blocks of aggregation). Figure 3.
The components’ prior estimates and their uncertainties are
computed from the full-resolutionvalues as described in sec-
tion 2. To investigate the role of the flux pattern upon which
the aggregation is based, we use either a pattern that is uni-
form over each region (case U18) as in the study of Rayner
et al. [1999] or a pattern that is shaped like the prior estimate
(case P18) as in the study of Bousquet et al. [1999].

We will see later (section 5) that the aggregation error is
closely related to weighting of the observations. To obtain
a feeling for this interaction, we also modify both standard
cases to have the nonuniform data uncertainties of Kamin-
ski et al. [1999b]. These uncertainties range from 0.06 to
3.1 ppmv compared to the uniform 0.5 ppmv in our stan-
dard cases. The respective cases are denoted by U18W and
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P18W. Finally, we want to explore the effect of the degree
of aggregation on the error. In cases U54 and P54 we aggre-
gate every four components in the zonal direction and every
four components in the meridional direction, which yields
54 spatial components.

For the case U18, Figure 3 shows the aggregation errors
in the annual means, which have been computed according
to (9). Figure 3 (top) shows the fluxes for the 18 regions,
inferred by the low-resolution inversion. The annual mean
fluxes in Figure 3 (middle) are derived by aggregating the
fluxes inferred by the full-resolution inversion R, i.e., the
fluxes free from aggregation error. For convenience, Figure
3 (bottom) shows the amount by which the low-resolution in-
version deviates from the high-resolution one. By and large,
even in this annual mean representation the aggregation error
dominates the fluxes derived by the full-resolution inversion.
While the aggregated fluxes are in the range from –20 to 20
g C m � � yr � � , the aggregation error reaches values between
–60 and 60 g C m � � yr � � . Table 1.

Table 1 gives a few diagnostics of the aggregation error
in the monthly mean fluxes. For all six cases introduced
above, Table 1 shows the minimum and maximum error, the
absolute maximum, as well as the root-mean-square (rms)
error, both unweighted and area weighted. The most impor-
tant diagnostics are probably the absolute maximum and the
area-weighted rms, the first quantifying the maximum error
caused by aggregation and the latter quantifying the over all
error. The full-resolution inversion R infers fluxes from –
463 g C m � � yr � � to +190 g C m � � yr � � , which provides a
scale to assess the magnitude of errors. In the U18 case the
largest aggregation error in 1 month and region is approxi-
mately –900 g C m � � yr � � . The area-weighted rms error is
� 90 g C m � � yr � � . Depending on the size of the region, this
corresponds to an average error of � 2 Gt C yr � � for each
region. For all 18 region aggregations, using shaped patterns
about halves the aggregation error, while in the 54 region
case, using shaped patterns increases the error by � 50%.
This result is at first surprising since a more accurate match
to the internal shape of the patterns should, generally, help
the inversion, as is demonstrated by the two-box example in
section 4. The critical point, however, is that lacking infor-
mation about the true source shape, we had to use the shape
of the a priori source to construct the patterns. While in the
18 region case this yields an improvement over the uniform
pattern case, the uniform patterns are a more accurate match
to the proper internal structure in the 54 region case than our
a priori choice. It is only by considering the aggregation er-
ror that we can tell whether we succeeded in capturing the
aspects of the small-scale structure that is relevant to the in-
version.

Another related problem concerns inversions with non-
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uniform patterns, in general. For uniform patterns any un-
resolved small-scale structure has zero sum and so, given
the diffusive nature of atmospheric transport, is unlikely to
be observed far from its region. For non-uniform patterns
this does not hold. The impact of this effect on an inversion
will depend on the magnitudes of the unresolved sources and
their concentration signatures in the observing network. The
converse of this argument is that the resolved non-uniform
patterns do not estimate average fluxes from regions. This
negative consequence offsets some of the advantages of us-
ing non-uniform (but hopefully more correct) patterns.

Moving from 18 to 54 regions clearly reduces the aggrega-
tion error as one would hope. Finally, using the data uncer-
tainty, which is derived from interannual variability (cases
U18W and P18W), reduces the error considerably as com-
pared to uniform data uncertainty. We will further discuss
this point in section 5.

4. Simple Example for the Effect

In this section we use a simple example to improve our un-
derstanding of aggregation error. This error can be seen in
a simple two-box model of the atmospheric transport when
aggregating two hemispheric flux components. First, we de-
scribe the simple model and then perform a series of inver-
sion experiments with varying setups, all of which are non-
Bayesian to keep the example as simple as possible. Second,
we will derive a recipe to reduce the aggregation error, which
in section 5 will be applied to the three-dimensional model
that we presented in section 3.

4.1. Two-Box Model

The two-box model that we employ is a familiar tool to
transport modelers. For example, it has been employed by
Tans [1997] and described in more detail by Rayner et al.
[2000]. In the model, the concentration of an arbitrary tracer
in each hemisphere (index 1 for the north and 2 for the south)
evolves in time according to

�
�
��� ���� � � � � �

��� ��� � �	� � 
 (10)
�
�
�������� � � � � �

��� ��� � �	�
� 
 )

where � � denotes the sources (as emission rates) and � is the
exchange rate of air parcels between hemispheres as a frac-
tion of the hemispheric air per time.

