Generating recomputations in
reverse mode AD

Ralf Giering!
Thomas Kaminski?

ABSTRACT The main challenge of the reverse (or adjoint) mode of au-
tomatic differentiation (AD) is providing the accurate values of required
variables to the derivative code. We discuss different strategies to tackle
this challenge. The ability to generate efficient adjoint code is crucial for
handling large scale applications. For challenging applications, efficient ad-
joint code must provide at least a fraction of the values of required variables
through recomputations, but it is essential to avoid unnecessary recompu-
tations. This is achieved by the Efficient Recomputation Algorithm imple-
mented in the Tangent linear and Adjoint Model Compiler and in Trans-
formation of Algorithms in Fortran, which are source-to-source translation
AD tools for Fortran programs. We describe the algorithm and discuss pos-
sible improvements.

Keywords: automatic differentiation, reverse mode, adjoint model, recom-
y b) b) .] b)
putations, source-to-source translation, Fortran, program slicing

1 Introduction

For a differentiable function represented by a numerical algorithm, auto-
matic differentiation (AD) [7] is the process of constructing a second algo-
rithm that represents the function’s derivative. This second algorithm is an
implementation of the chain rule, i.e. of a product of the Jacobian matrices
representing the derivatives of the individual steps in the algorithm that
defines the function. If the number of the function’s input variables exceeds
the number of output variables, it is favorable to have this derivative al-
gorithm operate in the reverse mode of AD (adjoint code), i.e. to evaluate
this matrix product in the order reverse to that of the function algorithm.
The entries of these Jacobian matrices, however, contain values of variables
of the function code, which are called required variables. Another type of
required variables are those whose values determine the control flow in the
function code [2]. Providing the accurate values of required variables to

!FastOpt, Hamburg, Germany, (Ralf.Giering@FastOpt.de).
2Max-Planck-Institut fiir Meteorologie, Hamburg, Germany, (kaminski@dkrz.de).

This is page 1
Printer: Opaque this

2 Ralf Giering , Thomas Kaminski

the derivative code in an efficient way is by no means trivial but the key
challenge for constructing efficient adjoint code. Given that for many appli-
cations the function code alone consumes a large fraction of the available
computer resources already, efficiency of the adjoint code is indispensable.

A way to provide the values of required variables is to store them in mem-
ory or on disk during an initial function evaluation and then access them
while evaluating the derivative. For large scale applications so called check
pointing algorithms [8] arrange multiple use of the same storing space. Since
this multiple use requires multiple forward integrations of the function code,
the additional CPU requirements still make it infeasible to provide all re-
quired values exclusively by storing. An alternative consists in recomputing
the values of the required variables within the derivative code. But again,
it is not difficult to imagine relevant examples for which the cost of these
recomputations exceeds the available CPU time. Hence, many large scale
applications can only be handled, if an efficient combination of storing and
recomputation is applied [6].

The Tangent linear and Adjoint Model Compiler (TAMC, [4]) is a source-
to-source translation AD tool for Fortran routines, which supports a com-
bination of storing and recomputation. By default TAMC generates code
for recomputation based on the Efficient Recomputation Algorithm (ERA),
which we present in this paper. In addition, storing and reading of required
variables is handled automatically by a few library functions, which arrange
the necessary bookkeeping. This feature is triggered for variables indicated
by the user through directives in the function code.

In section 2 we use a simple example to introduce the basic strategies of
storing and recomputation. Section 3 discusses the analysis steps and tech-
niques that ERA is based upon and presents the algorithm itself. Eventually
section 4 contains our conclusions.

2 Strategies of providing required variables

Using a simple example of a sequence of statements, this section introduces
the general strategies for generating corresponding adjoint code. Although
a sequence of statements or blockis no explicit statement in some program-
ming languages (e.g. Fortran), in terms of reverse mode AD it is one of the
most important structures. Such a block is a group of statements that is ex-
ecuted consecutively, i.e. there is no control flow changing statement inside
a block. The statements a block is composed of are elementary statements
like assignments, subroutine calls, conditional statements, or loops, which
can contain blocks themselves. Hence, blocks define a multi level hierarchy
of partitions of the function code, which on the coarsest level partitions the

3Note, the block we define here is different from a basic block defined in code analysis.

1. Generating recomputations in reverse mode AD 3

2%x
= cos(y)
sin(y)
yxw

N < =5 <
|

D W N -

FIGURE 1. A simple example of a block with overwriting of y, all variables are
active

S1 sl =y
1 y = 2%x 1 y = 2%x
S2 s2 = w
2 w = cos(y) 2 w = cos(y)
S3 s3 =y S3 s3 =y
3 y = sin(y) 3 y = sin(y)
S4 s4 =2z
4 Z = y*W 4 Z = y*w
R4 z =s4
A4 adw += y*adz A4 adw += y*adz
ady += w*adz ady += wkadz
adz = 0 adz = 0
R3 y =83 R3 y =83
A3 ady = cos(y)*ady A3 ady = cos(y)*ady
R2 w =82
A2 ady += -sin(y)*adw A2 ady += -sin(y)*adw
adw = 0 adw = 0
Rl y =sl
Al adx += 2xady Al adx += 2xady
ady = 0 ady = 0

FIGURE 2. Adjoint of the block of Fig. 1 generated by a
store-all-modified-variables strategy (SA, left panel) and a minimal-store
strategy (SM, right panel). a += b is a shorthand notation for a = a+b.

top level routine to be differentiated and on the lowest level reaches the
elementary assignments.

The block shown in Fig. 1 contains four assignments, one of which (state-
ment 3) is overwriting the variable y, which was defined previously (state-
ment 1).

The first algorithm employs the store-all-modified-variables (SA) strategy
implemented in the AD tool Odyssee[11] for blocks defined by subroutine
bodies and yields the code depicted in the left hand panel of Fig. 2. The
adjoint statements (denoted by a leading A) reference both adjoint vari-

4 Ralf Giering , Thomas Kaminski

E4.1 y = 2%x E4.1 y = 2%x
E4.2 w = cos(y) E4.2 w = cos(y)
E4.3 y = sin(y) E4.3 y = sin(y)
A4 adw += y*adz A4 adw += y*adz
ady += wxadz ady += wkxadz
adz = 0 adz = 0
E3.1 y = 2%x E3.1 y = 2%x
E3.2 w = cos(y)
A3 ady = cos(y)*ady A3 ady = cos(y)*ady
E2.1 y = 2x%x
A2 ady += -sin(y)*adw A2 ady += -sin(y)*adw
adw = 0 adw = 0
A1l adx += 2xady A1 adx += 2xady
ady = 0 ady = 0

FIGURE 3. Adjoint of the block of Fig. 1 generated by the recompute-all strategy
(RA, left panel) and the minimum-recomputation strategy (RM, right panel).

ables (marked by the prefix ad) and required variables. The generation of
the pure adjoint statements, i.e. without recomputations, is discussed in
more detail by Giering and Kaminski [5]. In the so-called split mode [9]
during a preceding forward sweep the value of every variable is saved to an
auxiliary variable (S1, ..., S4) before a new value is assigned. During the
following reverse sweep through the adjoints of the individual statements
the value previously saved in front of a statement is restored in front of
the corresponding adjoint statement (R4, ..., R1). By this algorithm it is
ensured that all required variables have their correct values.

In the previous example several saves and restores are unnecessary. Ap-
plying a minimum-store strategy (SM), only stores and restores of those
variables that are referenced by the adjoint statements will be inserted.
In our example the restores R1, R2, R4 and corresponding stores are not
needed, because the restored value is not required. An alternative algorithm
is described by Faure and Naumann [3].

Alternatively, instead of saving required variables, code for recomputing
their values can be inserted. Applying the straight forward recompute-all
strategy (RA) to a block consists in preceding every adjoint statement by
the fraction of the block which precedes the corresponding statement. For
our code example this yields the adjoint code shown in Fig. 3.