�
is the mass of the at-

mosphere and, for convenience, also absorbs the conversion
factor from a mass mixing ratio (mass of tracer divided by
mass of air) to a concentration. We reformulate (10) in terms
of the average concentration, ��


� ��� � ! ����
 � � , and the dif-
ference or gradient between the hemispheres, � � � ������

�
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as well as � 
 � � � ! � � for the sum of the sources and� � � � ���$� � for their difference. This reformulation is
most convenient because after this transformation of bases,
the differential equations in (10) decouple and thus can be in-
tegrated separately. Assuming constant sources over a time
interval

�
� and, for convenience, no initial concentration

difference, the changes in the average concentration and the
difference are linearly related to the source difference and
sum by

���
�
� � �

� 
�
� ���� �����	 

 �	�� � � �� � � � ��� 
 � � � 
� � �� � �� 0 (11)

We will see below that the size of the aggregation error de-
pends on the magnitude of � � . A large � � component occurs
for instance during the Northern Hemisphere summer. The
prior CO � flux field for the inversions presented in section 3
yields a Northern Hemisphere sink of 5.5 Gt C for the period
from June to August, and a Southern Hemisphere source of
0.5 Gt C. Using these numbers, a value of

��� � 0 �
Gt C

ppmv � � , and an exchange rate of �
� �

yr � � , (12) yields
concentration changes of

�
� 


� � � 0 � ppmv for the aver-
age and

�
� � � � � 0�� ppmv for the difference. Whenever

in the remainder of this section we give explicit numbers as
examples, these are derived from the above values.

4.2. Sampling and Jacobian

Since the effect we intend to describe is caused by inho-
mogeneity of sampling, we assume an uneven distribution of
sampling sites between the hemispheres: two stations in the
north, Point Barrow (index B) and Mauna Loa (index M),
and only one station in the south, South Pole (index S). This
distribution among the hemispheres is close to that used in
section 3, where we have 17 stations in the north and 8 in
the south. The concentration changes at these stations are
denoted by

�
��� ) � � 	 ) � ��� . They can be computed from���

� by

���
� mod

� �� �
����
� 	�
��� �� ���� � �

��
�

�� � ��
��
���
�

�  ���
�
�! "� ���) (12)

where
 

denotes our sampling operator, which reflects our
capability to observe the state of the model. This yields�
� � � � � 	 � � �+0 # ppmv and

�
� � � � 
 0 � ppmv.

Our aggregated case consists of modeling only the global
sources, then sampling them unevenly with our three sta-
tions. hence � � represents the unresolved small-scale struc-
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ture. This case is analogous to the situation depicted in Fig-
ure 1. In the following, we will frequently use a decompo-
sition of the Jacobian matrix � �  "� defined by (12) into
a column � 
 multiplying the resolved � 
 component and
one column � � multiplying the unresolved � � component.
Using the definitions (11) and (12), we obtain their explicit
form

� �� � � 
*� 
 ! � � � �
� �

�
�

�� ��
�

��
� 


! �

�
�
� � � �� � � � ��� 
 �� �

�

� �
��
� �

0
(13)

4.3. Inversions

In the following, we will use the simulated concentration
values of section 4.2 as pseudo-observations and try to re-
cover from them the proper mean source. We therefore apply
the inversion formula (4), and assume uncorrelated observa-
tional uncertainties with a standard deviation of � ��� 	 
 � 1
ppmv.

4.3.1. Demonstration of the effect. Aggregating the
sources in this two-box model in the simplest possible way
is by directly summing sources. This form of aggregation
assumes a uniform source distribution, like the U cases in
section 3. The unknown is the global source magnitude � 
 ,
and the low-resolution Jacobian is � 
 . Using the pseudo-
data, (4) yields an estimate for the global source � 
 of'

� 
 � � � � 
*
� ��� 
*
%-� � ��� 
,
&� ���� mod� �
� �

�
� � � ��� ���

� mod

0
(14)

This yields an estimate of

'
� 
 � � # 0�# Gt C, which is larger

than the true sink of 5 Gt C by 1.6 Gt C or 32%, i.e., the
aggregation error

'
� 
 �(� 
 � 1.6 Gt C.

Note that the estimated source is too negative, reflect-
ing the sampling bias toward the large sink in the Northern
Hemisphere in this season. This demonstrates the combined
roles of non-uniform sources and inhomogeneous sampling.

To demonstrate further the importance of inhomogeneous
sampling, we repeat the inversion with one of the northern
stations removed. In this case, reusing for convenience the
symbols � 
 and � � for the resolved and unresolved compo-
nents of this two-row Jacobian:'

� 
 � � ��� 
 
� ��� 
 
%-� � ��� 
 
&� � � � 	� ��� �� �
� �

�
� � ���

� �
� 	�
� � � ) (15)
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which yields the true global source of 5 Gt C. Unlike the pre-
vious inversion, here the inversion formula performs proper
averaging of the concentrations in both hemispheres before
transforming this average to a source estimate. “Proper” av-
eraging here means that there is no sampling bias.

A more formal way of achieving the same effect would be
to use the average Northern Hemisphere concentration (with
the same weight as the single Southern Hemisphere observa-
tion) to estimate the global source. This would be formalized
by assigning perfectly correlated uncertainties to both North-
ern Hemisphere observations. ����� 	 
 is singular in this case,
with the average Northern Hemisphere concentration con-
tributing information but not the two stations individually.