Obviously, some of the recomputations are unnecessary and can be
avoided by a more sophisticated strategy. In the adjoint code shown in
the lefthand panel of Fig. 3 recomputations E3.2 and E.2.1 are not needed,
because variable w is not referenced thereafter and variable y already has

1. Generating recomputations in reverse mode AD 5

its required value. This minimum-recomputation strategy (RM) yields the
code shown in the righthand panel of Fig. 3. ERA follows this strategy.

The strategies SA and RA are easy to implement, while the correspond-
ing strategies SM and RM require a sophisticated data flow analysis. How-
ever, this additional analysis improves the efficiency of the code. Comparing
both more sophisticated strategies RM and SM, clearly RM is more effi-
cient in terms of memory, while SM is more efficient in terms of arithmetic
operations. For a given problem, machine characteristics, namely the ac-
cess time to memory and the speed of arithmetic operations, determine the
ratio of the execution times of RM and SM.

3 Efficient Recomputation Algorithm

This section presents ERA, which is based on the multi-level hierarchy of
partitions of the function code into blocks introduced in section 2. ERA
is based on a data flow analysis, which analyzes the memory accesses of
statements. In general there are two kinds of accesses namely read and
write. In higher programming languages, memory is accessed by means of
variables which can be, e.g., scalar variables or array variables. Especially
for array variables, their memory access pattern can be very complex. In
general every reference of a variable accesses a set of memory locations.

We consider here neither the representation of the sets of memory lo-
cations nor the implementation of the operations (union, intersection) on
them. Also the representation of incomplete knowledge and its influence
on the operations in order to gain must and may information is not dis-
cussed here. For more details on these topics see e.g. [1]. We assume in
the following that there is a representation of memory accesses including
all necessary operations available and that the knowledge is complete. For
readability we will denote the set of memory locations that variables access
simply as set of variables.

Fig. 4 shows the heart of ERA, the function AD_EFFREC represented
in the notation ICAN [10]. The algorithm uses several functions explained
briefly.

SLICE(stmt, vars) SLICE is a function that takes as input a statement
or sequence of statements (stmt) and a set of variables (vars). It
computes the subset of variables that can be computed by the input
set of statements and then returns the subsequence of statements
that generates this subset of variables (by removing all 'unnecessary
statements’).

IS_ACTIVE(stmt) IS_.ACTIVE is a function that returns true if the
statement is active, i.e. computes active variables. This attribute is
determined in a foregoing data flow analysis.

6 Ralf Giering , Thomas Kaminski

function AD_EFFREC(S, F) : A
if S is not block then
A = AD_ELEMENTARY(S,F)
else
required := §; killed := §; A := ()
for : = N to 1 step -1 do
if required #) then
B; := SLICE(S;, required)
required := (required - GEN(B;)) U USE(B;)
killed U= KILL(B;); A:=B; ® A
end if
if IS.ACTIVE(S;) then
A; := AD_EFFREC(S;, F © @®._} Sk)
invalid := killed | USE(A;)
valid := USE(A;) - invalid
if invalid # () then

lost := ()

repeat
invalid U = lost
valid — = lost

E; := SLICE(F© @_ Sk, invalid)
lost := KILL(E;) [valid
until lost = {
killed U = KILL(E;); A := A ® E;
end if
required U = valid; killed U = KILL(A;); A := A © A;
end if
end for
end if
return A

FIGURE 4. Function AD_EFFREC, which forms the heart of ERA. Sequences
of statements are denoted by upper case letters; ©® denotes concatenation of two
sequences and @;:1 denotes a concatenation of ¢ of these sequences. () is the
empty sequence. Functions are denoted by upper case words, they are explained in
the text. Sets of variables are denoted by lower case words; the standard notation
for the operators is used.

1. Generating recomputations in reverse mode AD 7

AD_ELEMENTARY((stmt, leading_stmt) AD_ELEMENTARY is a
function, that generates the adjoint of an elementary state-
ment. For more complex statements containing blocks themselves,
AD_ELEMENTARY will call AD_EFFREC, in which case the ad-
joint statement might contain recomputations. In some cases leading
statements (a slice of leading_stmt) have to be inserted to recompute
lost values.

KILL(stmt) KILL is a function that returns the set of variables over-
written by the input sequence of statements (stmt). Note that adjoint
variables do not need to be taken into account here.

GEN(stmt) GEN is a function that returns the set of variables, of which
every variable is defined by a statement of the input sequence of state-
ments (stmt) but not overwritten by any of the following statements
of the sequence.

USE(stmt) USE is a function that returns the set of variables that
are used before possibly being overwritten by the input sequence of
statements (stmt). Note that adjoint variables do not need to be taken
into account here.

The input of AD_EFFREC is a block of statements S = (Sy, ..., Sy) and all
code F that precedes S. The output is the adjoint A of the block. ERA starts
by calling AD_EFFREC with the coarsest partition of the top level routine
of the function code and F=Fy, which is the code to reconstruct the val-
ues of the independent variables*. Then AD_EFFREC works top down by
recursively calling itself, with the elements of the partition as arguments.
When the level of the simple assignment is reached, AD_.EFFREC con-
structs the corresponding adjoint. Going bottom up again, AD_ EFFREC
then level by level composes the adjoint code and propagates all informa-
tion that is necessary for doing so.

When called with a block S that contains only an elementary statement
AD_EFFREC calls the function AD_ELEMENTARY (see function descrip-
tion below), which constructs the corresponding adjoint code according to
the rules given in [5]. Otherwise AD_EFFREC walks backward through the
block statement by statement and updates three quantities: the sequence
of generated statements (A), the set of variables (required) required by the
sequence, and the set of variables (killed) overwritten by it. For the current
statement, A is enlarged in two steps as depicted by Fig. 5: Firstly, for the
current statement S; a slice of it (B;) is generated that computes accu-
mulated required variables and prepended to A. Secondly, if the statement
S; is active (see [5]), the adjoint statement (A;) is generated. The adjoint

4Since, in most cases, there is no code given to recompute the independent variables
they have to be stored at the very beginning of the adjoint top-level routine.

8 Ralf Giering , Thomas Kaminski

Bz'@‘ Bi+1 ...BNy_1 @AN...Ei+1®AZ'+1 O E; ©A;

FIGURE 5. Principle of enlargement of A, the sequence of statements forming
the adjoint of a block S. For a given statement S; of the block, A; is the adjoint,
B; a slice of S;, and E; a slice of all statements in the entire function before S;
(see text). Note, By and Ex are empty because initially required is the empty
set.

statement might require variables (USE(A;) C USE(S;)) which must be
provided by statements to be included. But some of these required vari-
ables (invalid) might have been overwritten by recomputations of previously
generated adjoint statements (Ay, k > i) or by previously included slices
of recomputations (By, k > 1), in which case they cannot yet be provided
by the first slicing. For this set of variables additional recomputations are
generated by slicing the statements of the sequence up to but not including
the current statement of interest (@2;11 Sk) concatenated to all statements
(F) preceding the block. Note that USE(E;) = 0, since USE(F) = (). This
slicing is done in a repeat loop in order to find the minimum of recompu-
tations that do not overwrite required variables. The resulting statements
are appended to A, and the sets of variables killed and required by A are
updated accordingly.

In summary, A is build by walking backwards through the sequence of
statements. Recomputations are added on the left and, if necessary, on
the right and adjoint statements are added on the right. The sets of killed
and required variables are stored and thus are accessible by the functions
USE(A) and KILL(A).

ERA is not always able to generate the code according to the RM strategy
of section 2. For example, in Fig. 3 ERA will unnecessarily include state-
ment E2.1. A more sophisticated algorithm requires a more detailed analy-
sis of the validity of values that already have been recomputed TAMC ap-
plies an extension of ERA which handles this case. Further discussion is
beyond the scope of this paper.