There are two things to note about the above solutions
to the aggregation error. First, in both cases, we are using
knowledge of atmospheric transport to solve the problem.
We choose weights for the data, which reflect our knowl-
edge of rapid intrahemispheric mixing. In a more realistic
case this knowledge is embodied in a transport model. These
weights for data also do not reflect only the observational un-
certainty ����� 	 � obs 
 in (6). We will see later that they rather
reflect the uncertainty arising from uncertainty in unresolved
source components, which is to be treated as a model error����� 	 � mod 
 .

The above shows that removing the inhomogeneity of the
network removes the aggregation error. On the other hand,
doing some simple but cumbersome matrix algebra, one can
verify that the inversion with an inhomogeneous network,
but the full Jacobian yields the proper global source (as well
as the proper source difference). Again this shows that it is
only the combination of inhomogeneous sampling and unre-
solved sources that creates an aggregation error.

4.3.2. Recipe to reduce aggregation error. The ad hoc
solutions that we applied to our two-box model point the way
to a more general algorithm. We have seen that the aggrega-
tion error arises from biased (or inhomogeneous) sampling
of the small-scale, unresolved source structure. We stress
again that we generally will not know this small-scale source
structure perfectly and we are trying to avoid the impact of
errors in this structure. Put roughly, the algorithm consists of
de-weighting those observations that may bias the estimate.
Trampert and Snieder [1996] suggest an algorithm to adjust
the weights of the respective data items to achieve this. In
our context, the idea is as follows.

We can assign uncertainty to the small-scale or unresolved
components of the source field. Since the prescribed source
shape can be considered a part of the model, errors in this
shape can be considered a model error. The extra uncer-
tainty arising from the unknown size of this error enters the
inversion procedure on the data side, as explained in (6). It
is derived by propagating the uncertainty in the small-scale
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shape, i.e., the � � direction via the Jacobian to ����� 	 � mod 
 on
the data side. In the case of a transport model this propaga-
tion will, for example, assign large errors to observations
taken near highly uncertain sources and hence de-weight
them. Similarly, the propagation will add a strong corre-
lation between uncertainties in two observations that sample
the same small-scale structure. Usually, such observations
will be from closely spaced stations. The procedure will
reduce the combined impact of the two observations, thus
reducing potential bias.

The uncertainty in the unresolved or small-scale compo-
nents can be extracted from the a priori complete source co-
variance matrix ��� �� 	#
 by means of a projection operator. In
(7) we defined a mapping from the high-resolution source
space (in that case the resolution of the transport model)
to a subspace spanned by the patterns we are using. The
projection onto the unresolved or small-scale patterns is the
compliment of the operator defined in (7). In our two-box
example it is defined as

� � �
� 

� � � 
 � � � � 
 

 � � 0 (16)

The extra uncertainty is then

���� 	 � mod 
 � � � � ��� ���	#
�� � � � 
� � � � � ��� � 
 � � � �� � �� �
�
� � �� � � � ��� 
 � �� � 
% ��� �

�

� �
��
� � � � � � 0

(17)

Note that ������	 � mod 
 contributes to the uncertainty in the di-
rection of � � but also to that of ��
 . This demonstrates the so-
called leakage discussed by Trampert and Snieder [1996].

The structure of ����� 	 � mod 
 shows that the additional un-
certainties among the northern observations are completely
correlated (and the uncertainties of any northern observation
to the southern observation is completely anti-correlated).
This is consistent with the ad hoc algorithm sketched above,
with the advantage that it can be applied in more complex
circumstances. ���� 	 � mod 
 depends on the exchange rate and
on the uncertainty in the source difference. If the exchange
rate was large, ���� 	 � mod 
 would be small and the observa-
tional uncertainty ( � obs) would dominate. This makes sense
because a large exchange rate would reflect a well-mixed at-
mosphere and more equal weights for all three observations
are appropriate.

The magnitude of ����� 	 � mod 
 depends on the uncertainty
for � � . Independent uncertainties of 100% for � � and � �
would yield an uncertainty of � ��� � 
 � � 30.5 Gt C � . In this
case, ���� 	 � mod 
 has the form of (17), with entries of the ab-
solute value of 4.3 ppmv � . This is the only uncertainty due to
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model error we consider. According to (6) we calculate the
data uncertainty for (4) by adding ���� 	 � mod 
 to ���� 	 � obs 
 ,
which we had assumed diagonal with entries of 1 ppmv � .
Applying (2) then yields an estimate of

'
� 
 � � � 0 � Gt C.

That is, the aggregation error is reduced from 32% � 4%.
Assuming instead uncertainties of 5 Gt C for both the north-
ern and the southern source translates to an uncertainty of
� ��� � 
 � � 50 Gt C � . Applying (2) then yields an estimate of
'
� 
 � � � 0 � Gt C. That is, the aggregation error is reduced to
2%. Note that the aggregation error is not entirely antipro-
portional to the uncertainty of � � , since � � determines only
one summand in the sum in (6). In particular, for this rea-
son, the aggregation error cannot become infinitely large if
the extra uncertainty is assumed to be lower and lower. In
our setup the maximal aggregation error is 32%, as shown in
section 4.3.1.

5. Reducing the Aggregation Error

In this section we apply the algorithm demonstrated in
section 4 to the global CO � problem described in section 3.
First, we discuss the extra data uncertainty caused by unre-
solved small-scale source components. Second, we carry out
a number of inversions in which this additional uncertainty
is added to the usual data uncertainty.

Appendix A describes the technicalities of computing the
extra data uncertainty from the a priori uncertainty of the
fluxes. For our computation we take this a priori uncertainty
from the study of Kaminski et al. [1999b]. They specify a
separate and uncorrelated uncertainty for the flux into each
grid cell at each time step. Their uncertainties have some
minimum value except in deserts or over ice-covered re-
gions. The variances on land are the sum of those of net
primary productivity, respiration, and land use change. For
these processes, given the flux values based on process mod-
els of the terrestrial biosphere and the ocean carbon cycle as
well as land use change statistics, they assumed uncertainties
of 50%, 50%, and 100%, respectively. Figure 4.

For our standard case U18, Figure 4 shows this extra data
uncertainty for a number of sites. Alert (ALT) and Point
Barrow (BRW) in Alaska are close to strong but unresolved
biospheric sources. These sources are maximal in summer,
so the extra uncertainty reaches a maximum in this season.
The extra uncertainty is � 1.5 ppmv, but only 0.4 ppmv dur-
ing winter. At Cape Meares in Oregon (CMO), which is
farther south, the biospheric activity lasts longer, and hence
the period of high extra uncertainty is extended compared to
Alaska. In contrast, places that are remote from the large
surface sources, like the stations on Mauna Loa (MLO) on
Hawaii, on Niwot Ridge (NWR) in the Rocky Mountains,
or at the south pole (SPO), have a lower extra uncertainty
of order 0.2 to 0.4 ppmv. The effect of remoteness from the
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sources is well illustrated by comparing MLO to the station
at Cape Kumukahi (KUM), which is also on Hawaii but at
sea level: at KUM the extra uncertainty is � 2-3 times larger
than at MLO. Table 2.

To summarize the information at each station, Table 2 lists
the annual mean of the additional weights and a mean value
over all stations. We have added the numbers for cases with
shaped patterns and 54 regions. As for the aggregation er-
ror described in section 3, we obtain the largest extra un-
certainties for our standard case U18. The extra uncertainty
is slightly reduced (by � 10%) when using shaped patterns
and reduced by � 25% when using 54 regions. Using shaped
patterns and 54 regions is not as efficient as using 54 uniform
patterns but better than using 18 shaped patterns. As with
the aggregation errors in section 3, the difference in moving
from uniform to shaped patterns between the two resolutions
is interesting. Several factors interact to make the interpre-
tation difficult. First, the similarity between the structure of
the uncertainty at full-resolution and the shape of the chosen
basis functions determines how large the unresolved (small-
scale) component of the uncertainty will be. This can be
illustrated by a simple example. Imagine a small-scale struc-
ture with a large and a small a priori source component, and
individual uncertainties proportional to the source strengths.
The covariance of the source uncertainty would then have
a large eigenvalue in the direction of the large source and a
small one in the direction of the small source. In the uni-
form pattern case, both the resolved sum and the unresolved
difference direction would have the same mean uncertainty.
In the case with patterns shaped like the sources, most of
the uncertainty would project on the resolved direction, and
not much uncertainty would remain for the unresolved direc-
tion. Hence judging from this effect only, we would expect
more extra data uncertainty in the uniform pattern case, pro-
vided the uncertainties are roughly proportional to fluxes.
The transport of the unresolved source uncertainty is offset-
ting this advantage of shaped patterns. In the uniform pattern
case the unresolved direction is a source difference, which is
hardly seen, at least by remote stations. By contrast, with
the shaped pattern case the unresolved direction has an av-
erage component. This component is observable at remote
stations.

The mean of the residual standard deviations for these sta-
tions is also given in Table 2. It is taken from Globalview–
CO2 [1999]. The values are averaged over the period 1990–
1995 where observations are available. These uncertainties
are calculated as the standard deviation of the residuals of
the flask measurements and the smooth curve used to in-
terpolate them in time. They are hence a measure of tem-
poral variability. Despite their quite different genesis, the
two sets of uncertainties show similar structure, particularly
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in the Northern Hemisphere. A possible reason for this is
that both sets are influenced by small-scale source structure.
For the model-computed uncertainties this is clear from their
construction (Appendix A). In contrast, the temporal vari-
ability in the observed CO � concentration could be due to
temporal variations in transport acting on small-scale spatial
variability in sources. We can think of the temporal vari-
ation in transport as allowing us to sample different parts
of the small-scale source pattern. Exceptions to the agree-
ment are the elevated site at Niwot Ridge, Colorado, (NWR)
where the model shows little impact from local sources, and
Ragged Point, Barbados (RPB), in which the model shows
a substantial impact of local sources although the residual
standard deviation is small. The NWR result is likely to be
caused by difficulties in representing the sharp topography in
a low-resolution model, meaning that the site is disconnected
from the surface. Another reason for the disagreement is that
in our model we do not mimic the data selection procedure,
which is applied in order to reject air masses that are subject
to strong local influence.

We have repeated our standard inversion U18 but added
the extra uncertainty derived above to the 0.5 ppmv obser-
vational uncertainty. Since the covariance in the extra un-
certainty of different observational items is small, for con-
venience we only included the diagonal terms. As networks
become more dense, this simplification will become less ac-
ceptable. Figure 5 shows the annual mean of the aggregation
error for this inversion, which is reduced compared to the the
inversion without the extra uncertainty (see Figure 3). Figure 5.