4 Conclusions

We demonstrated that to generate efficient adjoint code, which is indispens-
able for large scale applications, a sophisticated analysis of the function
code is needed. We have described the Efficient Recomputation Algorithm
(ERA) which, based on a multilevel hierarchy of partitions of the function
code into blocks, works recursively from the top level routine to the ele-
mentary statements on the lowest level (top down) and then walks its way
up (bottom up) again generating the adjoint code. It requires a data flow
and data dependence analysis of the code and the ability to do program
slicing for arbitrary code segments.

1. Generating recomputations in reverse mode AD 9

The current version of the Tangent linear and Adjoint Model Compiler
(TAMC) uses an extended version of ERA, which in some cases is capa-
ble of avoiding recomputations of values that are still valid. Other possible
extensions are not yet included in TAMC: The minimum recomputation
strategy could be modified to work on loops. Those can be looked upon as
sequences of statements of which each statement is the kernel of the loop
(loop unrolling). TAMC currently does not take into account the array ac-
cess patterns and thus may generate unnecessary recomputations, if array
sections are required which do not overlap with further array sections that
are killed. Currently the scope of ERA is limited to Fortran routines (sub-
routines and functions), i.e. the starting point of recomputations begins
with the input variables of routines, which are stored and restored if neces-
sary. The extended algorithm would require slicing of routines to generate
clones of them that compute only a subset of their original output.

For most large scale problems, the most efficient adjoint code, however,
applies a combination of storing and recomputation. TAMC supports stor-
ing and restoring of a subset of the required variables that is indicated by
the user through directives in the function code. For those required vari-
ables, storing and restoring is handled automatically through library rou-
tines. The new AD tool Transformation of Algorithms in Fortran (TAF),
by default already chooses a suboptimal combination of storing and recom-
putation automatically. Still the user has the opportunity to improve this
combination by inserting directives in the function code. To determine the
optimal combination would require the ability to quantify the cost of re-
computations and storing/restoring for a particular platform and compiler.

Although TAMC and TAF are restricted to Fortran routines, ERA can
be implemented to differentiate functions represented in other numerical
programming languages.

Acknowledgments

Thomas Kaminski was supported by the Bundesministerium fiir Bildung
und Forschung (BMBF) under contract number 01L.A9898/9.

5 REFERENCES

[1] Beatrice Creusillet and F. Irigoin. Interprocedural array region analy-
sis. Rapport cri, A-282, Ecole des Mines de Paris, FRANCE, January
1996.

[2] Christele Faure. Adjoining strategies for multi-layered programs.
Rapport de recherche 3781, INRIA, BP 105-78153 Le Chesnay Ceded,
FRANCE, Oktober 1999.

10 Ralf Giering , Thomas Kaminski

[3] Christele Faure and Uwe Naumann. The trajectory problem in AD.
In Laurent Hascoet and Christele Faure, editors, AD 2000, pages 111-
222. Springer Verlag, Berlin, Germany, 2000.

[4] Ralf Giering. Tangent linear and Adjoint Model Com-
piler, Users manual, 1997. unpublished, available at
http://puddle.mit.edu/~ralf/tamc.

[6] Ralf Giering and Thomas Kaminski. Recipes for Adjoint Code Con-
struction. ACM Trans. On Math. Software, 24(4):437-474, 1998.

[6] Ralf Giering and Thomas Kaminski. On the performance of derivative
code generated by TAMC, 2000. submitted to Optimization Methods
and Software.

[7] Andreas Griewank. On automatic differentiation. In Masao Iri and
Kunio Tanabe, editors, Mathematical Programming: Recent Develop-
ments and Applications, pages 83—108. Kluwer Academic Publishers,
Dordrecht, 1989.

[8] Andreas Griewank. Achieving logarithmic growth of temporal and
spatial complexity in reverse automatic differentiation. Optimization
Methods and Software, 1:35-54, 1992.

[9] Andreas Griewank. Computational Differentiation. Springer, New
York, Berlin, 2000.

[10] Steven S. Muchnick. Advanced Compiler Design Implementation.
Morgan Kaufmann Publishers, San Francisco, California, 1997.

[11] Nicole Rostaing, Stéphane Dalmas, and André Galligo. Automatic
differentiation in Odyssée. Tellus, 45A:558-568, 1993.