Table 3.
We also applied the same algorithm to the other cases

in Table 1. Table 3 lists the same diagnostics that we had
previously computed for the case without extra uncertainty.
Comparing Tables 2 and 3 shows that in all cases all diag-
nostics have improved (except for the minimum difference in
P18W, which got slightly worse). We focus in the discussion
on the maximum absolute difference and the area-weighted
rms difference. In the standard case and its counterpart with
shaped patterns (U18 and P18), inclusion of the extra un-
certainty reduced both diagnostics by more than half. In
the cases with modified observational uncertainty, (the “W”
cases) the initial aggregation error was much smaller. In-
cluding the extra uncertainty only reduced it by about a third
for the uniform pattern case (U18W) and a quarter for the
shaped pattern case (P18W). The most likely reason is the
similarity in the data uncertainty from unresolved sources
and that from neglecting interannual variability. This is sim-
ilar to the case of the uncertainties from Globalview–CO2
[1999].

In the 54-region inversions the initial aggregation error
was much smaller than in the respective 18-region cases.
Nevertheless, the inclusion of extra uncertainty succeeded
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in reducing the aggregation error by about one third.

6. Summary and Conclusion

We have carried out a set of atmospheric transport inver-
sions for CO � , which use the Jacobian matrix of a three-
dimensional transport model to solve for the unknown mag-
nitudes of 18 or 54 prescribed surface flux patterns, aggre-
gating the fluxes over large regions. By comparing the fluxes
to the ones inferred by an inversion on the grid of the under-
lying transport model, we were able to quantify errors due to
such aggregation. Unfortunately, in many cases these errors
are of the same order of magnitude as the fluxes themselves.
For computational reasons, however, for many potential in-
version studies aggregation will be unavoidable.

Reducing the degree of aggregation by moving from 18
to 54 regions about halves the error, which suggests using
a resolution as high as computationally feasible. On the
other hand, the maximum resolution needed is that which
still leaves the Jacobian among neighboring flux components
non-uniform. In this context it is important to note that in our
model we did not mimic the observational data selection pro-
cedure, which would have made the Jacobian more uniform
because it would have reduced the impact of local fluxes.

Since the focus of our study was not to infer the partition
of land and ocean uptake, or land uptake of different conti-
nents, it was not necessary to choose basis functions that sep-
arate land and sea or among continents as is typical in inver-
sion studies [Bousquet et al., 1999; Rayner et al., 1999]. Ex-
amining instead the aggregation for a set of non-uniformly
shaped basis functions, which within our regular aggregation
domains have a more realistic shape as suggested by process
models, however, was an important test. Not only do these
shapes take land-sea differences into account but also huge
intracontinental variations in the fluxes, e.g., between forests
and deserts. Switching to these shaped basis functions does
not show a unique effect on the error. While for the 18-
region case the aggregation error was halved, it increased by
� 50% in the 54-region case.

Determining a set of patterns that, for a given network, re-
duces the aggregation error is a task for further investigation.
An even greater challenge will be to decide both the network
and the patterns that for a specified region (or a number of re-
gions simultaneously) yield the most accurate flux estimate.
We introduced a simple two-box model to demonstrate how
viewing errors in unresolved flux components as model er-
rors can help to reduce the aggregation error. The transport
model’s full-resolutionJacobian matrix maps the uncertainty
in the unresolved flux components to an extra uncertainty,
i.e., a covariance matrix, on the data side that accounts for
this model error. For the three-dimensional model this ex-
tra uncertainty is as large as 3.5 ppmv, which, however, de-
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pends on the assumptions for the uncertainty in the unre-
solved fluxes and needs further quantification. Even a recipe
as crude as adding only the extra variances (i.e., only the
diagonal elements) to the observational ones considerably
reduces the aggregation error. Hence for any low-resolution
inversion we recommend adding this additional uncertainty.
The high-resolution Jacobian needed to compute the extra
uncertainty and the low-resolution one used for the inver-
sion need not be computed with the same transport model.
Adding the extra uncertainty on the data side yields an in-
creased uncertainty in the inferred flux fields but the alterna-
tive is a serious risk of large biases.

Appendix A: Detailed Algorithm Description

In this appendix we give a detailed description for the gen-
eration of the extra data uncertainty due to unresolved source
components for use in an atmospheric tracer inversion. The
aim is that other workers can apply the algorithm without
dealing with the full background provided in the text. In
order to compute ����� 	 � mod 
 from (6) we require three in-
puts: (1) a set of patterns for whose magnitudes we wish to
solve, (2) a high-resolution description of the prior uncer-
tainty, and (3) a Jacobian matrix mapping the fluxes on the
high-resolution grid to the chosen observational network.

The algorithm is in two steps. First, we must calculate the
prior flux uncertainty, which is not resolved by our chosen
patterns; second, we must project this uncertainty into an
uncertainty on the data side, ����� 	 � mod 
 .

The patterns can be expressed as a series of vectors ��� ,
where each component quantifies the flux in a particular cell
of the transport model grid (for any of the disjoint patterns
used in section 3, most of the components are 0). For conve-
nience, we rescale and rotate the patterns to have unit length,
i.e., ��� � ��� � � , and be orthogonal, i.e., ��� � ��� � 
 for

����
	
(the patterns in section 3 are orthogonal, because the regions
are disjoint).

It is easy to show that the matrix defined by

�


��� ������ � (A1)

is a projection operator, which, although acting in the space
of the high-resolution fluxes, extracts only components in
the directions resolved by the patterns. The projector on the
remaining (unresolved) directions

� � is defined by

� � ��� � �


0

(A2)

We can now calculate ���� 	 � mod 
 by the usual rules for
propagating covariances:

����� 	 � mod 
 � � � � �������
 � � � �+� (A3)
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We are now left with a computational issue. For the di-
mensions of our problem,

� � is approximately a 10,000 �

10,000 matrix, which we do not want to precompute and
store. Further, the symmetry in (A3) is obvious and, owing
to the diagonal structure of ����� � 
 , easy to exploit by

����� 	 � mod 
 � ��� � ) (A4)

where
�

is defined by
� � � � � � ���� � 
%

���
�
0

(A5)

Using the definition of � � we obtain

� � � � ����� � 
% ��� � � � � � � � � � � ����� � 
&% ��� � 0 (A6)

This means the propagation of the uncertainty from each pat-
tern can be considered separately, and the whole matrix

� �
need never be calculated.

Acknowledgments. The authors wish to thank Michael
Voßbeck for producing the GrADS plots and Rachel Law for help-
ful comments on the manuscript. This study was carried out with
the support of the Bundesministerium für Bildung und Forschung
(BMBF) contract 01LA9898/9 as well as the support of the Aus-
tralian government through its Cooperative Research Centres Pro-
gramme.

References
Bousquet, P., P. Ciais, P. Peylin, M. Ramonet, and P. Monfrey, In-

verse modeling of annual atmospheric CO 	 sources and sinks,
1, Method and control inversion, J. Geophys. Res., 104, 26,161–
26,178, 1999.

Brown, M., Deduction of emissions of source gases using an objec-
tive inversion algorithm and a chemical tranport model, J. Geo-
phys. Res., 98, 12,639–12,660, 1993.

Denning, A. S., et al., Three-dimensional transport and concen-
tration of SF � : A model intercomparison study (TransCom 2),
Tellus, 51B, 266–297, 1999.

Enting, I. G., T. M. L. Wigley, and M. Heimann, Fu-
ture emissions and concentrations of carbon dioxide: Key
ocean/atmosphere/land analyses, Tech. Pap. 31, CSIRO Div. of
Atmos. Res., Aspendale, Victoria, Australia, 1994.

Enting, I. G., C. M. Trudinger, and R. J. Francey, A synthesis inver-
sion of the concentration and � � 
 C of atmospheric CO 	 , Tellus,
Ser. B, 47, 35–52, 1995.

Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Taka-
hashi, and P. Tans, A large terrestrial carbon sink in north amer-
ica implied by atmospheric and oceanic carbon dioxide data and
models, Science, 282, 442–446, 1998.

Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele,
and P. J. Fraser, Three-dimensional model synthesis of the global
methane cycle, J. Geophys. Res., 96, 13,033–13,065, 1991.

Globalview–CO2, Cooperative Atmospheric Data Integration
Project - Carbon Dioxide [CD-ROM], NOAA/CMDL, Boulder,
Colo., 1996.

Globalview–CO2, Cooperative Atmospheric Data Integration
Project - Carbon Dioxide [CD-ROM], NOAA/CMDL, Boulder,
Colo., 1999.



20

Heimann, M., The global atmospheric tracer model TM2, Tech.
Rep. 10, Max-Planck-Inst. für Meteorol., Hamburg, Germany,
1995.

Hein, R., P. J. Crutzen, and M. Heimann, An inverse modeling
approach to investigate the global atmospheric methane cycle,
Global Biogeochem. Cycles, 11, 43–76, 1997.

Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld, and
M. Heimann, Inverse modelling of methane sources and sinks
using the adjoint of a global transport model, J. Geophys. Res.,
104, 26,137–26,160, 1999.

Kaminski, T., M. Heimann, and R. Giering, A coarse grid three-
dimensional global inverse model of the atmospheric transport,
1, Adjoint model and Jacobian matrix, J. Geophys. Res., 104,
18,535–18,553, 1999a.

Kaminski, T., M. Heimann, and R. Giering, A coarse grid three-
dimensional global inverse model of the atmospheric transport,
2, Inversion of the transport of CO 	 in the 1980s, J. Geophys.
Res., 104, 18,555–18,581, 1999b.

Keeling, C. D., S. C. Piper, and M. Heimann, A three-dimensional
model of atmospheric CO 	 transport based on observed winds,
4, Mean annual gradients and interannual variations, in Aspects
of Climate Variability in the Pacific and the Western Americas,
Geophys. Monogr. Ser., vol. 55, edited by D. H. Peterson, pp.
305–363, AGU, Washington, D. C., 1989.

Law, R. M., et al., Variations in modelled atmospheric transport of
carbon dioxide and the consequencesfor CO 	 inversions, Global
Biogeochem. Cycles, 10, 783–796, 1996.

Peylin, P., P. Bousquet, P. Ciais, and P. Monfray, Differences of flux
estimates based on a time-independent versus a time dependent
inversion method, in Inverse Methods in Global Biogeochemical
Cycles, Geophys. Monogr. Ser., vol. 114, edited by P. Kasibhatla
et al., pp. 295–309, AGU, Washington, D. C., 2000.

Rayner, P. J., I. G. Enting, R. J. Francey, and R. L. Langenfelds,
Reconstructing the recent carbon cycle from atmospheric CO 	 ,
� � 
 C and O 	 /N 	 observations, Tellus, Ser. B, 51, 213–232, 1999.

Rayner, P., R. Giering, T. Kaminski, R. Ménard, R. Todling, and
C. Trudinger, Exercises, in Inverse Methods in Global Biogeo-
chemical Cycles, Geophys. Monogr. Ser., vol. 114, edited by P.
Kasibhatla et al., pp. 81–105, AGU, Washington, D. C., 2000.

Tans, P. P., A note on isotopic ratios and the global atmospheric
methane budget, Global Biogeochem. Cycles, 11, 77–81, 1997.

Tans, P. P., I. Y. Fung, and T. Takahashi, Observational constraints
on the global atmospheric CO 	 budged, Science, 247, 1431–
1438, 1990.

Tarantola, A., Inverse Problem Theory - Methods for Data Fit-
ting and Model Parameter Estimation, Elsevier Sci., New York,
1987.

Trampert, J., and R. Snieder, Model estimations biased by truncated
expansions: Possible artifacts in seismic tomography, Science,
271, 1257–1260, 1996.

I. G. Enting and P. J. Rayner CSIRO Atmospheric Re-
search, PMB 1, Aspendale, Victoria 3195, Australia.
(peter.rayner@dar.csiro.au; ian.enting@dar.csiro.au)

M. Heimann, Max-Planck-Institut für Biogeochemie, Postfach
100164, D-07701 Jena, Germany. (mheimann@bgc-jena.mpg.de)

T. Kaminski, FastOpt, Martinistr. 21, D-20251 Hamburg, Ger-
many. (thomas@fastopt.de)

(Received May 26, 2000; revised September 6, 2000;
accepted September, 15, 2000.)



21

Copyright 2001 by the American Geophysical Union.

Paper number 2000JD900581.
0148-0227/01/2000JD900581$09.00



22

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS



23

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS

KAMINSKI ET AL.: AGGREGATION ERRORS



24



25

Figure Captions
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Figure 1. (a) An idealized situation of two regions upwind
of an observational site. Since region 1 is farther upwind
than region 2, for equal emissions S

�
and S � , the source S �

in region 2 has a higher impact on the concentration at the
station. (b) Jacobian that quantifies this impact. (c) Two
choices of emission patterns that yield the same concentra-
tion at the station. While for the first pattern the aggregation
over both regions is a net source, for the second pattern is
a net sink. Hence from the atmospheric information alone
it is not possible to distinguish a net source from a net sink.
This is determined by the additional information provided
through choosing a pattern.

Figure 1. (a) An idealized situation of two regions upwind of an observational site. Since region 1 is
farther upwind than region 2, for equal emissions S

�
and S � , the source S � in region 2 has a higher impact

on the concentration at the station. (b) Jacobian that quantifies this impact. (c) Two choices of emission
patterns that yield the same concentration at the station. While for the first pattern the aggregation over
both regions is a net source, for the second pattern is a net sink. Hence from the atmospheric information
alone it is not possible to distinguish a net source from a net sink. This is determined by the additional
information provided through choosing a pattern.
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Figure 2. Influence map on TM2 grid for the January
mean concentration at station BRW. Sensitivity of the sim-
ulated concentration with respect to potential fluxes within
the same month as simulated by TM2 (see Kaminski et al.
[1999a] for more details).

Figure 2. Influence map on TM2 grid for the January mean concentration at station BRW. Sensitivity of
the simulated concentration with respect to potential fluxes within the same month as simulated by TM2
(see Kaminski et al. [1999a] for more details).
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Figure 3. Annual mean of a posteriori values averaged over
groups of 9 (zonally) � 6 (meridionally) TM2 grid squares
(top) from an inversion on the aggregated grid (case 18),
(middle) averaged after inversion of the TM2 grid (case R),
and (bottom) their difference; in the difference plot, positive
values quantify an enhanced source or a reduced sink in the
aggregated inversion.

Figure 3. Annual mean of a posteriori values averaged over groups of 9 (zonally) � 6 (meridionally) TM2
grid squares (top) from an inversion on the aggregated grid (case 18), (middle) averaged after inversion
of the TM2 grid (case R), and (bottom) their difference; in the difference plot, positive values quantify an
enhanced source or a reduced sink in the aggregated inversion.
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Figure 4. Extra data uncertainty (as standard deviation in
ppmv) computed from uncertainty in the unresolved source
components for the U18 case for Alert (ALT) and Point
Barrow (BRW), Alaska; Cape Meares, Oregon (CMO); Ni-
wot Ridge, Colorado, (NWR); Mauna Loa (MLO) and Cape
Kumukahi (KUM), Hawaii; Ascension Island (ASC); Cape
Grim, Tasmania (CGO); and South Pole (SPO).

Figure 4. Extra data uncertainty (as standard deviation in ppmv) computed from uncertainty in the unre-
solved source components for the U18 case for Alert (ALT) and Point Barrow (BRW), Alaska; Cape
Meares, Oregon (CMO); Niwot Ridge, Colorado, (NWR); Mauna Loa (MLO) and Cape Kumukahi
(KUM), Hawaii; Ascension Island (ASC); Cape Grim, Tasmania (CGO); and South Pole (SPO).



29

Figure 5. Annual mean of aggregation error for the U18
case. As in Figure 3 (bottom), but here the low-resolution
inversion was carried out with extra uncertainty accounting
for uncertainty in unresolved sources. Positive values imply
a positive aggregation error.

Figure 5. Annual mean of aggregation error for the U18 case. As in Figure 3 (bottom), but here the
low-resolution inversion was carried out with extra uncertainty accounting for uncertainty in unresolved
sources. Positive values imply a positive aggregation error.
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Table 1. Various Diagnostics of Aggregation Error for Six Different Setups of the Low-Resolution Inversion �

Identifier Maximum Difference Minimum Difference Maximum Absolute rms rms Area-Weighted

U18 677.68 -931.24 931.24 66.94 90.39
P18 262.70 -536.49 536.49 35.99 47.42
U18W 619.10 -277.91 619.10 42.94 58.15
P18W 106.19 -176.93 176.93 15.65 22.03
U56 166.54 -256.66 256.66 52.51 26.78
P56 313.44 -342.23 342.23 72.84 36.70

�
Identifiers are shown for low-resolution inversion, maximum positive error over all months and aggregation regions, minimum

negative error, maximum absolute error, root mean squared (rms) error and, area-weighted rms error. All values are in g C m
� 	

yr
� �

:
positive values quantify an enhanced source or a reduced sink in the aggregated inversion. The maximum and minumum fluxes for the
full-resolution inversion are –463 g C m

� 	
yr

� �
and +190 g C m

� 	
yr

� �
. For the U18 case, the annual mean of the aggregation error

is depicted in Figure 3.
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Table 2. Annual Mean of Extra Data Uncertainty Due to Unresolved Sources at the Observational Sites �

Station U18 P18 U54 P54 Globalview RSD

ALT 1.7481 0.7058 0.6282 0.5778 0.68
MBC 1.8424 0.7642 0.7860 0.6048 0.80
BRW 1.0819 0.9490 0.5721 0.6601 0.92
STM 1.0179 0.8681 0.5038 0.6920 0.95
CBA 0.6398 0.8574 0.5030 0.6668 1.10
SHM 0.6605 0.8409 0.5134 0.7178 0.81
CMO 1.9188 2.0691 1.5572 1.5309 1.81
AZR 0.5054 0.6601 0.4511 0.6261 1.31
NWR 0.3434 0.4862 0.2461 0.4228 1.14
MID 0.6209 0.7120 0.5471 0.6734 0.75
KEY 1.0855 1.0150 1.1291 0.9911 0.73
MLO 0.3231 0.4363 0.2318 0.4030 0.54
KUM 0.7234 0.8007 0.6673 0.7684 0.73
GMI 0.6052 0.7118 0.4546 0.6100 0.68
AVI 0.9870 0.7748 0.8500 0.8119
RPB 1.3047 0.9682 1.0520 0.9738 0.44
CHR 0.5956 0.7015 0.5683 0.6450 0.23
SEY 0.9305 0.9293 0.9177 0.8609 0.82
ASC 0.9762 1.0188 0.5771 0.9432 0.58
SMO 0.5594 0.6804 0.4444 0.6485 0.41
AMS 0.5614 0.7220 0.4626 0.6829
CGO 0.5386 0.6293 0.4578 0.5874 0.23
PSA 0.4945 0.6848 0.3509 0.5629 0.16
HBA 0.9519 0.5608 0.3261 0.4797 0.18
SPO 0.6828 0.5192 0.3085 0.4520 0.41
average 0.867956 0.802628 0.604248 0.703728

�
As standard deviation in ppmv. Identifier for the station location is given. Extra uncertainties for four setups are given and

contrasted to residual standard deviations (RSD) from Globalview–CO2 [1999].
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Table 3. Various Diagnostics of Aggregation Error for Six Different Setups of the Low-Resolution Inversion but With
Extra Data Uncertainty Taken Into Account �

Identifier Maximum Difference Minimum Difference Maximum Absolute rms rms Area-Weighted

U18 337.63 -187.01 337.63 26.50 36.59
P18 135.69 -83.11 135.69 13.83 19.81
U18W 370.98 -111.68 370.98 26.28 35.77
P18W 129.17 -62.42 129.17 12.28 18.30
U56 129.20 -136.73 136.73 32.24 17.19
P56 210.53 -189.32 210.53 46.45 27.34

�
See Table 1 for more details. All values are in g C m

� 	
yr

� �
.



Paper number 2000JD900581

This paper explores the consequences of resolution of surface fluxes
on synthesis inversions of carbon dioxide. Synthesis inversion divides the
Earth’s surface into a set of regions and solves for the magnitudes of fluxes
from these regions. The regions are generally quite large. By considering
an inversion performed at the resolution of the underlying transport model
we show that the aggregation to large regions can cause significant differ-
ences in the final results, with errors of the same order of magnitude as the
fluxes themselves. Using a simple model, we derive an algorithm to re-
duce this error. This algorithm accounts for the extra data uncertainty that
is caused by uncertainty in the small-scale flux components. In the spatial
synthesis inversion this extra data uncertainty reaches a maximum value of
3.5 ppmv. Accounting for it can halve the aggregation error. We provide
suggestions for dealing with this problem when high-resolution inversions
are not feasible.


